On the median number of P_3 's in G(n, p)

M.E. Zhukovskii

Let k, b be positive integers, $b \leq k$. Let $\xi_{b,k} \sim \operatorname{bin}(k, b/k)$, $\eta_b \sim \operatorname{pois}(b)$. Moreover, set $p_{b,k} = \mathsf{P}(\xi_{b,k} < b)$, $p_b = \mathsf{P}(\eta_b < b)$. The number b is the median of $\operatorname{bin}(k, b/k)$ and $\operatorname{pois}(b)$. By Poisson limit theorem, $p_{b,k} \to p_b$ as $k \to \infty$. The question is, how close are the probabilities $p_{b,k}, p_b$ to 1/2?

Define a sequence y_b in the following way: $\frac{1}{2} = p_b + y_b \mathsf{P}(\eta_b = b)$. Then [3, 4, 5], for all b, $\frac{1}{3} < y_b \leq \frac{1}{2}$ and y_b decreases to $\frac{1}{3}$ as $b \to \infty$. In particular, from this result it follows that $z_{b,k}$ decreases (as the function of b) for k large enough.

For any positive integer b, define a sequence $z_{b,k}$, $k \in \mathbb{N}$, k > 2b, in the following way: $\frac{1}{2} = p_{b,k} + z_{b,k} \mathsf{P}(\xi_{b,k} = b)$. Then [2], for every b, $z_{b,k}$ decreases for $k \ge 2b$ and $z_{b,k} \to y_b$ as $k \to \infty$. Moreover, for all k > 2b, $\frac{1}{3} < z_{b,k} < \frac{1}{2}$. For all b < k < 2b, $\frac{1}{2} < z_{b,k} < \frac{2}{3}$. Finally, $z_{b,2b} = \frac{1}{2}$.

In contrast, we study a behavior of distributions of sums of *dependent* Bernoulli random variables "near" its medians. Let $p = cn^{-3/2}$, X_n — the number of P_3 's in G(n, p). From the theorem about Poisson approximations for the numbers of copies of fixed graphs [1], X_n converges to a Poisson random variable with the parameter $c^2/2$. Let

$$\frac{1}{2} = \mathsf{P}(X_n < b) + w_c^n \mathsf{P}(X_n = b).$$

We prove that, for every positive c and every non-negative integer b, for n large enough, the probability $P(X_n = b)$ decreases as the function of n. Thus, in contrast with the behavior of $z_{b,k}$, w_c^n increases for n large enough. From our result, we immediately get the following. Let μ_c be the median of Poisson distribution with the parameter $c^2/2$. Then, for n large enough, the median of X_n equals μ_c .

References

- B. Bollobás (1981). Threshold functions for small subgraphs, Math. Proc. Camb. Phil. Soc., Vol. 90, 197-206.
- [2] K. Jogdeo, S. M. Samuels (1968). Monotone convergence of binomial probabilities and a generalization of Ramanujan's equation, *The Annals of Math. Statistics*, Vol. 39, N. 4, 1191-1195.
- [3] S. Ramanujan (1911). Question 294, J. Indian Math. Soc., Vol. 3, 151-152.
- [4] G. Szegö (1928). Uber einige von S. Ramanujan gestellte Aufgaben, J. London Math. Soc., Vol. 3, 225-232.
- [5] G. N. Watson (1929). Theorems stated by Ramanujan (V): approximations connected with e^x, Proc. London Math. Soc., Vol. 2, N. 29, 293-308.