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This is joint work with Jeong Han Kim and Joohan Na (KIAS).
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Feature of Mers in Korea

Hospital

A A

At the same time



On a phase transition of the random intersection graph: supercritical region
Sec 0. Motivation

Graph model about epidemic of Mers

M={Lists of hospitals and dates}

.
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Sec 1) Definition

o Vi={wvi,..., vy}

e {L1,...,L,}: a collection of sets

Definition (Intersection graph)

The intersection graph on V generated by {L;,...,L,}
is the graph on V' in which

vi~v; ifandonlyif LinL;#0.
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Example

M={1, 2, 3, 4, 5, 6}

{1’ 3}=Lv1 V4 V4 LV4={4’ 5}

w

2,3=L, V2 vi L,=(3, 4)
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Random intersection graph

Definition (Random Intersection graph G(n, m; p))
e M: a set of size m.

@ L;: a random subset obtained by choosing each element in
indepedently with probabiity p.
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Random intersection graph

Definition (Random Intersection graph G(n, m; p))
e M: a set of size m.

@ L;: a random subset obtained by choosing each element in
indepedently with probabiity p.

e The random intersection graph G(n, m; p) is the intersection
graph generated by i.i.d. L; as above.

y

It was defined by (1999).
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Visualization: Random bipartite graph

M, |M|=m

prob p
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o Analysis of complex networks.
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Application

@ A random intersection graph has received a lot of attention
because of a great diversity of applications:

Epidemic

Circuit design

Network user profiling
Analysis of complex networks.

@ The special case
has been applied to
security of wireless sensor networks.
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Question
When is G(n, m; p) essentially the same as the binomial random
graph G(n, p) with the same expected number of edges?

Remark: p:=1— (1 - p?)™ ~ if mp? is small.



On a phase transition of the random intersection graph: supercritical region

Sec 1. Definition

Question

When is G(n, m; p) essentially the same as the binomial random
graph G(n, p) with the same expected number of edges?

Remark: p:=1— (1 - p?)™ ~ if mp? is small.

Notion
Distance between two random graphs: Total variation. J




On a phase transition of the random intersection graph: supercritical region
Sec 1. Definition

Question

When is G(n, m; p) essentially the same as the binomial random
graph G(n, p) with the same expected number of edges?

Remark: p:=1— (1 - p?)™ ~ if mp? is small.

Notion
Distance between two random graphs: Total variation.

Definition
The total variation between two random graphs X and Y is
defined by

TV (X, Y): Z‘Pr[X G] - Pr[y = 6]/,

where the sum is over all possible graphs G of X and Y.
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Sec 2) Previous results

Observation
Let w — 0o as n — oo.
o If :
then two random graphs are the empty graph
with high probability.

QIf :
then two random graphs are the complete graph
with high probability.

Assumption

1 <p< /2|nn+w'
m

=
3)
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Proposition

If and n”mgpg,/z'”%,then

V(G(n, m; p), G(n, ;3))% 1.

5 3

Idea: By comparing the number of triangles.
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Two types of triangles in G(n, m; p)

Vll Lvl={iljr"'}

Almost independent

V2 V3
LV2={i! kr} LV3={jr k! }

V,;, Ly, has i

Artifact triangle

VA Vs
L, hasi L,z hasi



On a phase transition of the random intersection graph: supercritical region
Sec 2. Results

Proposition

If and n\“/)ﬁ <p< 2"‘”’;_“’, then
TV(G(n, m; p), G(n, ﬁ))% 1.

Proof:

@ X := the number of independent triangles
Y := the number of artifact triangles

Q tr(G(n,m;p)) =X+ Y and tr(G(n, p)) = X.
© With high probability,
E[X + Y]+w(o(X)) < tr(G(n, m; p)) < E[X + Y]+ w(c(X))
EX] + w(o(X)) < tr(G(n, p)) < E[X] + w(a(X))
QIf , then o(X) < E[Y].
@ tr(G(n,m;p)) > tr(G(n, p)) with high probability.
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Proposition
If and n\“;m <p< 2'”,”;7“, then
TV(G(n, m; p), G(n, f)))—) 1.

Theorem (Fill, Scheinerman and Singer-Cohen (2000))

If m=n“ and , then
TV(G(n, m; p), G(n, f)))—> 0.
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Problem

What is the smallest constant « such that
for m = n® and any p = p(n),

TV(G(n, m; p), G(n, f))) = 0(1)?

Previous result

3<a<b.

Main Theorem (Kim, Lee, Na (2015+))
For m> n*and 0 < p=p(n) <1,

TV(G(n, m; p), G(n, f))) =o(1).
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Main Theorem (Kim, Lee, Na (2015+))
For m>> n* and 0 < p = p(n) < 1,

Tv(G(n, m; p), G(n, f))) = o(1).

In Progress

o]

then for p = =

If m= NG

ot
loglogn’

TV(G(n, m; p), G(n, f))) > %

* We believe that 4 in the exponent is tight.
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Artifact triangles

Recall
An artifact triangle is a triangle formed by the same element in /\/I.}

@ Fill, Scheinerman and Singer-Cohen (2000):
the case when there is no artifact triangle.

@ Kim, Lee and Na (2015+):
the case when there are not so many artifact triangles.
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Vlr Lvl={iljr"'}

Almost independent

V2 V3
LV2={i! kr} LV3={jr k! }

V,;, Ly, has i

Artifact triangle

VA Vs
L, hasi L,z hasi
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Key object

Key object: Diamond graph
@ A diamond graph = K, minus one edge.

@ The number of diamond graphs with two artifact triangles in
G(n, m; p) is iff

G(n,m; p) ~ G(n,p).

Diamond graph
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Sec 3) Outline of Proof of Main Theorem

Recall: Main Theorem (Kim, Lee, Na (2015+))
Form>n*and0<p<1,

TV(G@ﬂmp%GOLM):oU)

Remark (essentially by Rybarczyk)

G(n, m; p) is approximated by a random graph G(n, (p2, p3, pa)),

where
n—k

g = 1— e mPH(1-p)
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Definition of G(n, (p2, p3, ps))

Random hypergraph G(n, (Py, P35, Py) )

P3

1P
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k

Remark: Why p :=1—e mp*(1-p)"~ 7
@ Forae M, V,:={v:ael,}.
@ For a fixed k-subset U C V,

Pr [33 € M s.t. = U:| =1-—(1 pk(l p)nfk)m.
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Recall: Main Theorem (Kim, Lee, Na (2015+))
Form>n*and0<p<1,

TV(G(m m; p), ) = o(1).

Key Lemma (Kim, Lee, Na (2015+))
4 3l 1/2
For m>> n* and 0 < p < (21987)1/2,

TV (G(n, (P2, P, p1)), ) =o(1).
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Sec 4) Proof of Lemma

TV (G(n, (P2, p3, 1)), G, )

::%Z)Pr[X:G]—Pr[Y:G]‘
G

— Z (Pr[c(n,pz)zc]—min { Pr[G(n,(pg,p3,p4)):G],Pr[G(n,p2):G]}).
Geg
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Sec 4) Proof of Lemma

TV (G(n, (P2, p3, 1)), G, )

::%Z)Pr[X:G]—Pr[Y:G]‘
G

— Z (Pr[c(n,pz)zc]—min { Pr[G(n,(pg,p3,p4)):G],Pr[G(n,p2):G]}).
Geg

Observation

If Pr{G(n, (p2, p3, p4)) = G] = (1 — O(¢))Pr[G(n, ) = G],
then

Tv(c(n, (D2, 3, pa)), G(n,p2)> = 0(e).
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Pr[G(n, (P2, p3, P4)) = G]
= > Pr[Ha(n,p)=Q, ,G(n,p) = G|

QT H4(G)
TCH3(6)

— Z &\Q\(l_p‘l)(z)—\o\ (1—5)(5)"6‘

QCH4(G)
TCH3(G)

PG m) = 6] 3 A%l n T ) R

QCH4(G)
TCH3(G)
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Pr(G(n, (p2, p3, pa)) = G]

> PriHa(np) = @, () = 6]
QCH4(6)
TCH3(6)
> A%a-n (071 (1-p,)3)-1¢
QCH4(6)
TCH3(G)
= Pr[G(napz) = G] Z dol(l_&)(Z)—lQ\pJT\(l_ )( ) \T\&,‘K Q)UK(T)\'
QCH4(6)
TCH3(G)
Claim

Pr[G(n, (p2, p3; pa)) = G]
Pr[G(i,pj) = aq - 3 PO - p)-lely K@)

QCH4(G)

x Yy ATl — p) )Tl p KDL

TCH3(G\K(Q))

v
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Problem

Problem
Fix , and let m = n®.
Find a probability p* = p*(n, m) such that
o If p< p*, then TV (G(n, m; p), G(n, p)) = o(1).
e If p> p*, then TV (G(n, m; p),G(n,p)) > c,
for some positive constant ¢ > 0.
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Problem

M, |M|=m

Problem
@ non-uniform version with pj;

@ The red edge is exposed with a probability g.
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Three cases

Three cases
@ Case I: no artifact triangles
o Case IlI: d artifact triangles and no artifact quadruples

@ Case lll: 3 artifact quadruples
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Case I: no artifact triangles

In this case, the expected number of artifact triangles is small,

that is,
€

< =
P= i3
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Case I: no artifact triangles

In this case, the expected number of artifact triangles is small,

that is,
€

< =
P= i3

e By taking , we have

n

Pr[G(n, (p2. p3, pa)) = G] > Pr[G(n. p) = G](1 — p)(D(1 - p)C)
— Pr[G(n,p) = G](1 - O(e)).
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Case I: no artifact triangles

In this case, the expected number of artifact triangles is small,

that is,
€

< —F7.
P= i3
e By taking , we have

Pr[G(n, (p2. p3, pa)) = G] > Pr[G(n. p) = G](1 — p)(D(1 - p)C)
— Pr[G(n,p) = G](1 - O(e)).

e Hence,

TV(G(n, (P2, p3, Pa)), G(n,pz)) < 0(e).
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Case I: no artifact triangles

In this case, the expected number of artifact triangles is small,

that is,
€

< =
P= i3

e By taking , we have

Pr[G(n, (p2. p3, pa)) = G] > Pr[G(n. p) = G](1 — p)(D(1 - p)C)
— Pr[G(n,p) = G](1 - O(e)).

e Hence,

TV(G(n, (P2, p3, Pa)), G(n,pz)) < 0(e).

Remark
It gives the result by Fill-Scheinerman—Singer-Cohen (2000). J
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Case Il: 3 artifact triangles and no artifact quadruples

In this case, the expected number of artifact triangles is not small,
but the expected number of artifact quadruples is small, that is,

€
R [
nmt/3 <P= n2/3ml/3
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Case Il: 3 artifact triangles and no artifact quadruples

In this case, the expected number of artifact triangles is not small,
but the expected number of artifact quadruples is small, that is,

€
= <=
i3 SPS s

Remark: It is not possible for an arbitrary G to show

Pr[G(n, (p2; p3, pa)) = G] = Pr[G(n, p) = G](1 — O(¢)).
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Case Il: 3 artifact triangles and no artifact quadruples

In this case, the expected number of artifact triangles is not small,
but the expected number of artifact quadruples is small, that is,

€
i3 <PS s
Remark: It is not possible for an arbitrary G to show
Pr[G(n, (p2; p3, pa)) = G] = Pr[G(n, p) = G](1 — O(¢)).

Idea: We consider properties of typical G € G(n, p).
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For any family Gs of typical graphs on V/,

TV (6(n, (P2, p3, p4)). G(n, 1))
< PI’[G(”,[JZ) ¢ g3]

+ Z (Pr[G(n,pz):G]—min { Pr[G(n,(pg,p3,p4)):G],Pr[G(n,pz):G]})
Gegs

< 0(e) + Z (Pr[G(n,pz):G]—min{Pr[G(n,(p2,p3,p4)):G],Pr[G(n,p2):G]}).
Gegs
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For any family Gs of typical graphs on V/,

TV (6(n, (P2, p3, p4)). G(n, 1))
< PI’[G(”,[JZ) ¢ g3]

+ Z (Pr[G(n,pz):G]—min { Pr[G(n,(pg,p3,p4)):G],Pr[G(n,pz):G]})
Gegs

< 0(e) + Z (Pr[G(n,pz):G]—min{Pr[G(n,(pg,p3,p4)):G],Pr[G(n,p2):G]}).
Gegs

Goal
For any typical G € g3,

Pr[G(n, (p2; p3, pa)) = G] = (1 — O(¢)) Pr[G(n, p) = G].
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@ |[H3(G)| : the number of triangles in G.

° : the number of diamond graphs, i.e., K4 minus one
edge.
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@ |[H3(G)| : the number of triangles in G.

° : the number of diamond graphs, i.e., K4 minus one
edge.

Lemma

Let G3 be the set of all graphs G on V satisfying
n
()] = (1= 9)(3) and 1(6) < '

1/2
|
Then, for —57; < p < (“%) ,

PriG(n,p) € G3] =1 — O(e).
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Taking , we have

PI’[G(I’I, (P2,P3,P4)) = G]
Pr[G(n,p) = G]

> S AT p)G) ATl IR
TCHg(G)
)Z > Aa-p)bp
TCH3(G)

\T\ £ |K(T)|=3¢

where

=T o (7))
3 3
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Pr(G(n, (p2; 3, p4)) = G]
Pr[G(n, Pz) = G]

Z Z p3t(1 7%)(g)—t%—3t

TCH3(G)
\T\ t,|K(T)|=3¢

= (- ())Z o) ()epept(1 — p) (D) tp 3

— (1-0(e))
It implies that
V(G(n, (2, p3,p4)), G(n, ) ) = O(c).
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Case IlI: 3 artifact triangles and quadruples

In this case, the expected number of artifact quadruples is not
small, that is,

€ 3log n\1/2
n2/3m1/3<p§( m ) ’
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Case IlI: 3 artifact triangles and quadruples

In this case, the expected number of artifact quadruples is not
small, that is,

€ 3log n\1/2
n2/3m1/3<p_( m ) ’

@ |H4(G)| : the number of quadruples in G.

Lemma

Let G4 C G3 be the set of all graphs G on V satisfying

)= (1- 1) (3)

Th f € < 3logn 1/2
en, Orm <p< “m ’

Pr[G(n,p) € Ga] =1 — O(e).
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Goal
For any G € Gy,

Pr[G(n, (P2, p3, pa)) = G] = (1 — O(¢)) Pr[G(n, p) = G].
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Goal
For any G € Gy,

Pr[G(n, (P2, p3, pa)) = G] = (1 — O(¢)) Pr[G(n, p) = G].

Pr[G(n, (p2, p3, pa)) = G]
Pr[G(n,p) = G]

> Z piow(l,m(ﬂ)f\m&—\mo)\. Z %r\(l_%)(g)—mp;mm
QCH4(G) TCH3(G\K(Q))

_ . i ITl1_ o y(3) =171 _—IK(T)]
>(1-0() min 37 Tl T

lel<qy, TCH3(G\K(Q))

where g, := ntmpt @(m).

€ 13
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3
Letg::nmp :@<n8p3> andr::nmp :@<n p3>.

We have that

S AT )0,

TC”H3(G\K(Q))

oY Y sa-a)O

t=0 TCH;3( G\Q
[T|=t,1(T)<

) n
> Z (1-0(¢)) <(i)>P2t pi(1— Ps)(g)_tpz
b
£))p/ - Zp;(1 — ps)(;’)—t > (1-0(g)),
t=0

since p/ = (1 — e_mp2(1_”)n_2)r >1- O(ref””)z) =1-0(e).
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Proof of Lemma 1

Lemma
@ TV (G(n,m;p),G(n,(p))) = o(1). (essentially by Rybarczyk)

Q@ TV(G(n,p,p.p), G(n,p)) = o(1). (Main part)

@ TV(G(n,p), G(n,p)) =o0(1). (Not hard)
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Proof of Lemma 1

Lemma
@ TV (G(n,m;p),G(n,(p))) = o(1). (essentially by Rybarczyk)

Q@ TV(G(n,p,p.p), G(n,p)) = o(1). (Main part)

@ TV(G(n,p), G(n,p)) =o0(1). (Not hard)

Idea of Proof
@ Coupling argument

@ Property of Poisson distribution
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Proof of Lemma 1

Coupling argument

Definition

For two random variables X and Y, the coupling (X', Y’) of X and
Y is a random variable on the product of the sample spaces of X
and Y such that the marginal distributions of X’ and Y’ are the
distributions of X and Y, respectively.
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Coupling argument

Definition

For two random variables X and Y, the coupling (X', Y’) of X and
Y is a random variable on the product of the sample spaces of X
and Y such that the marginal distributions of X’ and Y’ are the
distributions of X and Y, respectively.

Lemma
X,Y : random variables.
@ Any coupling (X', Y'") of X and Y satisfies

TV(X, Y)<Pr[X' # Y.

@ There exists a coupling such that

TV(X, Y)=Pr[X # Y.
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Proof of Lemma 1

Proof of Lemma (1)

@ X := the number of columns of the matrix R(n, m; p) with
two or more 1's.

o Pr[|Va| =kl = (])p*(1 = p)" =1,

k

e X = Binom(m, q,) where q, := Z r.
k>2
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G(n, m; p) can be constructed as follows:

O KM, ... KM . iid. random complete graphs on subsets
of V
o the number of vertices in K() is k(> 2) with probability r /g,
e Then, once the number is given to be k, every k-subset of V is
equally likely to be the vertex set of K1),
o In other words, for a k-subset U of V with k > 2, the
probability of U being the vertex set of K(1) is qr—kz(Z)_l

@ G(n,m; p) is the edge union of X random complete graphs
KO . KX,
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Definition (Gy)
@ Y := Poisson(mgq,) that is coupled with X so that
Pr[X # Y] = TV(X,Y).

@ Let Gy be the graph whose edge set is the (edge) union of
KO .. KM,

Property
@ Gy has the same distribution as G(n, (p,)).
2]

TV(G(n, m; p), Gy) < Pr[G(n, m; p) # Gy]
<Pr[X # Y] = TV(X, Y).
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Lemma (Barbour and Holst (1989))
Let X := Binom(m, q,) and Y := Poisson(mq,). Then

TV(X,Y) < g,
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Problem

Problem
Fix 3 < a <6, and let m = n“.
Find a probability p* = p*(n, m) such that
o If p < p*, then TV (G(n, m; p), G(n, p)) = o(1).
o If p>> p*, then TV (G(n, m; p), G(n,p)) > c,
for some positive constant ¢ > 0.
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Problem

Problem
Fix 3 < a <6, and let m = n“.
Find a probability p* = p*(n, m) such that
o If p < p*, then TV (G(n, m; p), G(n, p)) = o(1).
e If p> p*, then TV (G(n, m; p), G(n, p)) > c,
for some positive constant ¢ > 0.

Question
When G(n, m; p) # G(n,p),
what are interesting properties and structures of G(n, m; p)?
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