HOW DOES THE CORE SIT INSIDE THE MANTLE?
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ABSTRACT. The“giant component” has remained a guiding theme in the theory of random graphs ever since the
seminal paper of Erdés and Rényi [Magayar Tud. Akad. Mat. Kutato Int. Kozl. 5 (1960) 17-61]. Because for any
k = 3 the k-core, defined as the (unique) maximal subgraph of minimum degree £k, is identical to the largest k-
connected subgraph of the random graph w.h.p., the k-core is perhaps the most natural generalisation of the “giant
component”. Pittel, Wormald and Spencer were the first to determine the precise threshold dj beyond which the
k-core 61 (G) of G = G(n,d/n) with d > 0 fixed is non-empty w.h.p. [Journal of Combinatorial Theory, Series B 67
(1996) 111-151]. Specifically, for any k = 3 there is a function y : (0,00) — [0, 1] such that for any d € (0,00) \ {d}}
the sequence (n"!|%6.(G)), converges to ¥ (d) in probability.

The aim of the present paper is to enhance the branching process perspective of the k-core problem pointed out
in their paper. More specifically, we are concerned with the following question. Fix k = 3, d > dj and let s > 0 be an
integer. Generate a random graph G and mark each vertex according to o¢,¢: V(G) — {0,1}, v — 1{v € 6;(G)}. For
a vertex v let G, denote its component. Now, pick a vertex v uniformly at random and let 6°(G,, v,0¢,] denote
the isomorphism class of the finite rooted {0, 1}-marked graph obtained by deleting all vertices at distance greater
than s from v from G,. Our aim is to determine the distribution of 8°[G, v,0¢ ¢, ].

To accomodate the non-trivial correlations between the k-core and the “mantle” (i.e., the vertices outside the
core) we introduce a Galton-Watson process T, k, p) that posseses five vertex types, denoted by 000, 001, 010,
110, 111. Setting g = g(d, k, p) =P [Po(dp) = k- 1|Po(dp) = k- 1], we let pooo = 1 = p, po1o = P4, p110 = p(1 - q).
The process starts with a single vertex, whose type is chosen from {000,010,111} according to the distribution
(Pooo, Po10, p111)- Subsequently, each vertex of type z;z2z3 spawns a random number of vertices of each type.
The offspring distributions are defined by the generating functions g, ,,,, (x) detailed in Figure 1, where x =
(X000, X001, X010, X110, X111) and g = G(d, k, p) = P [Po(dp) = k—2|Po(dp) < k- 2]. Let T(d, k, p) signify the random
rooted {0, 1}-marked tree obtained by giving mark 0 to all vertices of type 000, 001 or 010, and mark 1 to all others.
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FIGURE 1. The generating functions gz, z,, (x).

Theorem. Assume that k =3 and d > d. Let s = 0 be an integer and let T be a rooted {0, 1}-marked tree. Moreover,
let p* be the largest fixed point of ¢4 1 : [0,1]1 — [0,1], p— P [Po(dp) = k- 1]. Then

1
- Z 1{0°[G, v,04¢,] = 0°[7]} converges to P[0°[T(d, k, p*)] = 0°[7]] in probability.
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