




































































































Lecture 6

We are now ready to prove the triangle removal lemma.

Theorem 1 (Triangle removal lemma) For every ε > 0 there exists δ > 0 such that, for any graph
G on n vertices with at most δn3 triangles, it may be made triangle-free by removing at most εn2 edges.

Proof Let X1 ∪ · · · ∪XM be an ε
4 -regular partition of the vertices of G. We remove an edge xy from

G if

1. (x, y) ∈ Xi ×Xj , where (Xi, Xj) is not an ε
4 -regular pair;

2. (x, y) ∈ Xi ×Xj , where d(Xi, Xj) < ε
2 ;

3. x ∈ Xi, where |Xi| ≤ ε
4M n.

The number of edges removed by condition 1 is at most
∑

(i,j)∈I |Xi||Xj | ≤ ε
4n

2. The number removed
by condition 2 is clearly at most ε

2n
2. Finally, the number removed by condition 3 is at most Mn ε

4M n =
ε
4n

2. Overall, we have removed at most εn2 edges.

Now, suppose that some triangle remains in the graph, say xyz, where x ∈ Xi, y ∈ Xj and z ∈ Xk.
Then the pairs (Xi, Xj), (Xj , Xk) and (Xk, Xi) are all ε

4 -regular with density at least ε
2 . Therefore,

since |Xi|, |Xj |, |Xk| ≥ ε
4M n, we have, by the counting lemma that the number of triangles is at least(

1− ε

2

)( ε
4

)3 ( ε

4M

)3
n3.

Taking δ = ε6

220M3 yields a contradiction. 2

We now use this removal lemma to prove Roth’s theorem. We will actually prove the following stronger
theorem.

Theorem 2 Let δ > 0. Then there exists n0 such that, for n ≥ n0, any subset A of [n]2 with at least
δn2 elements must contain a triple of the form (x, y), (x+ d, y), (x, y + d) with d > 0.

Proof The set A + A = {x + y : x, y ∈ A} is contained in [2n]2. There must, therefore, be some z
which is represented as x+ y in at least

(δn2)2

(2n)2
=
δ2n2

4

different ways. Pick such a z and let A′ = A∩ (z−A) and δ′ = δ2

4 . Then |A′| ≥ δ′n2 and if A′ contains
a triple of the form (x, y), (x+ d, y), (x, y+ d) for d < 0, then so does z−A. Therefore, A will contain
such a triple with d > 0. We may therefore forget about the constraint that d > 0 and simply try to
find some non-trivial triple with d 6= 0.

Consider the tripartite graph on vertex sets X, Y and Z, where X = Y = [n] and Z = [2n]. X will
correspond to vertical lines through A, Y to horizontal lines and Z to diagonal lines with constant
values of x+ y. We form a graph G by joining x ∈ X to y ∈ Y if and only if (x, y) ∈ A. We also join
x and z if (x, z − x) ∈ A and y and z if (z − y, y) ∈ A.
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If there is a triangle xyz in G, then (x, y), (x, y+(z−x−y)), (x+(z−x−y), y) will all be in A and thus
we will have the required triple unless z = x + y. This means that there are at most n2 = 1

64n(4n)3

triangles in G. By the triangle removal lemma, for n sufficiently large, one may remove δ
2n

2 edges and
make the graph triangle-free. But every point in A determines a degenerate triangle. Hence, there are
at least δn2 degenerate triangles, all of which are edge disjoint. We cannot, therefore, remove them
all by removing δ

2n
2 edges. This contradiction implies the required result. 2

This implies Roth’s theorem as follows.

Theorem 3 (Roth) For all δ > 0 there exists n0 such that, for n ≥ n0, any subset A of [n] with at
least δn elements contains an arithmetic progression of length 3.

Proof Let B ⊂ [2n]2 be {(x, y) : x − y ∈ A}. Then |B| ≥ δn2 = δ
4(2n)2 so we have (x, y), (x + d, y)

and (x, y + d) in B. This translates back to tell us that x − y − d, x − y and x − y + d are in A, as
required. 2

To prove Szemerédi’s theorem by the same method, one must first generalise the regularity lemma
to hypergraphs. This was done by Gowers and, independently, by Nagle, Rödl, Schacht and Skokan.
This method also allows you to prove the following more general theorem.

Theorem 4 (Multidimensional Szemerédi) For any natural number d, any δ > 0 and any subset
P of Zd, there exists an n0 such that, for any n ≥ n0, every subset of [n]d of density at least δ contains
a homothetic copy of P , that is, a set of the form k.P + `, where k ∈ Z and ` ∈ Zd.

The theorem proved above corresponds to the case where d = 2 and P = {(0, 0), (1, 0), (0, 1)}. Sze-
merédi’s theorem for length k progressions is the case where d = 1 and P = {0, 1, 2, . . . , k − 1}.
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A NOTE ON ELKIN’S IMPROVEMENT OF BEHREND’S

CONSTRUCTION

BEN GREEN AND JULIA WOLF

Abstract. We provide a short proof of a recent result of Elkin in which large subsets

of {1, . . . , N} free of 3-term progressions are constructed.

To Mel Nathanson

1. Introduction

Write r3(N) for the cardinality of the largest subset of {1, . . . , N} not containing

three distinct elements in arithmetic progression. A famous construction of Behrend [1]

shows, when analysed carefully, that

r3(N) ≫ 1

log1/4 N
· N

22
√

2
√

log
2

N
.

In a recent preprint [2] Elkin was able to improve this 62-year old bound to

r3(N) ≫ log1/4 N · N

22
√

2
√

log
2

N
.

Our aim in this note is to provide a short proof of Elkin’s result. It should be noted

that the only advantage of our approach is brevity: it is based on ideas morally close

to those of Elkin, and moreover his argument is more constructive than ours.

Throughout the paper 0 < c < 1 < C denote absolute constants which may vary

from line to line. We write T
d = R

d/Z
d for the d-dimensional torus.

2. The proof

Let d be an integer to be determined later, and let δ ∈ (0, 1/10) be a small parameter

(we will have d ∼ C
√

log N and δ ∼ exp (−C
√

log N)). Given θ, α ∈ T
d, write Ψθ,α :

{1, . . . , N} → T
d for the map n 7→ θn + α(mod 1).

Lemma 2.1. Suppose that n is an integer. Then Ψθ,α(n) is uniformly distributed on

T
d as θ, α vary uniformly and independently over T

d. Moreover, if n and n′ are distinct

positive integers, then the pair (Ψθ,α(n), Ψθ,α(n′)) is uniformly distributed on T
d ×T

d as

θ, α vary uniformly and independently over T
d.

The first author holds a Leverhulme Prize and is grateful to the Leverhulme Trust for their support.
This paper was written while the authors were attending the special semester in ergodic theory and
additive combinatorics at MSRI.
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Proof. Only the second statement requires an argument to be given. Perhaps the easiest

proof is via Fourier analysis, noting that
∫

e2πi(k·(θn+α)+k′·(θn′+α)) dθ dα = 0

unless k + k′ = kn + k′n′ = 0. Provided that k and k′ are not both zero, this cannot

happen for distinct positive integers n, n′. Since the exponentials e2πi(kx+k′x′) are dense

in L2(Td × T
d), the result follows.

Let us identify T
d with [0, 1)d in the obvious way. For each r 6

1
2

√
d, write S(r) for

the region

{x ∈ [0, 1/2]d : r − δ 6 ‖x‖2 6 r}.

Lemma 2.2. There is some choice of r for which vol(S(r)) > cδ2−d.

Proof. First note that if (x1, . . . , xd) is chosen at random from [0, 1/2]d then, with

probability at least c, we have |‖x‖2 −
√

d/12| 6 C. This is a consequence of standard

tail estimates for sums of independent identically distributed random variables, of which

‖x‖2
2 =

∑d
i=1 x2

i is an example. The statement of the lemma then immediately follows

from the pigeonhole principle.

Write S := S(r) for the choice of r whose existence is guaranteed by the preceding

lemma; thus vol(S) > cδ2−d. Write S̃ for the same set S but considered now as a subset

of [0, 1/2]d ⊆ R
d. Since there is no “wraparound”, the 3-term progressions in S and S̃

coincide and henceforth we abuse notation, regarding S as a subset of R
d and dropping

the tildes. (To use the additive combinatorics jargon, S and S̃ are Freiman isomorphic.)

Suppose that (x, y) is a pair for which x− y, x and x + y lie in S. By the parallelogram

law

2‖x‖2
2 + 2‖y‖2

2 = ‖x + y‖2
2 + ‖x − y‖2

2

and straightforward algebra we have

‖y‖2 6
√

r2 − (r − δ)2 6
√

2δr.

It follows from the formula for the volume of a sphere in R
d that the volume of the set

B ⊆ T
d × T

d in which each such pair (x, y) must lie is at most vol(S)Cd(δ/
√

d)d/2.

The next lemma is an easy observation based on Lemma 2.1.

Lemma 2.3. Suppose that N is even. Define Aθ,α := {n ∈ [N ] : Ψθ,α(n) ∈ S}. Then

Eθ,α|Aθ,α| = N vol(S)

whilst the expected number of nontrivial 3-term arithmetic progressions in Aθ,α is

Eθ,αT (Aθ,α) =
1

4
N(N − 5) vol(B).
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Proof. The first statement is an immediate consequence of the first part of Lemma 2.1.

Now each nontrivial 3-term progression is of the form (n − d, n, n + d) with d 6= 0.

Since N is even there are N(N − 5)/4 choices for n and d, and each of the consequent

progressions lies inside Aθ,α with probability vol(B) by the second part of Lemma 2.1.

To finish the argument, we just have to choose parameters so that

1

3
vol(S) >

1

4
(N − 5) vol(B). (2.1)

Then we shall have

E
(2

3
|Aθ,α| − T (Aθ,α)

)

>
1

3
N vol(S).

In particular there is a specific choice of A := Aθ,α for which both T (A) 6 2|A|/3 and

|A| >
1
2
N vol(S). Deleting up to two thirds of the elements of A, we are left with a set

of size at least 1
6
N vol(S) that is free of 3-term arithmetic progressions.

To do this it suffices to have Cd(δ/
√

d)d/2 6 c/N , which can certainly be achieved

by taking δ := c
√

dN−2/d. For this choice of parameters we have, by the earlier lower

bound on vol(S), that

|A| >
1

6
N vol(S) > c

√
d2−dN1−2/d.

Choosing d := ⌈
√

2 log2 N⌉ we recover Elkin’s bound.

3. A question of Graham

The authors did not set out to try and find a simpler proof of Elkin’s result. Rather,

our concern was with a question of Ron Graham (personal communication to the first-

named author, see also [3, 4]). Defining W (2; 3, k) to be the smallest N such that

any red-blue colouring of [N ] contains either a 3-term red progression or a k-term

blue progression, Graham asked whether W (2; 3; k) < kA for some absolute constant

A or, even more ambitiously, whether W (2; 3, k) 6 Ck2. Our initial feeling was that

the answer was surely no, and that a counterexample might be found by modifying the

Behrend example in such a way that its complement does not contain long progressions.

Reinterpreting the Behrend construction in the way that we have done here, it seems

reasonably clear that it is not possible to provide a negative answer to Graham’s question

in this way.
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