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A Two-Phase Stokes Flow Problem with Surface Tension

Consider two 2-D immiscible fluids of the same viscosity u = 1,
separated by a simple closed curve . Their dynamics are governed

by

pAu—Vp=0 onR2\T, (1)
V-u=0 onR2\T, (2)

[u] =0, (3)

[>(u, p)n] = —vkn (4)

where

u: fluid velocity; p: pressure; X (u,p): Newtonian stress tensor;
[] interior value minus exterior value; u: Newtonian viscosity;
~: surface tension coefficient; n: outward unit normal;

k: signed curvature of the interface



The Model Diagram
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Interface Parametrization

The interface I = z(a, t) is parametrized such that the tangent
vector's magnitude has no dependence on q, i.e.,

2, 1) = L) gita+otann)
™

where L(t) is the interface length at time t.
We can then derive evolution equations for L(t) and 6(«, t):

L(t) = —/_ﬂ (14 0())U()da (5)

2 2T

O:(a, t) = mUa(a) + m

T(a)(1 + ba(a)). (6)



Reformulation of the Evolution Equation for L(t)

Using the interior fluid's incompressibility, we obtain

)
_R? (1 + %Im /_: /Oa ila=) ; %(o(a) _ 0(n))”dnda> -
i (7)

This analytical expression for L(t) can be shown to be equivalent
to equation (5).



Steady State Solutions

For any constants c € R and R > 0,
(0(e, t), L(t)) = (c,27R)

is a steady state solution to (5) and (6), which corresponds to a
stationary circle of radius R.



Solution Space

For a periodic function f defined on [—, 7), its Fourier transform
is defined as

F(F) (k) = = /ﬂ F(a)e*da. (8)

:% .

The corresponding Fourier series is given as

flo) =) F(k)e*. (9)



Solution Space

We let ]-',9’1 and f,fl s > 0, be spaces of periodic functions on
[—7, ) whose norms

IFllpar = > Ok [F(k)) (10)
kEeZ
£l 220 = > el i |7k (11)
k#£0
where
t
v(t) = T (12)

are finite.



Solution Space

We also use a family of Banach spaces F%! and F5:1, s > 0,
equipped respectively with norms

[l = [F(R)]. (13)
keZ

1l s = 3 IKI* PR (14)
k0

The space %! equipped with the norm (13) is the classical Wiener
algebra, i.e., the space of absolutely convergent Fourier series.



Main Result

Theorem (C.)

Fix v > 0. If the initial datum 6° € F! such that | F(6°)(0)| and
HGOHFJ are sufficiently small, then for any T € (0,00) there exists
a unique solution

0(cr, t) € C([0, T]; FXY) n LY(]o, T]; F21) (15)

to the equations (5) and (6), where v is given in (12) and vy > 0
is dependent on 6°. The solution becomes instantaneously
analytic. In particular, for any t € [0, T]

160t 121 + (A(HeOH ) - Vo> /0 10| z20 d < 60| 50
(16)

where /\(HGOHJ-_.M) — 19 > 0. Moreover,
exponentially in time.

0(t)]l z11 decays



Boundary Integral Formulation

The fluid velocity, which appears in the evolution equation, is
represented by the single-layer potential form, i.e.,

() = 4= [(Am(EIn(s))Gylx —y(s)ds. xR (17)

where u(x) = (u1(x), u2(x)) and G = (Gj;) given by

Wi w,

Gij(w) = —djj log |w| + \w\;

(18)

is the Green’s function for two-dimensional infinite unbounded
incompressible Stokes flow.



Key Proof Strategy

We linearize the evolution equation for # around a steady state
solution:

0:p + (—A) 29 = n. (19)

The R part can be shown to be "small” in the norm of the
solution space Ft.

In the Fourier space, this equation becomes

0:d(k) = — k| §(K) + Fi(k), (20)

which clearly reveals that the principal linear part is diagonalized.



Derivation of the A Priori Estimate

Take the time derivative of

6l =D e k2| (k)| =23 ek (k)| (21)
k0 k>1
to obtain
d
9l (22)
=23 e (1) G(K)|
k>1




Derivation of the A Priori Estimate

Using careful estimates, we obtain

d

116l 1 </ (8) 16 pyons — 7 - 37 Ok k)| (23)
k>2

ol (24)

+213AH¢\\;0 St G (25)

k>2



Handling the Dissipation Term

Note that

/ zy(a, t)da = 0.

—T

In HLS parametrization, this identity yields

0— / " (et A1)+ S oy BR)R) 4

—T

(27)



Handling the Dissipation Term

Proposition (Gancedo, Garcia-Judrez, Patel, and Strain)
Let r € (0,3 log 2). Consider ||¢| zo. < r. Then

)]+ 81| < an)r X b

[k|>2

where

1 2ef(e" 1)
G =2 2@ 1y

Here, Ci(r) > 0 is a strictly increasing function of r where

lim C(r) =2
Mg, Gl =2

lim  G(r) = oo.
r—>log%7



Derivation of the A Priori Estimate

|

0
<ol g2 (R1(||¢||]-',‘j*1) 1]l 221 + Re(lldll 7o) 11l 20

+ Rs([[ll z21) 10l 201 Ml 222 + Rallll o) e
+ Rs(ll¢ll 7o) 191l 224

+3 (H3 6]l 201 + Ha ||¢H¢;1)
+3(Da(l9l520) 191301 + Da(l¢l z00) 6z 91520 ) (1 + 2110110 )
+ (D119l 202) 9]l 201 + D26l z01) 9]l 201 ) (14211651 )

+ 616l 231 (Hs 6]l za1 + Ha 18] 221)

+2(Hallolgs + el ).



Derivation of the A Priori Estimate

Using the estimate for H/\N/" and the implicit function theorem

Fot
for ‘g?)(jzl)) we obtain

d /

N8l < — (AUl ) = (0)) 0l (28)
for some function A, which is a monotone decreasing function of
6512, and

Vg
(1+7)%

V() = (29)



Regularization Argument
Theorem (Picard-Lindelof)

Let O C B be an open subset of a Banach space B with norm ||-|| g and let
F : O — B be a nonlinear operator satisfying the following conditions:

1. F maps O into B.
2. F is locally Lipschitz continuous, i.e., for any X € O there exists L > 0
and an open neighborhood Ux C O of X such that
|Ffo—Fex, < 1% -4
B B

for a/l)N(,)A( € Ux.
Then for any Xo € O, there exists a time T such that the ordinary differential

equation
dX
— =F(X
% = F(X)
X(0)=Xo€ O

has a unique local solution X € C*((—T, T); O). If F does not depend
explicitly on time, then solutions to the above ODE can be continued until they
leave the set O.



Regularization Argument

Cast our original evolution equation

27
O:(a) = m

L( )_27TR<1+|m/ / ell@=n) n>1 (e( ) — Q(n))”dnda)

into an ODE on an infinite-dimensional Banach space:

(Ua(0)(a) + T(0)(a)(1 + ba()));

1
2

diy

a9 = (I © Gn)(On)- (30)



Regularization Argument

where

Gn(On)

=R~ <1+ Im// l(an)z-gN

n>1

- ((Ua)N(eN) + T(Ow) (1 + (9,\,)&)).

()" dnda>

1
2



Regularization Argument

Apply the Picard-Lindeldf Theorem by setting B = H, O = OM,
and F = J} o Gy, where

Hy
:{f e H™([—n, 7)) : supp(f) C [-N, N], f(£1) =0, Im(f) = o}
and

OM = {f e HY : ||fllym < M}.



Regularization Argument

Lemma (Aubin-Lions)
Let Xy, X, and X1 be Banach spaces such that

Xo € X C Xy,

with compact embedding Xo < X, and let p € (1,00]. Let G be a
set of functions mapping [0, T| into Xy such that G is bounded in
LP([0, T]; X) N L% ([0, T]; Xo) and 0:G is bounded in

L; ([0, T]; X1). Then G is relatively compact in L9([0, T]; X),
where q € [1, p).



Regularization Argument

» Aubin-Lions’ Lemma allows us to extract a subsequence of
these solutions that is convergent in L2([0, T]; F»'') for any
T >0.

> To apply Aubin-Lions’ Lemma, we set Xp = ]-'31 X = ]-",}1
X1 = fS’l, p = 00, and let

G:{QN:NEN}.

The limit of the extracted subsequence is a weak solution to
the original equation.



Inheritance of the A Priori Estimate

For all N € N and for all t € [0, T],

H¢N(t)H]-_-3,1 + (A(HQOHJ':LI) — I/O> /0 H¢N(T)H]_-31 dr < HQOHJL‘LI .
(31)



Inheritance of the A Priori Estimate
By Fatou's lemma, for any t € [0, T],

t t
/0 |;\IrTl>lgof||¢N(T)|’f3,1 dr S |}\rl’n_>lgof/0 HQZ)N(T)H]_-s,l dr.

Then we obtain for all t € [0, T]
t
66530+ (M52 = 0) [ 166010
t
<t inf[on() 530+ (APl s10) =0 ) ignind [ om0 o

t
<tignint(low(o)]s50 + (AP0 .00 [ lonl g o )
<[6°]] 1. -

Therefore,

0 € L=([0, T]; F2Yy n LY([o, T]; F21). (32)



Uniqueness of Solutions

Taking the time derivative of

161 — ball 10 =2 |k| [F (61 — 62)(K)| , (33)
k>0
we obtain
d
16— 6 5 (34)

_ ]
_g | F (61 — 62)(K)|

J o
. (dt}“(el — 02)(k) - F(61 — 02)(k)

+ F(01 — 62)(k) - %]‘"(91 - 92)(k)>‘



Uniqueness of Solutions

After careful estimates, we obtain that for sufficiently small
16| 1.

d
o [¢1 = 2l p11 < E |1 — 2l 710 (35)

where £ is a coefficient that may depend on ||¢1|| 1.1, || P2 711,
|¢1l 72.1, and [|¢2]| 721, and is integrable in time.



An Associated Problem |: The Muskat Problem

» The Muskat problem describes the dynamics of incompressible
fluids of different nature (e.g., oil and water) permeating
porous media (e.g., tar sands) under gravity.

» Gancedo, Garcia-Judrez, Patel, and Strain [12] established
global-in-time existence, uniqueness, and instantaneous
analyticity of solutions for small initial data of low regularity
for a 2-D Muskat bubble immersed in Muskat flow.



An Associated Problem |l: The Peskin Problem

» The Peskin problem is a fluid-structure interaction (FSI)
problem that describes the dynamics of a 1-D closed elastic
string separating 2-D Stokes fluids.

» The only mathematical difference between the Peskin model
and mine is the nature of the driving force.

> The Peskin model is driven by the elasticity of the string,
which obeys the following general law of elasticity:

agx -1

T(|0gX|) =< |06 X]| ~. 36

o0 ( T(aXD - 7% ) - 0nx] (3)

» The most general setting in which well-posedness has been
established for the Peskin problem is where T(a) > 0 and
T'(a) > 0.



Computational Verification

To verify the analytical results, we numerically solve the following
dynamics equation for the fluid interface

0 X(0,t) = % /r(—wf(s)n(s))G(X(Q, t) — X(s,t))ds, x € R

We discretize the interface with N points for some fixed even
integer N. For a fixed time step size dt > 0, let

X" = (XD XP, .. X5,

be the position of the interface at time n - dt.



Computational Verification

Given the initial position X of the interface, the boundary integral
can be written as

e X (6, t)
1 1 1 1
= - H(0pX X ) (0
v 00 = 14 (1~ ) %)@
1 |AX]| ) AX®AX> o X
Ay | —log| ———— | + : de’,
47r/ " ( Og(z |sin(52) |AX|? |0 X|

where AX = X(0,t) — X(s, t).




Computational Verification

Given X7, ensure that any adjacent pair of the N points in the
interface have the same chordal length. Then X"*! is obtained by

solving
Xxnt+1/2 _ xn 1
=— Dy X" ) + Ry(X"
At/2 4|DanH"’< N +Ra(X7)
Xnt+l _ xn -~ 1 ” Dy X" _|_Dan+1
At 4pyxN 2

+ Rl(X”+1/2,Xn) + Rz(xn+1/2),



Computational Verification

where

Rl(X"+1/2, Xn)

1 Dy (X2 — X") . Dpy(X" /2 4 X n1/2
== Dy X
|DnX"H1/2| - | Dy X 7| - (| DX H1/2| + Dy X 7))

and Ry(X) is a numerical computation of the integral

1 AX AX ® AX ' X
89/ <— Iog< | | >/+ @ ) . % do'.

4w 2 [sin(52) |IAX|? |0 X|




Computational Verification

To compute the perturbation, we need to devise a way to “project
away” circles from the interface. To that end, we parametrize a
circle of radius A? 4 B2 > 0 centered at (Cy, C,) by

1 0 cos 6 —sin6
X(0) =G <O> +G (1) +A (sin&) +8 < cos 6 > '
Since |99X| = VA2 + B2 is independent of 0, the points X (k - 2T)
for k=0,1,..., N — 1 that make up the discretized circle will be
uniformly spaced, as in the case of the points forming the interface

from our numerical scheme. For discrete periodic functions V and
W, the discrete inner product is defined by

=2
-

VW= 3 (Vi wi) - 2

0

x
Il



Computational Verification
Let e, e), e}, and e} be

(1 (0 _ (cosd __(—sind
€1=10)%27 (1) 7 (sing )%~ \ cost

evaluated at 0, = k - 2Wﬂ for k=0,1,..., N — 1, respectively. We
define the discrete perturbation operator by

MyV =V —PpV,
where

PnV

1
:277< <V,e1N>Ne1 + <V,e2N>Ne2 + <V,e3N>Ne3 + <V,e4N>Ne4).

We measure the perturbation using the discrete L% norm

V] :Stip!Vk!-



Computational Verification

We plot log ||M100(X")]|,, against n for dt = 0.1, 0.05, and 0.01
up to t = 50 for the initial condition on the interface

<1 + ecofe)) cos 0
X0 =

(1 + e“jf“’) sin 0




Computational Verification

\\\\' _ theoretical

~ T dt=0.010000
Sr ~—__ dt=0.050000 | ]
T~ 4t=0.100000

Figure: The plot of log ||M100(X")|| ., against n for dt = 0.1, 0.05, and
0.01, up to t = 50.

“ . ” . _ﬁ .
The blue “theoretical” line has a slope of SVA" where A is the

area enclosed by the initial interface. This plot suggests that the

. . _ﬁ
perturbation decays at an exponential rate of P VA"



Computational Verification

zero line

dt=0.010000
dt=0.050000
dt=0.100000

50



The Order of the Numerical Scheme

Let Xﬁ’T be the discretized interface at time T computed by our
numerical scheme with time step size dt > 0. Suppose that for
sufficiently large n € N,

N, T _ N, T 3N, T
En - sz—(n—l) X2—n

S C'2—nk
o0

for some constants C > 0 and k > 0.



The Order of the Numerical Scheme

If X7 is the unique analytical solution at time T evaluated at an
equal arclength grid, and our numerical scheme converged to it,

then

N, T T
=X

N, T T N, T N, T
bt x|

N, T N, T
S HX2—("—1) = Xy

N, T N, T
+Hx; _xNT
o0 2= 2(+1)OO



The Order of the Numerical Scheme

Figure: The plot of log, E}%40 against n for n = 3,4,5.6.



Room for Exploration

» Global well-posedness in a scaling critical space
» The case of distinct viscosities
» Well-posedness of closely related non-Stokes fluids

» Convergence analysis of a numerical scheme utilizing the
“equal arclength” parametrization
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