The Size of the Largest Part in Weighted Partitions of Integers into Powers of Primes

Ljuben Mutafchiev

American University in Bulgaria, 2700 Blagoevgrad, Bulgaria and Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences

For a given sequence of non-negative numbers $b = \{b_k\}_{k\geq 1}$, we consider the partition function $p_b(n)$ defined by $1 + \sum_{n=1}^{\infty} p_b(n) x^n = \prod_{k=1}^{\infty} (1 - x^k)^{-b_k}$. It represents a count of the number of partitions of n into positive integer summands k weighted by the parameters b_k . A fairly general scheme of assumptions on the sequence b was proposed by G. Meinardus, Math. Z. 59(1954), 388-398, who established an asymptotic formula for $p_b(n)$ as $n \to \infty$. His approach is based on analytical properties of the Dirichlet generating series $D_b(s) = \sum_{k=1}^{\infty} b_k k^{-s}, s = \sigma + iy.$ One of Meinardus conditions requires that $D_b(s)$ converges in the half-plane $\sigma > \rho > 0$ and there is a constant $C_0 > 0$, such that the function $D_b(s)$ has an analytical continuation to the half-plane $\sigma \geq -C_0$ on which it is analytic except for the simple pole at $s = \rho$ with a positive residue. This condition is satisfied by many important types of integer partitions. N. A. Brigham, Proc. Amer. Math. Soc. 1(1950), 192-204, proposed and studied a model of partitions with weights $b_k = \Lambda(k)$, where $\Lambda(p^r) = \log p$, p prime, and $\Lambda(k) = 0$ for all other values of k ($\Lambda(k)$ is also called von Mangoldt function). The Dirichlet generating series for these weights is $D_{\Lambda}(s) = -\zeta'(s)/\zeta(s)$, where ζ denotes the Riemann zeta function. Since the non-trivial zeta zeros are poles of $D_{\Lambda}(s)$, it does not satisfy Meinardus conditions. Let $p_{\Lambda}(n)$ be the corresponding weighted count of partitions of n into prime powers. Its asymptotic was determined by B. Richmond, Canad. J. Math. 27(1978), 1083-1091, and was subsequently improved by Y. Yang, Trans. Amer. Math. Soc. 352(2000), 2581-2600. Assuming that a weighted partition of n is selected with probability $1/p_{\Lambda}(n)$, we study the limiting distribution of the largest part size X_n as $n \to \infty$. As in the Meinardus case (see L. Mutafchiev, Combinatorics Probab. Comput. 22(2013), 433-454, we show that X_n , appropriately normalized, is approximately Gumbel distributed.

1