Properly coloured spanning trees in an edge coloured random graph

Carlos Hoppen

Universidade Federal do Rio Grande do Sul

Given a number of colours $k \ge 1$, we consider the probability space $\mathcal{G}_{n,p}^k$ of edge-coloured random graphs, whose elements are produced by first generating a graph G in the Erdős-Rényi probability space $\mathcal{G}_{n,p}$ and then colouring each edge of G independently and uniformly with a colour from the set $[k] = \{1, \ldots, k\}$. We determine the threshold function $p = p_k(n)$ for the property that such an edge-coloured random graph contains a properly coloured spanning tree, for all fixed $k \ge 3$. It turns out to coincide with the connectivity threshold, which is $\log(n)/n$. This contrasts with the case k = 2, where the threshold is known to be $2\log(n)/n$ in light of recent work by Espig, Frieze and Krivelevich. Among other ingredients, we obtained a new result about maximum matchings in $\mathcal{G}_{n,p}$.

This is joint work with P. Gao (Monash University, Australia) and J. Sanches (Instituto Federal do Paraná, Brazil)