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For a given sequence of non-negative numbers b = {bk}k≥1, we consider the
partition function pb(n) defined by 1 +

∑∞
n=1 pb(n)xn =

∏∞
k=1(1 − xk)−bk . It

represents a count of the number of partitions of n into positive integer sum-
mands k weighted by the parameters bk. A fairly general scheme of assump-
tions on the sequence b was proposed by G. Meinardus, Math. Z. 59(1954),
388-398, who established an asymptotic formula for pb(n) as n → ∞. His
approach is based on analytical properties of the Dirichlet generating series
Db(s) =

∑∞
k=1 bkk

−s, s = σ + iy. One of Meinardus conditions requires that
Db(s) converges in the half-plane σ > ρ > 0 and there is a constant C0 > 0, such
that the function Db(s) has an analytical continuation to the half-plane σ ≥ −C0

on which it is analytic except for the simple pole at s = ρ with a positive residue.
This condition is satisfied by many important types of integer partitions. N. A.
Brigham, Proc. Amer. Math. Soc. 1(1950), 192-204, proposed and studied
a model of partitions with weights bk = Λ(k), where Λ(pr) = log p, p prime,
and Λ(k) = 0 for all other values of k (Λ(k) is also called von Mangoldt func-
tion). The Dirichlet generating series for these weights is DΛ(s) = −ζ ′(s)/ζ(s),
where ζ denotes the Riemann zeta function. Since the non-trivial zeta zeros are
poles of DΛ(s), it does not satisfy Meinardus conditions. Let pΛ(n) be the cor-
responding weighted count of partitions of n into prime powers. Its asymptotic
was determined by B. Richmond, Canad. J. Math. 27(1978), 1083-1091, and
was subsequently improved by Y. Yang, Trans. Amer. Math. Soc. 352(2000),
2581-2600. Assuming that a weighted partition of n is selected with probability
1/pΛ(n), we study the limiting distribution of the largest part size Xn as n→∞.
As in the Meinardus case (see L. Mutafchiev, Combinatorics Probab. Comput.
22(2013), 433-454), we show that Xn, appropriately normalized, is approximately
Gumbel distributed.
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