Tilings of product spaces

Vytautas Gruslys

University of Cambridge

A Tetris tile is a connected subset of \mathbb{Z}^2 of size 4. More generally, we define an *n*-dimensional shape to be any (non-empty) finite subset of \mathbb{Z}^n . Does a given shape $T \subset \mathbb{Z}^n$ tile the *n*-dimensional space, meaning that \mathbb{Z}^n can be partitioned into copies of T? Of course, some shapes tile \mathbb{Z}^n and some do not. Moreover, some shapes that do not tile \mathbb{Z}^n do tile \mathbb{Z}^{n+1} . Chalcraft conjectured that every shape in \mathbb{Z}^n tiles \mathbb{Z}^d for some $d \ge n$. We prove this conjecture and examine related questions regarding posets and the hypercube graph Q_n .

This talk is based on joint work with Leader, Letzter, Tan and Tomon.