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em is clearly to choose & so that the

ole plane. In general one will wish to

possible so that it still has this covering
trast with the treatment of the homo-
the objective was to make the regions
rge as possible but so that they did not

v be concerned at first with the homo-
ve have a fairly complete theory of the
iscuss in Chapter X1 the inhomogeneous
 homogeneous one.
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Chapterl

Lattices

L1. Introduction. In this chapter we introduce the most important
concept in the géometry of numbers, that of g lattice, and develop some
of its basic properties. The contents of this chapter, except § 2.4 and
§ 5, are fundamental for almost everything that follows.

In this book we shall be concerned only with lattices over the ring
of rational integers. A certain amount of work has been done on
lattices over complex quadratic fields, see e.g. MULLENDER (41945a) and
K. RocERs (1955a). Many of the concepts should carry over practically -
unaltered. Again, work on approximation to complex numbers by
integers of a complex quadratic field [e.g. MULLENDER (1945 a), CASSELS,
LEDERMANN and MABLER (19544}, PorTou (1953a)] and on the minima
of hermitian forms when the variables are integers in a quadratic field
[e.g. OPPENHEIM (19324, 19364, 19531) and K. ROGERS (1956a)] may
be regarded as a generalization of the geometry of numbers to lattices
over complex quadratic fields. We shall not have occasion to mention
Jattices over complex quadratic fields again in this book; we mention
them here only for completeness. Tor lattices over general algebraic
number fields see ROGERS and SWINNERTON-DYER (1958a).

I.2. Bases and sublattices. Let @, ..., @, be linearly independent
real vectors in #-dimensional real euclidean space, so that the only set of
numbers %, ..., 1, for which fi@, - +4,6,=0 Is fh="lty=--=1,=0.

R HoTwn .

The set of all points
a-’.:%1‘11‘4_"' +unan ’ (1)

with integral #, ..., %, is called the lattice with basis @;, ..., a,. We
note that, since @, ..., @, are linearly independent, the expression. of
any vector @ in the shape (1) with real #,, ..., %, is unique. Hence if &
isin A and (1) is any expression for @ with real u,, ..., u,, thenu,, ..., %,
are integers. We shall make use of these remarks frequently, often
without explicit reference.

The basis is not uniquely determined by the lattice. For let @; be

the points , ..
a; =Z”i;ﬂ; =1, 7=n), , (2)
i :

where v;; ate any integers with

det (u,) = +1. (3)
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Then

L
a,= Z W
i

(1) is precisely

with integral w;;. It follows easily that the set of points
the set of points o
W

where #), ..., t, run through all integers; thatis @, ..., @,and ag, ..., a,
are bases of the same lattice. We show now that every basis @; of a
lattice A may be obtained from a given basis @, in this way. For since
a. belongs to the lattice with basis @, ..., @, there are integers v such
that {2) holds: and since a; belongs to the lattice with basis ai, ..., @,
there are integers w,; such that (4) holds. On substituting (2) in (4)
and making use of the linear independence of the a;, we have

- 1 if =1

2 it = { 0 otherwise.
Hence

det () det (vp) =1

and so each of the integers det(w;;) and det (v;,) must be -£1; that is

(3) holds as required.
We denote lattices by capital

by A, M, N, T.

I a,...a and ai, ..., a, are bases of the same lattice, so that
they are related by (2) and (3), then we have :
det (ay, ..., ay) = det (v;;) det (@, ..., 8,) = £ det{ay,...,a,),

where, for exampie, det(ay, ..., @,) denotes the determinant of the
nxn array whose j-th row is the vector &;. Hence :

A(A) = |detlay, ..., &,}]
is independent of the particular choice of basis for A. Becauose of the
Yinear independence of @y, ..., @, We have S
a(N\) > 0.

sanserif Greek letters, and in particular

‘We call 4(A\) the determinant of A.
An esample of a lattice is the set A, of all vectors with integral

coordinates. A basis for A, is clearly the set of vectors

j—1 zeros #—7 zeros
et i, ot or— ;
e?-z(o,...,o,i,o,...,()) A=i=n);

and so

d(Ng) =1.




; : 4
7% _ ()

t the set of points (1) 18 precisely

’ r
+ %?l aﬂ

wrs: thatis @y, .-, @y and @3, ..., €
how now that every basis a; of a
ren basis a; in this way. For since
Ly -, @, there are integers"uﬂ- suck}
to the lattice with basis @, .-, Ta

holds. On substituting (2) in (4)

ndence of the a;, We have

L
aﬂ

if i=1
) otherwise..

=t ('Uj:,;} =1
) and det v;;) must be 4 4; that is

1serif Greek letters, and in particular

, bases of the same lattice, so that

hen we have
..., &) == det (e, .-+, @) »
;) denotes the determinant of the

vector ;. Hence

ST A
oice of basis for A. Because of the

we have
\) > 0.
f A

he set A\, of all vectors with integral

learly the set of vectors

n—] Zeros
o i, .
,0,...,0) (1=i=n)

U\o) =1.

Bases and sublattices 11

We note that the vectors of a lattice A form a group under addition:
if ae then —ach; and if ¢, BEA then a+beA. We shall see later
(Chapter III, § 4) that a lattice is the most general group of vectors in
n-dimensional space which contains # linearly independent vectors and
which satisfies the further property that there is some sphere about
the origin ¢ which contains no other vector of the group except o.

1.2.2. Let @, ..., @, be vectors ol a lattice M with basis by, ... b,

so that
ai=Z'Uﬁij (1)
1
with integers v;;. The integer
_ A |det{a,,...,a)} |detiey, ..., &)
I =[det®sl = (qei@,, .. bl — a(M)
is called the index of the vectors @, ..., @, in M. From the last ex-
pression it is independent of the particular choice of basis for M. By
definition, 7=0; and =0 only if a,,.... @, are linearly dependent.

1f every point of the lattice A is also a point of the lattice M then
we say that A is a sublattice of M. Let a, ..., @, and by, ..., b, be
bases of A and M respectively. Then there are integers v;; such that {1)
holds, since @,¢M. The index of @y, ..., @, in M, namely
_ ldetlay, . a)| _ @A (2)
_ jdet(,, -, by)| (M)
is called the index of A in M. From the last expression the index depends
only on A and M, not on the choice of bases. Since a,..., @, are
linearly independent, we have D>0. On solving (1) for the b; and

using (2), we have Db, = 3 wiya,
H

D= I det (yi:i) l

where the 1w;; are integers. Hence
DM ACM, - (3}
where DM is the lattice of Db, beM. _

It is often convenient to choose particular bases for /A and M so
that (1) takes a particularly simple shape. -

TaeoreM 1. Lei A be a sublattice of M.

A. To every base by, ..., b, of M there can be found a base @y, ..., &,
of I\ of the shape
P =1y, by

;= V510 + 0550, (4)
a’u = li"n.lbl-—'-_{_‘ i + U;tn bn 4

where the v,; are integers and vy;==0 for all 3.




Lattices

B. Conwersely, to every basis @, ..., @, of N there exisis a basis
by,..., b, of M such that (4) holds. ‘
Proof of A. For each 7 (1={=#) there certainly exist points @, in
N of the shape ' '
a;=v; b+ + b,
where ©;,,...,v;; are integers and wv;;=F0, since, as we have seen,

Db\, We choose for @; such an element of A for which the positive
integer |v,;| is as small as possible (but not 0), and will show that

@,,...,a, are in fact a basis for A. Since @, ..., @, are in A, by con-
struction, so is every vector '

w1a1+"' +wnauJ (5)
where wq, ..., w, are integers. Suppose, if possible, that ¢ is a vector
of A not of the shape (5). Since € is in M, it certainly can be expressed
in terms of &, ..., b, and so can be written in the shape

e=54b+ - +4b,,

where 1<k=<n, £,==0 and &, ..., { are integers. If there are several

such e, then we choose one for which the integer £ is as small as pos-
sible. Now, since v,,=0, we may choose an integer s such that

|2 — stpp] << paf - (6)
The vector ' :
e—s@, =t —sv )b+ + G —sub,

is in A since € and @, are; but it Is not of the shape (5) since ¢ is not,
Hence #,— sv;,==0 by the assumpiion that 4 was chosen as small as
possible. But then (6) contradicts the assumption that the non-zero
integer v, was chosen as small as possible. The contradiction shows
that there are no e in A which cannot be put in the form (35), and so
proves part A of the theorem. )

Proof of B. Let a,, ..., &, be some fixed basis of A Since DM
is a sublatiice of A by (3), where D is the index of A in M, there exists
by Part A a basis Dby, ..., Db, of DM of the type

Db, =uy, o

C Dby = wy, @) - Wy, (7)

Dbﬁ =Wy + e + Wy

with integral w;; and w;;=0 (1=i=u). On solving (7) for @, ..., a,
in succession we obtain a series of equations of the type (4} but where
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at first we know only that the v,; are rational. But clearly by, ..., b,
are a basis for M and so the v;; are in fact integers, since the a; are
in M, and since the representation of any vector a in the shape

=tb + - +4,b, {t,, ..., t,, real numbers)-

is unique by the independence of by, ..., b,.
From this theorem we have a number of simple but useful corollaries.
COROLLARY 1. I theorem I we may suppose further that

;>0 (8)

and that ' '
0= vy <<y in case A, : {9)
0L, <y,  incase B. (10)

Proof of A. To obtain (8) it is necessary only to replace a; or b;
by — @;, — b, respectively if originally v;;<0. To obtain (9) we replace
the a; by :

a; =t ot

where the #,; are integers to be determined. For any choice of the &
the @} are a basis for A. We have

VJ cr !
a; =v; b+ - +2iby,

where
L
Yig = Vi
and, for <7, we have
’

Wiy =tV b Vi o T b Vi T Y

For each 7 we may now choose #;_y ;, fig i -5 bt in that order so that
. ’ i

_ 0= vy <<y = V5

as was required.
Proof of B. Similar.

COROLLARY 2. Leét @y, ..., @, be linearly independmt vectors of a
lattice M. . Then theve is a basis by, ..., b, of M such that

@ =0
ay =g by - vge by

a, = Z’m.l b+ F Vyson O
with integers bif such that

v;; >0 0= vy <yy A=si<iZEm). (113
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204 Successive minima,

VIII.1.2. Tor later purposes we shall often need. the following two
simple lemmas. .
Lemma 1. Let Ay, ..., A, be the successive minima of a lattice N\ with
respect fo a distance function F associaled with a bounded star-body
Fl@y<<1. Then there exist n linearly wndependent points ..., @, €N
such that
Fla) =4 A=7=n).

If ael\ and Fla)<<k;, then @ is linearly depmdém on Uy, ..., @_;.

For by the definition of 4, there are n linearly independent points
of Ain

Fle) <d,+1. (1)
By Lemma 2 of Chapter IV, the set (1) is bounded and so contains only

a finite number of lattice points. Only these points need be considered
in the definition of the A;. The truth of the lemma is now obvious:

Lemma 2. Let 4,,..., A, be the successive wminima of the distamce
function F with respect to the lattice N. Then there is a basis

b,...,b,
of N such that, for each j=1,2, ..., n, the inequality
Fla) < 2;
imiplies that ‘
&=t by o by

for integers uy, ..., %;_q. _
When F(x) =0 only for & =, this is a trivial consequence of Lem-
ina 1, since we may choose b, ..., b, so that @; for each 7 is dependent

only on by, ..., b;, by Theorem I of Chapter I,
Otherwise a slightly more refined argument is needed. In general,
the 4; will not be all unequal, but there are numbers '

< pa< e < g,
for some s in 1 =< s=w#, such that

Ap=p, H k_<k= Ry
where

O=hy<ly<<- < hk,=m.

~ By the definitiori of successive minima, there is no point of A with
F{a)<<p; except, possiblyl, o. Since

Ha > Z'kz »
1 Tor a general distance function F {x) there is, of course, no reason why Ay
should not be 0. Indeed, if F(z)=|% ... z,|U% we have 4,— rre=A,=0 for the

lattice A, of points with integer coordinates,

0]

W)
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the are , linearly independent points

al.!a'z.v"':ak, (2)
of Ain F(#)<Cu,, and, since

_ to = Ag 11,

every other point of A in F () <p, is linearly dependent on them.
Similarly, we may find &, linearly independent points of A in F {ae) <<y
such that every other point of A in F (&) <<py is linearly dependent on

them. Since p,<p, we may suppose that %, of these %, points are
@, ..., @ already determined. We may thus denote by

a,...,q

the maximal linearly independent set of points of A in F(#) <y, without

disturbing the notation (2). And so on, In this way we obtain k,_,<n
points :

@, ay, -.., ak,_;
of A such that

Fla) <p, if §=<4,_, t<s).

By Theorem I of Chapter I there is a basis by, ..., b, of A such that,

for eachy=1,..., k,_,, the vector @; is linearly dependent on b, ..., b,
only. This basis clearly has all the Pproperties required.

VIIIL.2. Spheres. We first prove the results for sphetes, since they
are simplest and the treatment forms the model for what follows,

TarorEM 1. Let .
Fy(x) = || (1)

and let 2.,

vooy Ay be the successive minima of & lattice N\ with respect fo
E,. Then

N Z Ay 2, < 8(F) (. @

The left-hand side of (2) was substantially proved in Theorem XITT
of Chapter V. We have on the one hand

]det(al,...,aﬂ)I =1dN) z=dN),
where [ is the index of @, ...,a, in A, and, on the other hand,
7]det(a1,._..,a,,)[§|a1| e layt

by HapAMARD'S Lemnma 9 of Chapter V. If now the a; are the linearly

-independent vectors of A with F (@;) =, given by Lemma 1, the required

inequality follows at once,
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It remains to prove the second part of (2). Asin the proof of Lemma 9
of Chapter V, there is a set of mutually orthogonal® vectors ¢, ..., ¢,
such that ..
b=ttt

for some real numbers ti; (n27), where b, is the basis given by Lemma 2.
By incorporating a factor in €; we may suppose, without loss of generality,
that

le;]2=1 M=<iZn).

Zujbj=22uftﬂci;
i

ifzi

Then

and so

(2002 = 2 Xty . ()
s L -

‘We now show that

ZAT( 2w Pz (4)
1 f=1
for all sets of integers w~=0. Forlet u,, ..., #, be integers, and suppose
that
upE0, =0 (1=7). (5)
Then b+ +u,b, is not dependent on by,....b; ;; and so
|20 ; 22 27 | (5%

Further, (5) implies that all the summands in (3) and (4) with i>J
are 0. Hence, and since 4,<<4; if j< J, the left-hand side of (4) is

227 ujt,-f-)zz21;2(Zufz:ﬁ)2=,1;2|zufbj‘2;1,
isf Fad =] =3 i
by (3} and (5'). Hence if A’ is the lattice with basis
bj=tndite,+ ke, (1Si<a),
we have
| L by|* = 1

for every point Y u,bi40 of A’; that is

RNy =|N|21. (6)
On the other hand, _
d(/\’):&fl...igld(/\). {7)
But now
| AP M _
AN = MP amy (F), _ (8)

1We say that two vectors @, b are orthogonal if their scalar product eb
vanishes. . .
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