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ABSTRACT. The“giant component” has remained a guiding theme in the theory of random graphs ever since the
seminal paper of Erdős and Rényi [Magayar Tud. Akad. Mat. Kutato Int. Kozl. 5 (1960) 17–61]. Because for any
k ≥ 3 the k-core, defined as the (unique) maximal subgraph of minimum degree k, is identical to the largest k-
connected subgraph of the random graph w.h.p., the k-core is perhaps the most natural generalisation of the “giant
component”. Pittel, Wormald and Spencer were the first to determine the precise threshold dk beyond which the
k-core Ck (G) of G =G(n,d/n) with d > 0 fixed is non-empty w.h.p. [Journal of Combinatorial Theory, Series B 67
(1996) 111–151]. Specifically, for any k ≥ 3 there is a function ψk : (0,∞) → [0,1] such that for any d ∈ (0,∞) \ {dk }
the sequence (n−1|Ck (G)|)n converges to ψk (d) in probability.

The aim of the present paper is to enhance the branching process perspective of the k-core problem pointed out
in their paper. More specifically, we are concerned with the following question. Fix k ≥ 3, d > dk and let s > 0 be an
integer. Generate a random graph G and mark each vertex according to σk,G : V (G) → {0,1} , v 7→ 1 {v ∈Ck (G)} . For
a vertex v let G v denote its component. Now, pick a vertex v uniformly at random and let ∂s [G v , v ,σk,G v ] denote
the isomorphism class of the finite rooted {0,1}-marked graph obtained by deleting all vertices at distance greater
than s from v from G v . Our aim is to determine the distribution of ∂s [G v , v ,σk,G v ].

To accomodate the non-trivial correlations between the k-core and the “mantle” (i.e., the vertices outside the
core) we introduce a Galton-Watson process T̂ (d ,k, p) that posseses five vertex types, denoted by 000, 001, 010,
110, 111. Setting q = q(d ,k, p) = P[

Po(d p) = k −1|Po(d p) ≥ k −1
]

, we let p000 = 1−p, p010 = pq , p110 = p(1− q).
The process starts with a single vertex, whose type is chosen from {000,010,111} according to the distribution
(p000, p010, p111). Subsequently, each vertex of type z1z2z3 spawns a random number of vertices of each type.
The offspring distributions are defined by the generating functions gz1z2z2 (x) detailed in Figure 1, where x =
(x000, x001, x010, x110, x111) and q̄ = q̄(d ,k, p) = P

[
Po(d p) = k −2|Po(d p) ≤ k −2

]
. Let T (d ,k, p) signify the random

rooted {0,1}-marked tree obtained by giving mark 0 to all vertices of type 000, 001 or 010, and mark 1 to all others.

g000(x) = exp(d(1−p)x000)

∑k−2
h=0(d p)h (qx010 + (1−q)x110)h /h!∑k−2

h=0(d p)h /h!
,

g001(x) = q̄
(
exp(d(1−p)x001)

(
qx010 + (1−q)x110

)k−2
)

+ (1− q̄)

(
exp(d(1−p)x000)

∑k−3
h=0(d p)h (qx010 + (1−q)x110)h /h!∑k−3

h=0(d p)h /h!

)
,

g010(x) = exp(d(1−p)x001)
(
qx010 + (1−q)x110

)k−1 ,

g110(x) = exp(d(1−p)x001)

∑
h≥k (d px111)h /h!∑

h≥k (d p)h /h!
,

g111(x) = exp(d(1−p)x001)

∑
h≥k−1(d px111)h /h!∑

h≥k−1(d p)h /h!
.

FIGURE 1. The generating functions gz1z2z3 (x).

Theorem. Assume that k ≥ 3 and d > dk . Let s ≥ 0 be an integer and let τ be a rooted {0,1}-marked tree. Moreover,
let p∗ be the largest fixed point of φd ,k : [0,1] → [0,1], p 7→P

[
Po(d p) ≥ k −1

]
. Then

1

n

∑
v∈V (G)

1
{
∂s [G , v,σk,G v ] = ∂s [τ]

}
converges to P

[
∂s [T (d ,k, p∗)] = ∂s [τ]

]
in probability.
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