On graphs containing few disjoint excluded minors. Asymptotic number and structure of graphs containing few disjoint minors K_4

Valentas Kurauskas (Vilnius University)

Abstract

Let $\operatorname{Ex} \mathcal{B}$ be a minor-closed class of graphs with a set \mathcal{B} of excluded minors. Kurauskas and McDiarmid (2012) studied classes \mathcal{A} of graphs that have at most k disjoint minors in \mathcal{B} , more precisely, at most k vertex disjoint subgraphs containing an excluded minor from \mathcal{B} . Denote by \mathcal{A}_n the class \mathcal{A} restricted to graphs on the vertex set $\{1, 2, \ldots, n\}$. In the case when all graphs in \mathcal{B} are 2-connected and $\operatorname{Ex} \mathcal{B}$ excludes some fan (a path together with a vertex joined to each vertex on the path), they determined the asymptotics of $|\mathcal{A}_n|$ and properties of typical graphs in \mathcal{A}_n as n tends to infinity. In particular, they showed that all but an exponentially small proportion of graphs G from \mathcal{A}_n contain a set S of size k such that S is a \mathcal{B} -blocker, i.e., $G - S \in \operatorname{Ex} \mathcal{B}$. (An example is the class $\operatorname{Ex} (k+1)\{K_3\}$ of graphs containing at most k vertex-disjoint cycles.)

In the present work we consider the case when $\operatorname{Ex} \mathcal{B}$ contains all fans. Firstly, for good enough \mathcal{B} we obtain results on asymptotics of $|\mathcal{A}_n|$. For example, we give a sufficient condition for the sequence $y_n = (|\mathcal{A}_n|/n!)^{1/n}$ to have a limit (a growth constant) as $n \to \infty$. A \mathcal{B} blocker Q of G is redundant if for each $x \in Q, Q \setminus \{x\}$ is a \mathcal{B} -blocker of G. Let R_n be a graph drawn uniformly at random from \mathcal{A}_n . For large enough constant k we show that R_n has no \mathcal{B} -blocker smaller than 2kwith probability $1 - e^{-\Omega(n)}$, and the upper limit of y_n is realised by the subclass of graphs $G \in \mathcal{A}$ that have a redundant \mathcal{B} -blocker Q of size 2k + 1.

Secondly, we explore the structure of graphs that have at most k disjoint minors K_4 . For k = 0 this is the class of series-parallel graphs. For $k = 1, 2, \ldots$ we show that there are constants c_k, γ_k , such that $|\mathcal{A}_n| = c_k n^{-5/2} \gamma^n n! (1 + o(1))$. We prove that the random graph R_n with probability $1 - e^{-\Omega(n)}$ has a redundant $\{K_4\}$ -blocker Q of size 2k + 1 and each vertex of Q has a linear degree. Additionally, we consider the case $\mathcal{B} = \{K_{2,3}, K_4\}$ related to outerplanar graphs.