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Abstract

This paper addresses the asymptotic development of order 2 by the
I'-convergence of the Cahn—Hilliard functional with Dirichlet boundary
conditions. The Dirichlet data are assumed to be well separated from one
of the two wells. In the case where there are no interfaces, it is shown
that there is a transition layer near the boundary of the domain.

1 Introduction

In this paper, we study the second-order asymptotic development via I'-convergence
of the Cahn-Hilliard functional

F.(u) := / (W (u) + 2| Vul*) dz, ue HY(Q), (1.1)
Q
subject to the Dirichlet boundary condition
tru =g, on 0N. (1.2)

Here W : R — [0, 00) is a double-well potential with
W({0}) = {a, b}, (1.3)



Q c RY is an open, bounded set with a smooth boundary, N > 2, and g. €
HY2(09).

We recall that, given a metric space X and a family of functions F, : X —
[—00, 00] for € > 0, the asymptotic development of order n via I'-convergence is
written as:

Fe=FO 4 eFO 4o g enF) 4 oo(em). (1.4)

This expansion holds if we can find F*) : X — [~00,00], i = 0,...,n, such that

the functions 1)
) =1 _ f ]:(i—l)
P SL A

are well-defined and the family {]—'E(i)}a I-converges to F() as e — 0.
The notion of asymptotic expansion was introduced by Anzellotti and Baldo
in 1993 [3]. Observe that if we define

U; = {minimizers of F?},
it can be shown that
FD =o0on X\ U,
and the sets of minimizers satisfy the nested relationship
U, CUp—1 C -+ CUp = {limits of minimizers of F.}.

In general, the above set inclusions can be shown to be strict. Therefore, lever-
aging the hierarchical structure of functionals F(9), this framework provides a
systematic selection criterion for the limits of the minimizers of functionals F.

In many cases, the powers of ¢ in the asymptotic development (1.4) may be
replaced by more general scales 59, where 59 > 0 forall i =1,...,m and
e >0, 5§0) =1, and aéi) = 5§i)/5£i_1) —0ase— 0T foralli=1,...,m, and
the asymptotic expansion takes the form

Fo=FO 4 sMFQ Loy 500 FM) 4 o(sm),
In this setting, the functions ]—"E(i) are defined by

FO _infy FG-D

F) .= .
€ 0’{5_2)

, -7:5(0) = Fe.

The second-order asymptotic expansion of the Cahn-Hilliard functional (1.1)
subject to a mass constraint

/Qu(x) dz =m (1.5)

was studied by the third author and Murray in [21], [22] in dimension N > 2.
With X := L(Q) and

G.(u) = { &(W(u) + 2 VuP)dr ifue HY(Q), [,,udr =m,

otherwise in L!(Q), (1.6)



they proved that, under appropriate hypotheses on 2 and W, if W is quadratic
near the wells, then

Lo,
= — 7 K

2W"(a)(b—a)?
where v is a minimizer of the first-order functional (see [6], [18], [24], [23], [28]),

GW() = { CwP{v=a}Q) ifve BV {a,b}), fovde=m,
v) =9 otherwise in L(9),

G2 (u) + (Coym + Cw )k P({u = a}; Q),

T, € R is a constant related to the mass constraint (1.5), &, and P({u = a}; Q)
are the constant mean curvature and the perimeter of the set {u = a} in Q,
respectively, the constants Cyy and Csym are given by!

b
Cw ;:2/ W2 (p) dp, (1.7)

and
Coym = 2/ W (zc(t))t dt,
R

where ¢ is the central zero of W’ (see (2.4)), and for a € R, z, solves to the
Cauchy problem
Z(/x = Wl/Q(ZOé)7
{ 2a(0) = . (1.8)

The third author and Murray in [21], [22] also considered the case where W
exhibits subquadratic growth near the wells. This scenario had been previously
analyzed by the first and third authors together with Dal Maso in [13], where
they assumed both zero Dirichlet boundary conditions and the mass constraint
(1.5).

In the case of Dirichlet boundary conditions (1.2), we take X := L'(Q) and
define

Folu) = JoW(u) +e*|Vul*)dz  if ue H'(Q), tru = g. on 99,
W otherwise in L!(Q).
Under suitable assumptions on 2, W, and g., Owen, Rubinstein, and Sternberg
[26] showed that the first non-trivial scale is s = ¢ e,
FO () = JoGW(u) +e|Vu?)de if u e H'(Q), tru = g on 99,
€ 00 otherwise in L(€2),

and that the functionals {]-'5(1)}5 I'-converge as ¢ — 0T to
CwP{u=0a}0)
FO () = +/ dyy (tru, g) dHN 1
a0

00 otherwise in L'(£2),

ifu€ BV(Q{a.b}), ()

INote that our constants cw and csym differ by correspond to the constants 2cy and 2¢sym
n [21], [22].



where g. — g in L'(09), dyy is the geodesic distance determined by W

S 1171/2 .
dy (7, 5) = 2 |f7 W1/2(p) dp’ ifre {.a7b} or s € {a, b}, (1.10)
s} otherwise,

and the constant Cyy is given in (1.7). We also refer to the recent work by
Cristoferi and Gravina [11], who addressed the vectorial case and considered
potentials where the wells depend on the spatial variable z, and to the work by
Gazoulis [19], who studied the vectorial case under different settings.

We aim to extend the results of Owen, Rubinstein, and Sternberg [26] by
determining the second-order asymptotic expansion of F. via I'-convergence,
assuming the boundary data g. : Q2 — R stay away from one of the two wells a,
b:

a<a_ <g(z)<b (1.11)

for all z € Q, all € € (0,1), and some constant «_. In this article, we consider
only the case where the Dirichlet boundary datum is close to the value b and
far from a. The case where the boundary datum is close to a and far from b
can be addressed using the same arguments. Under this hypothesis, when the
constant o_ is sufficiently close to b, the only minimizer of F(!) is the constant
function b (see Proposition 2.5 below). Hence, we assume that

ug =b is the unique minimizer of F(1). (1.12)

In this case, due to (1.9), we have
min FV) = / dyy (b, g) dHN !
[5}9)
and we define

(1) i (1)
féz)(u) e (u) — min F

- (1.13)

1 1
:/ (2W(u)+|Vu|2> dx—f/ dw (b, g) dHN !
Q \¢ € Joa

if ue H'(Q) and tru = g. on 91, and F (u) := oo otherwise in L(€).
The main result of this paper is the following theorem:

Theorem 1.1 Let Q C RY be an open, bounded, connected set with boundary
of class C*? 0 < d < 1. Assume that W satisfies (2.1)-(2.4) and that g. satisfy
(1.11), (2.12)-(2.14). Suppose also that (1.12) holds. Then

FP(u) = /a nly) /O h 212 (20 (8)) 2y ()5 ds dHN "M y)  (L.14)

if u=b and F@ (u) = oo otherwise in L*(Q). Here, k is the mean curvature
of O and z, is the solution to the Cauchy problem (1.8) with a = g(y).



In particular, if u. € HY(Q) is a minimizer of (1.1) subject to the Dirichlet
boundary condition (1.2), then

/ (W (ue) + 2| Vue|?) de = s/ dw (b, g) dHN 1 (1.15)
Q o)

—|—52/ /-@(y)/ 2W1/2(zg(y)(s))z;(y)(s)s dsdH™N "1 (y) + o(e?).
aQ 0 '
Remark 1.2 In the case where g is allowed to take the value a but (1.12)

continues to hold, the scaling

F (u) — min FO)
ellog e

FO(u) =

should replace the scaling in (1.13), as the latter becomes incorrect in this con-
text. We address this problem in the paper [16].

Remark 1.3 The case where the minimizer ug of the functional F) in (1.9)
is not constant, the analysis becomes considerably more complex. By leveraging
recent results from De Phillipis and Maggi [14], it can be shown that if Q and g
are sufficiently regular, then by modifying Eo := {ug = a} on a set of Lebesgue
measure zero, Eqy is open and its trace 0Ey N O has finite perimeter in O0S).
Moreover, if M = 0EqNQ, then 0sq(0Ey N ON) = M NN, and there exists
a closed set ¥ C M, with HN"2(M \ £) = 0, such that M \ ¥ is a C11/?
hypersurface with boundary, M \ ¥ has zero mean curvature in 0 and satisfies
the Young’s law

o (dwla, g(2)) — dw (b, 9(2) (1.16)
w

forallx € (MNOQ)\X. Here vy, and vaq are the outward unit normals to Egy
and (), respectively. We are currently investigating this problem in dimension
two. In this setting,

VEy(7) - voa(r) =

Uy = axg, + bxa\Eo

where

m

0E;NQ =%,

i=1
with ¥; being disjoint segments that have endpoints P; and Q; on 02 and form
angles 0; that satisfy Young’s law (1.16). By adapting the techniques presented
in this paper, we have constructed u. € H* () satisfying the Dirichlet boundary
conditions (1.2) and converging to ug in L'(S2), such that

lim sup F{? (u.) < / k(y) / 2W1/2(zg(y) (8))2g() (5)5 dsdH' (y)
onna’ 0

e—0t

0
+/am§a K(y) /_Oo 22 (240 (5)) 24y () Is] dsdH ()

1+c0s0 17COS€
72 sin 6; Z sin 6;



where

Cur [ 2W 2y ()2 (Dads + [ 202z 0, () (s
0

0
D; :=/ 2W1/2(Zg<P7:)(8))Z;<Pi>(8)|8|ds+/ 2W2 (2400 (9) 250, (5)]5] ds,
—00 —o0

and z, solves the Cauchy problem (1.8) with a = g(y), and Q" = {z € Q :
uo(z) =7}, r € {a,b}.

Theorem 1.1 is in the same spirit as the work by Anzellotti, Baldo, and
Orlandi [4], who considered the case W (p) = p? and derived a formula similar
to (1.14). Our proof, however, takes a different approach and relies on the
asymptotic development of order two by I'-convergence of the weighted one-
dimensional functional

Ge(v) := /0 (W (v(t)) + 20" (1)*)w(t) dt, ve HY(I), (1.17)

subject to the Dirichlet boundary conditions
v(0) = ., o(T) =P, (1.18)
where w is a smooth positive weight, and
a<ae, fe <0 (1.19)

The second-order asymptotic expansion of this functional was studied by the
third author and Murray ([21], [22]) in the case where the Dirichlet boundary
conditions (1.18) were replaced by the mass constraint:

T
/ v(t)w(t) dt = m. (1.20)
0

The key difference in our proof of the I-liminf inequality is that in [21], [22], the
authors utilized a rearrangement technique based on the isoperimetric function
to reduce the functional (1.6) to the one-dimensional weighted problem (1.17)
and (1.20). This approach, however, is not feasible in our case (except in the case
of trivial boundary conditions). Instead, we adapt techniques from Sternberg
and Zumbrum [29] and Caffarelli and Cordoba [10] to study the behavior of
minimizers of (1.1) and (1.2) near the boundary and use slicing arguments.

The case N = 1 was previously addressed by Anzellotti and Baldo [3] under
the assumption that W is zero in a neighborhood of a and b, and by Bellettini,
Nayam, and Novaga [7] in the periodic case.

This paper is organized as follows. In Section 3, we characterize the asymp-
totic development of order two by the I' convergence of the weighted one-
dimensional family of functionals G defined in (1.17). Section 4 explores the
qualitative properties of critical points and minimizers of functional 1.1. Finally,
in Section 5, we prove Theorem 1.1.



2 Preliminaries

We assume that the double-well potential W : R — [0, co) satisfies the following
hypotheses:

W is of class C%“°(R), o € (0,1), and has precisely two zeros

. (2.1)
at a and b, with a < b,
W'"(a) >0, W"(b) >0, (2.2)
lim W'(s) = —oc0, lim W'(s) = oo,
§——00 §—00
W' has exactly 3 zeros at a,b,c with a < c<b, W"(c) <0, (2.4)
Let ) b
a<a<min{c,a+ }Smax{c,a;—}<6<b. (2.5)

Remark 2.1 Since W € C*(R), W(a) = W'(a) =0, W(b) = W’(b) =0, and
W' (a), W"(b) > 0, there exists a constant o > 0 depending on a_ and S_ such
that

1
o?(b—s)2 <W(s) < §<b —8)?2 foralla_ <s<b+1, (2.6)

(s —a)> < W(s) < %(s—a)2 foralla—1<s<pj_. (2.7)

Proposition 2.2 Fora<a_ <band0<§ < o1, we have

-1
707 log(c720) + ot log(b — o) — ot log(1 4 201 (b— B)/6%/?)

B 1 o
< [ Gt g e s olosi 20— a) (28)

for every a_ < a < B < b, where o > 0 is the constant given in (2.6).
Proof. By (2.6),

o1 1 o

(25 + b= = G W) = %+ (b= s

Hence, it suffices to estimate

A 1
A= e



Consider the change of variables 7'/t = b — s, so that —r'/2dt = ds. Then

B 1 rl/2 (b—a)/r/? 1
o TFO=9))2" 112 Jo gy (14 2)2

(b—a)/rt/?

= [loglt + (8 + 1) 2] 50 /e

= —% log 7+ log(b — a + [r + (b — a)?]"/?)
—log((b—B)/r'/? + 1+ (b= B)*/r]'/?).
Hence, for 0 < r < 1, we have
— L logr + log(b — a) — log(1 + 2(b — B)/r/2)
2

1
<AL —§logr +log(1+2(b—a)).

Proposition 2.3 Let a < a. < 8. < b. Then there exists a constant C > 0

depending on o such that

/ﬁs 2 . ! ds < C
a LEFW()2HWI(s)  (6+W(s)/2]
for all 0 < 6 < 1, where o > 0 is the constant given in (2.6).

Proof. For A > 0, we have

2 B 1 - (6 + A)/2 — AL/2
(6+ A2 4 A2 (54+ A2 [(6+ A)L/2 + AV/2)(5 + A)L/2
5

Hence, the left side of (2.9) can be bounded from above by

b 5
.A[®+4V@D“”+WV%$P®+WN$P”%
¢ 1)
:LKM%%W”HWWMW+W@W2
b 5
+LKM%%W“HWWMW+W@W2
= A+ B.

>
[(6+ A)172 + ATZ2(5 + A)1/2 =

(2.9)



By (2.7) we have

0

A= / 6+ (=P P+ als— PG + 2 - ) 2"

(c—a)/s'/? s
= / §2dt
0 (06 + 026t2)1/2 + 561/24)2(6 + o26t2)1/2

(oo}
1
< dt
—/0 [(1+ 022172 + ot]2(1 + o262) 12

where we have made the change of variables s — a = §'/2¢, so that ds = 6/2dt,
and used the fact that 0 < § < 1. A similar estimate holds for B. ]
Next, we study the properties of the solutions to the Cauchy problem (1.8).

Proposition 2.4 Assume that W satisfies (2.1)-(2.4) and let a < o < b. Then
the Cauchy problem (1.8) admits a unique global solution z, : R — R. The
function z, is increasing with

a<zo(t)<b forallteR,

and
lim z,(t) = a, tli)m za(t) = b. (2.10)

t——o0o

Moreover, if a_ < a < b, where a_ is given in (2.5), then
(b—a)e™ 't <b—z4(t) < (b—a)e ™" (2.11)
for allt > 0.

Proof. As +/W is Lipschitz continuous in [a — 1,b+ 1], the Cauchy problem
(1.8) admits a unique local solution. As the constant functions a and b are
solutions to the differential equation, by uniqueness, a < z4(t) < b for all ¢ in
the interval of existence of z,. This implies that z, can be uniquely extended
to the entire real line. Standard ODEs techniques show that (2.10) is valid.

If a_ <« < b, since z, is increasing, using (2.10), we can find T, < 0 such
that zo(Tw) = a— and z4(t) > a_ for all t > T,. In turn, by (2.6),

o(b—24(t) <2, (t) <o (b —24(t) forallt>T,.
Dividing by b — z4(t) and integrating from 0 to ¢ gives
b— z4(t
—o Tt < log (z()) < —ot,
b—a

which implies (2.11). [
We assume that g. : 9Q — R and g : 92 — R satisfy the following hypothe-
ses:

g. € HY(09), (2.12)

(¢ 10g5|)1/2/ IV,gePdHN "t =0(1) ase — 0T, (2.13)
o9

lge(z) — g(z)| < Ce7, 2€0Q, ~v>1 (2.14)



for all € € (0,1) and for some constant C' > 0. Here, V. denotes the tangential
gradient.

Condition (2.13) is of a technical nature and ensures that, in the energy
estimates for the recovery sequence in the I'-limsup inequality, the tangential
component of the gradient near the boundary of € does not contribute to the
limiting energy (see (5.10) below). In particular, this condition is satisfied if
ge = g for all € > 0 for some g € H'(99).

Observe that the hypotheses (2.13) and (2.14) imply some regularity of g.
In particular, when N = 2, we see that the functions g. are continuous, and
since (2.14) implies uniform convergence, it follows that g must be continuous.

For a < a <b, let

P(a) == ,a) —dw(a,b)

b)
_2/ W2(p)dp — 2/ W2(p

where dy is defined in (1.10). Since ¢(a) = —Cw, ¢(b) = Cw, ¢'(a) =
4W12(a) > 0 for a € (a,b), there exists a unique @ € (a, b) such that

d(@) =0 and ¢é(a) >0 forall@<a<b. (2.15)

Proposition 2.5 Let Q C RY be an open, bounded, connected set with bound-
ary of class C*, 0 < d < 1. Assume that W satisfies (2.1)-(2.4) and that g.
satisfy (1.11), (2.12)-(2.14). Suppose that

g >a (2.16)

where & is given in (2.15). Then the constant function b is the unique minimizer
of the functional F) defined in (1.9).

Proof. Let u € BV (Q;{a,b}). We have tru(x) € {a,b} for H¥Nl-a.e. x € 9Q
and thus

FO(u) > Cw P({u = b};Q) —|—/ dy (tru, g) dHN 1
00

> / dw (b, ) dHN 1 = FO (p)
o0
provided
/ dw (a,g) dHN ! z/ dw (g, b) dHN 1.
oQN{tru=a}

oQN{tru=a}

By (1.11), (2.15), and (2.16), we obtain
dw(a,g(x)) > dw(g(ﬂ;‘),b).

Hence, if P({u = b};Q) > 0 or HVN=1(0Q N {tru = a}) > 0, we have that
FO(u) > FO(b), which shows that the constant function b is the unique
minimizer of F(1). [

10



In what follows, given z € RY, with a slight abuse of notation, we write

z=(2,2n) RN X R, (2.17)
where 2’ := (21,...,2n-1). We also write
0 0
A - 2.18
<82’1 625]\/_1) ( )

Also, given § > 0 we define
Qs = {z € Q: dist(z, Q) < J}. (2.19)

The following result is classical. We recall it and its proof for the reader’s
convenience.

Lemma 2.6 Assume that Q C RY is an open, bounded, connected set and that
its boundary O is of class C*%, 0 < d < 1. If § > 0 is sufficiently small, the

mapping -
D : 00 x [0,5] — Qs
given by
(y,t) =y +tr(y),
where v(y) is the unit inward normal vector to O at y and Q5 is defined in

(2.19), is a diffeomorphism of class C*%. Moreover, Q\ Qs is connected for all
0 > 0 sufficiently small. Finally,

det Jo(y,0) =1 for all y € 09 (2.20)

and

% det Jo(y,t)|,—g = K(y) for all y € 09, (2.21)

where k(y) is the mean curvature of O at y.

Proof. The fact that ® : 9Q x [0,8] — €5 is a diffeomorphism ¢ > 0 is
sufficiently small is classical (see, e.g. [20, Theorem 6.17]). Its inverse is given
by

& Hz) = (y(x),dist(x, 00Q)),

where we denote by y(z) € 9Q the unique projection of 2 onto 99, with
dist(x, 09) = |y(z) — x|.

Next, we show that 2\ is pathwise connected. Let xo and x; be two points
in 2\ Qs. Since  is open and connected, there exists a continuous function
f:10,1] — Q such that f(0) = ¢ and f(1) = z1. Since ® is a diffeomorphism
and ®(0Q x {d}) = 9(Q2\ Qs), the function

h(z) = y(@) + v (y(z)), x€Qs,

11



is continuous, with h(Qs) = 9(Q2\Qs). Note that if z € 9(Q\Qs), then h(z) = x
Hence, if we extend h to be the identity in Q\ s, we have a continuous function
h:Q— Q\Qs. Then ho f:[0,1] — Q\ Qs is continuous and (h o f)(0) = zg
and (ho f)(1) = x1, which shows that \ Qs is pathwise connected.

To prove (2.20) and (2.21), we fix yo € 9Q and find a rigid motion T : RN —
RN, with T(yo) = 0, 7 > 0, and a function f : By_1(0,7) — R of class C%¢
such that f(0) =0, V' f(0) =0, and

T(B(yo,r)NQ) ={z € RN : 2y > f(¢)), 2/ € By_1(0,7)} =: V,

where we are using the notations (2.17) and (2.18) and By_1(0,7) is the open
ball centered at 0 and radius r in RV~!. The unit inward normal to dV at a
point (2, f(2')) is the vector

(=V'f(z), 1)
(L+ [V FEDIR )

V=

Hence, if we consider

(=V'f(z),1)
L+ V' F )R

V(' t) = (2, f(2)) +t

we have that fori,57=1,...,N — 1,

N
. of z
83\11] (Z )7511 +t 8z1( ) s
Zi \/1+|V/ / .
Of 1y 4.2 1
Oz 0u \ 1+ Vi),
a\p ;?Z{(z) 8\IJN(,
! \/1+|V’ Ny \/1+|V’ 3y

In particular, since V' f(0) = 0,
Ju(0,0) = In_,.

oV N
5‘zi

(2',t) =

This proves (2.20). As

oDz, 0z \/1+\V’g(2’)\?v_1 ’

W N

(2',t) = ;
atﬁzz \/1+|V/ N 1
2wy o Uy

(2/7 t) =0,

g F =0 e

12



using Jacobi’s formula, we obtain

0 det J\p ’ o ’ 1, aJ\p(Z/,t)
T (2',t) = det Jy(2', 1) tr <J\I, (z ’t)iﬁt

In particular, taking 2’ = 0 and using the fact that Jg(0,t) = Iy_1 we get

N-1 B9
ddet J 9 52 (2)
o 00=2 5 oy = (o)
pu VIV )|
By the arbitrariness of yo, this concludes the proof of (2.21). ]
3 A 1D Functional Problem
Let
I:=(0,T)
and consider a weight function
oo, T inw > 0. 3.1
w e C>9([0,T7), minw (3.1)

The prototype we have in mind is
w(t) =14 tk(t).

In this section, we study the second-order I'-convergence of the family of func-
tionals

G:(v) := /(W(v(t)) + 2 (1) w(t)dt, ve HY(I),

I
subject to the Dirichlet boundary condition

v(0) = ae, o(T) =P, (3.2)

where ag, 8: € R. In what follows, we will use the weighted BV space BV,,(I)
given by all functions v € BVjoc(I) for which the norm

mep:[wwwmﬁ+ﬁwwﬂme

is finite. For v € BV,,(I) we will also write the weighted total variation of the
derivative as

| Dl (B) ::/Ew(t) d|Dv|(t).

For a more detailed introduction to weighted BV spaces and their applications
to phase-field models, we refer to [5, 17].

We will study the second-order I'-convergence with respect to the metric in
LY(I). This choice is motivated by the following compactness result.

13



Theorem 3.1 (Compactness) Assume that W satisfies (2.1)-(2.4), that w
satisfies (3.1), and that a. — « and B. — B as € — 0% for some a, 8 € R. Let
en — 0% and v, € H(I) be such that

1
sup/ (EW(vn(t)) +gn(u;(t))2> w(t) dt < o,
n I n

Then there exist a subsequence {vn, }r of {vn}n and v € BV, (I;{a,b}) such
that v,, — v in L'(I).

The proof is identical to the one of [21, Proposition 4.3] and so we omit it.
In view of the previous theorem, we extend G, to L!(I) by setting

Golv) = { [,(W (u(t) + 20/ ()2)w(t) dt if v e H'(I) satisfies (3.2),

otherwise in L(I).
(3.3)

3.1 Zeroth and First-Order I'-limit of G.
We begin by establishing the zeroth-order I'-limit of the functional G..

Theorem 3.2 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that a. — a and B. — 8 as € — 01 for some a, 3 € R. Then the family {G.}.
T-converges to G in L'(I) as ¢ — 0%, where

GO (y / W(o

Proof. To prove the liminf inequality, let e, — 0% and v,, — v in L'(I). Write
ap = ag, and B, := B, . Consider a subsequence {e,, }r of {,}, such that
lim Ge, (vn,) =liminf G, (vn).
k—o0 n— 00 :
Since v,, — v in L'(I) and inf; w > 0, by selecting a further subsequence, not

relabeled, we can assume that v, (t) — v(t) for L!-a.e. t € I. Hence, by Fatou’s
lemma and the continuity and nonnegativity of W, we have

khm Ge,, (Vn,) = hmlnf/W Un,, (8))w(t) dt > /W(v(t))w(t) dt
—00 I

To prove the limsup inequality, let £, — 0 and v € L!(I). Assume first that
v is bounded. Let © be a representative of v and let 5 be a standard mollifier,
where § > 0. Let 6, — 0T to be chosen later on and define

a, if —1<t<26,,
Up(t) =< o(t) if 20, <t <T —26,,
Bn T —26, <t<T+1,

and v, = @s, * U,. Assuming that suppe C (—1,1), we have that v,(0) =
(ps, * @ )(0) = ay and v, (T) = (@5, * Bn)(T) = Bpn. On the the other hand, if
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0 <ty < 1is a Lebesgue point of ¥ then for all n sufficiently large, we have that
vn(to) = (ws, * U)(to) — (to) by standard properties of mollifiers. Using the
continuity of W, we may apply the Lebesgue dominated convergence theorem
to obtain that v, — v in L'(I) and

lim [ W (v, (¢))w(t)dt = /IW(v(t))w(t) dt.

e Jr
On the other hand,
o, ()] = [(5, * T (1)] < 59
Hence,

2.1 2 5%
/Isn(vn(t)) wft)dt < 052 /Iw(t) dt =0

provided we choose d,, such that ;—i — 0. It follows that

n

lim G, (v,) = /IW(v(t))w(t) dt.

n—oo

To complete the proof, we use the fact that the I'-lim sup is lower semicontinuous
(see [12, Proposition 6.8]) and that every v € L!(I) can be approximated by
an increasing sequence of bounded functions for which the convergence of the
integral on the right-hand side above follows from the monotone convergence

theorem. ]
Since W=1({0}) = {a, b}, we have

inf GO@w)=0
ve L1(I)

and therefore

GE(’U) — inf L1(I) G(O)
3

:/l(iW(v(t))—i—a(v’(t))Z) w(t) dt

GW(v) :=

(3.4)

if v € H'(I) satisfies (3.2) and G (v) := oo if v € LY(I)\ H'(I) or if the
boundary condition (3.2) fails.
We now characterize the first-order I'-limit of the family {G.}..

Theorem 3.3 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that a. — a and 8 — B ase — 07 for some a, B € R. Then the family {Gél)}s

I-converges to G in LY(I) as e — 0%, where

GO) = Dol (1) + dw (0(0), a)e(0) + dw (0(T), Bo(T)  (8.5)

if v € BV,(I;{a,b}) and GM(v) := oo otherwise in L*(I), where dy and Cyy
are defined in (1.10) and (1.7), respectively.
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Proof. Step 1: To prove the I'-liminf inequality, let €,, — 07 and v, — v in
LY(I). Write v, := ., and 3, := B, . Assume that

lim inf GV (v,,) < o0,

n—00 "
since otherwise there is nothing to prove, and consider a subsequence {e,, }x of
{en}n such that

i (1) — limi (1
kli)m Ge,) (Un,,) = hnrgloréf G (vn).

Then for all k sufficiently large, v,, € H(I), vn, (0) = ay,,, and v, (T) = Bn, -
Extend w and v,, to (—1,7 + 1), by setting

w(0) ift <0, O, ift <0,
w(t):=¢ w(t) iftel, Up,, (t) =4 v, (t) iftel,
w(T) ift>T, Bn,  ift>T.
Define s
Wi(s) :=min{W(s),K}, ®i(s):= / oW/ (p) dp,
where

K :=maxW
J

and J is the smallest closed interval that contains [a,b], {an, }x, and {Bn, }&-
Then

G () = [

I

1/2 ! = owvn, ) (t)|w
> [ W ), OO de = [ 1@ 00, Ol i

(1W<vnk (1)) + ey (0, <t>>2) w(t) dt

Eny

T+1
= [ l@re ) @la(0 .
—1
where in the last equality we used the fact that (109, )(t) = ®(a,, ) in (—1,0)
and (Py 0 Uy, )(t) = ®(Bp,) in (T,T + 1) . Since ®; is Lipschitz continuous, we
have that ®; 0 v, — ®; 00 in L'((=1,T + 1)), where

« if t <0,
o(t) =< o(t) iftel,
B ift>T.
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Hence, by standard lower semicontinuity results,

k—o0

T+1
lim GO (v,,) > liminf / (@1 05, ) (8) @(E) dt
k—o0 "k 1

T+1 T+1
z/ @d|D(<I>1017)|:/ © d|D(® 0 0)|
—1

-1

= /Iw d|D(® o v)| + dw (e, v(0))w(0) + dw (8, v(T))w(T)

= 20 Dol + duw (2, 0(0)(0) + (3, o(T)(T)

=GW(v).

Step 2: To prove the I'-limsup inequality, assume first that v is of the form

o(t) =

a ift € [top, tars1),
b  otherwise,

where 0 =tg < t; < --- <ty =T. Observe that

v(t) = sgn, ,(f (1)), (3.6)
where '
Bhaplt) = { b S0 (8.7)
and
t—t if t € [to,t1),
() = —min{t — top, topr1 —t+ i t € [tog, topr1), and k > 1,

min{t — tok+1, bak42 — t} ifte (t2k+1, t2k+2], and k < £ — 1,
t—t20-1 if ¢ € [tar—1,t20)

(3.8)
is the signed distance function of the set E := {t € I : v(t) = a} relative to
I. We will construct smooth approximations of the function sgn, , that almost
minimize the energy Ggl).

Since we expect each transition to happen in an infinitesimal interval and
w(t) ~ w(ty) for t close to tg, to construct an approximate solution, we consider
minimizers of the functional fo ‘ (%W(d)) +e(¢d )2) dt with appropriate bound-
ary conditions and where 7, — 0%. The minimizers of this functional satisfy
the Euler-Lagrange equations 2c2¢” = W'(¢). If we multiply each side by ¢’
and integrate, we get

(¢ (1)* = e2(¢/(0))* = W((0)) + W(4(t)).

Thus,
¢/ (t) = £(e*(¢/(0))* = W(6(0)) + W (e(1))) /.

17



Setting d. := £2(¢'(0))? — W (¢(0)) we solve the differential equation
e/ (1) = £(5. + W(g(t)'/?,

where we determine the sign according to each transition. Provided 6. +
W(¢(t)) # 0, this gives

o) .
i/ =t
s0) (0c +W(p))1/2

We consider first the transition from a. to a. Let 6. > 0 and introduce the
function

_ e €
U (r) = ———dp. 3.9
0= [ oy (39
Define - -
T. :=V.(a)
and observe that since W > 0,
O<T—/%;d <(b—a)—- (3.10)
e oW |

and

(Z_S/ (S) — _]‘ — _ (55 + W(Q_SE (S)))1/2 (3 11)
96 () e | |
Extend ¢. to be a for t > T..
Similarly, to transition from a to b, we define
T e
U (r):= ————dp,
0= | G
and -
0<T.:=9.(b) < (b_a)(slﬁ' (3.12)

Let ¢. : [0,T:] — [a,b] be the inverse of ¥, on the interval [a, b]. Then ¢, (0) = a,
¢-(T:) = b, and
0 + W(oe (5)))'/?
PL(s) = G2 (EE( D)y (3.13)
Extend ¢. to be equal to a for s < 0 and b for s > T.

Finally, to transition from (. to b, define

~ r 5
Ue(r) := / de,

and . R -
0<T.:=W.(b) < (b—a)(slﬁ. (3.14)

€
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Let ¢ : [0 lTl [Bz,b] be the inverse of W, on the interval [3.,b]. Then
¢e (0) = b, ¢c(T2) = B, and
@@:_waww§@mW. (3.15)
Extend ¢. to be equal to b for s < 0. Assume that
5. — 0, 651% 0. (3.16)

Taking ¢ be so small that transition layers do not overlap or leave I, we can
define _ _
o (1) ifo<t< Ty,
ve(t) == qbg(f( ) if T, <t<T T,
bt —T+T.) T —-T.<t<T.

Since T. — 0, T. — 0, and 7. — 0 as ¢ — 07 by (3.10), (3.12), and (3.14),
respectively, in view of (3.6), (3.8), we have that v.(t) — v(¢t) for all ¢ € I.
Moreover, |v.(t)] < C for all t € I, all € > 0, and for some constant C' > 0.
Hence, by the Lebesgue dominated convergence theorem, v, — v in L(I).

By (3.11) and the change of variables p = ¢.(t), we have

/OTE <iw(ve) +e(v;)2) wdt = /OTE <iW(¢E) +5(¢;)2> wdt

< [ (L0 1 Wi + @) a

[0,T¢]

T o
—maxw [ 206+ W) dt = maxw [ 200+ W (o) dp
[O,TE] 0 [Ost] a

On the other hand, by (3.15) and the changes of variables t — T + T. = s,
p= ¢6(3)7

T— g

/T ) (1W(Us) + 5(v2)2> wdt = /OT (W(d)a) + g(¢§;)2) W(T —T> + s)ds

grmxwlﬂ(j@+w@m+d&f)m

[T—T.,T]

T, . . b
= max w/ 2(5€+W(¢5))1/2|¢’8|dt= max w/ 2(55+W(p))1/2dp.
[T_TevT} 0 [T_TsvT]

€
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Similarly, by (3.13),

20—1

3 /tt (iW(vs) + e(v;)2> wdt

k=1
20—1

= Z/ (e (5))2 + e W (e(5))) wlty + (—1)FFs) ds
k=10

20—1

<> / 25, + W(0e(5)) 2Bt + (-1} s) ds
k=170

20—1

<Y sup{w(ty + (1)) e € (0,70)} /0 20+ W(e(5))/26L(s) ds
k=1

20—1 b
Z sup{w(ty + (_1)k+17") ‘re (O,TE)}/ 2(6: + W(s))l/zds-
k=1 a

Thus taking the limit as ¢ — 0% we find that

«@ b 20—1
lim sup GO (v,) < / 20712 (s) dsw(0) + / W2 (s5)dswo(T) + Cw 3 wits)
e—0+ a B k=1

=GW(v).

The cases where v starts or ends at values different from those we assumed
above are treated analogously. [

Next, we show that if w is sufficiently close to w(0), a < a < b, and § = b,
then the unique minimizer of G(*) is the constant function b. We recall that o
and B appear in the definition of G() (see (3.5)).

Corollary 3.4 Assume that W satisfies (2.1)-(2.4) and let G be given by
(3.5) with a < a < b and 8 =b. Suppose that w satisfies (3.1) and that

w(t) > w(0) —wo forallt e (0,T], (3.17)
where Lo d )
0<wy< fW_—Wm’)w(O). (3.18)
2 Cw

Then the unique minimizer of GV is the constant function b, with

gln(r}) G (v) = GW(b) = dw (e, b)w(0).

Proof. Let v € BV,,(I;{a,b}). If v has at least one jump point at t¢ € I, then
by (3.17) and (3.18),

GO(0) 2 Y Duly(1) 2 Cwslto) > Cr (w(0) — o) > duw (1, D) (0).
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Hence, either v = b or v = a. If v = a, then again by (3.17) and (3.18)

G (a) = dw (@, @)w(0) + Cyww(T) > Cyw (w(0) — wo) > dyy (e, b)w(0).
This completes the proof. [
Remark 3.5 Note that condition (3.17) holds if either w is strictly increasing,
with wg = 0, or if T is sufficiently small, by continuity of w.

3.2 Second-Order I'-limsup
Under the hypotheses of Corollary 3.4, we have

min G(0) = GO(B) = dw (0, b)w(0).

We define

B Ggl)(v) —inf 71y GY)
€

G (v) : (3.19)

_ / (;W(v(t)) + (v’(t))Q) w(t)dt — dw(a’b)”(o)é
I

if v € HY(I) satisfies (3.2) and G (v) = oo if v € LY(I)\ HY(I) or if the
boundary condition (3.2) fails.
We study the second-order I'-limsup of the family {G.}..

Theorem 3.6 (Second-Order I'-Limsup) Assume that W satisfies (2.1)-(2.4),
that a_ satisfies (2.5), and that w satisfies (3.1), (3.17), where

ldw(a,a-)
< LS . 2
0<wp< 5 Cu w(0) (3.20)
Let
a_ < ag, B <D, (3.21)
with
lae —al < Age”, |8 — b < Bpe? (3.22)

for some «, 8 and where Ay, By > 0, and v > 1. Then there exist constants
0<ey<1,C,Cqy>0, and vy9,y1 > 0, depending only on a_, Ay, By, T, w,
and W, and functions v. € H*(I) satisfying (3.2), a < v. < b, and ve — b in
LY(I), such that

l
GP(v,) < / 2W (pe (1))t dt w'(0) + Ce 27 (201 4 1) 4+ Ce>71 4 CeV1|log |

0
(3.23)
for all 0 < e < g9 and all I > 0, where p.(t) = ve(et) is such that p. — 2z,
pointwise in [0,00), and where z,, solves the Cauchy problem (1.8). In particular,

lim sup G (v,) < / h IW /2 (2 ()2, (1)t dt ' (0). (3.24)

e—0t 0
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Proof. Let . — 07 as ¢ — 0", and define

s £ .
() f%é GAW )72 CCZZS li o < Pe, (3.25)
r (0.1 W(s)1/2 s if B < a,
and
0< T =T (B.). (3.26)

Since a_ < ag, B < b, by Proposition 2.2 we have

b
5
T. < ——d
. awm
< —gglog(a25€) + oelog(l+2(b—a)).

Since §. — 07, there exist Cy > 0 and g > 0, depending only on W, v, and B,
such that
T. < Coellog .| (3.27)

for all 0 < € < g.
On the other hand, if a < b, by Proposition 2.2, and (3.22), we obtain

T. > —clog(o726.) + o telog(b — a — A7)
— o telog(1 4 2071 Be7/81/?)

for all 0 < € < &,. Since 6. — 0T, by taking ¢, smaller if necessary, we can find
C,, > 0 such that
Coellogd| <T. ifa<b (3.28)

for all 0 < e < &,.
Let v, : [0,T:] — [, Bc] be the inverse of ¥.. Then v, (0) = ag, v-(T:) = B,

and

iy = 20 W O (329

where we take the plus sign if a. < . and the minus sign if 5. < a.. Extend
ve to be equal to 3. for t > T..
Since w € C14(I), by Taylor’s formula, for ¢ € [0, 7] we have

w(t) = w(0) +w'(0)t + Ry (1),

where
|R1(t)| = | (6t) — ' ()|t < || co.at? T (3.30)
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Write

T
G (v,) = <1W )dt dwba]w(o)

T: /

+/ (iW 2>tdtw£0 (3.31)
0
Ts

+/ <1W 2) R, dt1
0 € €

1

+/ <EW(U5) + s(v;)z) wdtg =A+B+C+D.

Step 1: We estimate A in (3.31). Assume first that a. < 8.. By (3.25), (3.26),
(3.29), the change of variables s = v(t), the fact that a < a¢, B < b, and the

equality
A

(A+ B)1/2 + B1/2’

(A+B)1/2 _ Bl/2 _

we have
T 11 T 71 T.6.
/ (W(vs) + E(vg)2> dt = / ((66 + W(ve)) + 5(7}2)2> dt — 120,
0 € 0 € €
T:
:/ 2(65+W(va))1/2 /dt TE(SE
0

/85 /85 6
— 1/2 g4 e
/a 2(0. + W(s))/“ds /a 6.+ W(s)) 2 ds

=

Be 1o Be 26. 5.
:/as ow't/ (8)ds+/a€ [(5€+W(8))1/2+W1/2(8) - (55+W(s))l/2} ds.

By Proposition 2.3,

B 2. N
/aE {((55 + W (s))1/2 + W1/2(s) BCA W(s))1/2} ds < Cé.

for all 0 < e < g, while, since a < a., B < b,

Be b
/ 2W1/2(s)ds§/ 2W/2(s).

Hence, we obtain

e

/OTE (IW(UE) + E(v;)2> dt < /ab oW L/2(s) ds + C8.. (3.32)

The case 8. < a. is similar. We omit the details.

It follows from (3.31) that

A<
€
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forall 0 < e < &g.
Step 2: We estimate B in (3.31). By (3.29), (3.31), and the change of variables
t=e¢s forl >0,

T: 2 , 65 T ,
B = ; 5—2W(v6)tdtw (0) + =3 tdtw'(0)
1

!/ TE€71 / 1 !/ 55T62

= [ 2W(p(s))sdsw’(0) + 2W (pe(s))s dsw'(0) + 7w (0) =

0 !
= B1 + By + Bs.
where p.(s) := ve(es) solves the initial value problem
pL(s) = £(8e + W(pe ()2,
B 3.33
{ ps(o) = Q¢ ( )

in [0, T.e 1], while p. (s) = B. for s > T.e~ L.

Let g be the unique solution to (3.33) in R. Since 6. — 0, and . — «,
by standard results on the continuous dependence of solutions on a parameter
(see, e.g. [30, Section 2.4]), it follows that g. — z, pointwise in R, where z, is
given in (1.8).

If a < b, then T.e~! > C,|logd.| — oo by (3.28), and so p. — 2, pointwise
in [0,{]. On the other hand, if & = b, then g. — 2z, = b pointwise in R, while
pe (8) = Be for s > T.e~!. Hence,

pe (s) = 26(s)| = e (8) = b <lge (s) — B[ +[Bc =] = 0

for all s € [0,1].
Since a < p.(s) < b, by the Lebesgue dominated convergence theorem

!
lim B; :/0 2W (24(s))s dsw'(0).

e—0t

To estimate Ba, observe that since §. > 0 and a. < p.(s) < f. <bfor 0 < s <
T.e~!, by (2.6) we have

pL(s) = (W(pe ()))"/? = o(b—pe(s)) >0,
and so
(b —pe(s))
b—pe(s)

—0

v

= (log(b — p:(s)))".
Upon integration, we get

0<b—pe(s) < (b—ag)e ™ < (b—a)e 7"
In turn, again by (2.6), for s € [0, Tre 1],

W(pe(s)) <o72(b—pe(s)? <o 2(b—a)’e 275, (3.34)
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On the other hand, if s € [Tre~!, Te~!], then by (2.6) and (3.22),
Wi(p:(s)) = W(B) < 0—72(1) - ﬂs)z < Ce™. (3.35)
Hence, if T.e=1 < I, by (3.34),
By < C/ e 27sds = Ce 2! (201 + 1),
!
while if T.e=1 > [, by (3.35),

By < Ce¥l.

Therefore,
By < Ce 2 (201 + 1) + C?1

for all 0 < € < &g.
On the other hand, again by (3.27),

2
By < 021 < o5 log® 4.
22
Step 3: To estimate C in (3.31), observe that by (3.32), (3.30), (3.27), and
(3.31),
=71 1
C< |wl‘co,d/ <EW(U€) +5(vé)2) dtTEHdg
0
< C(Cw + Cd.|log .| + Ce) e?|log 6. < Ce?|log 5. ¢

for all 0 < € < g.
Step 4: We estimate D in (3.31). By (2.6), (3.22), and (3.31), for t > T,

T

D-w() [

1 2 o [T 1 2y—2
wdt— <o~ (b—5) / wdt— < Ce™7.
T: € 0 e

Combining the estimates for A, By, Bs, C, and D and using (3.31) gives

l
G?(v,) < c‘ii + / 2W (pe(s))s dsw’(0) + Ce™2°! (201 4 1) (3.36)
0
+ Ce?Vl + C6.1og? 6. + Cet|log o) T4 + Ce12,
By taking
de:=€e™ or 0§ := in , m>2 (3.37)
log™ e

we obtain (3.23). In turn, letting e — 0" in (3.23), we have

1
lim sup G (v,) < / AV (20 (1))t At (0) + Ce=27! (201 + 1).

e—0t 0

Since b — z, decays exponentially as ¢ — oo, by (2.11), using (2.6) and the
Lebesgue dominated convergence theorem, we let [ — oo to obtain (3.24). =
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Remark 3.7 Observe that if we take 6. := €, it follows from (3.36) that

1
G () < O + / I (pe(s))s dsw (0) + Ce=271 (201 + 1)
0

+ Ce?Vl + Celog® € + Cellloge|'Te 4 Ce27 72,

3.3 Properties of Minimizers of G.

In this subsection we study qualitative properties of the minimizers of the func-
tional G, defined in (3.3):

G.(v) = /I (W () + (' ()2)w(t) dt, ve H'(I), (3.38)

subject to the Dirichlet boundary conditions
:(0) = e, v(T) = Be. (3.39)

Theorem 3.8 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that a < a., B < b. Then the functional G admits a minimizer v. € H'(I).
Moreover, v. € C?([0,T)), ve satisfies the Euler—Lagrange equations

22 (0L (B)w(t)) — W/ (v (1))(t) = 0, (3.40)
and v: = a, orv. = b, or
a<vs(t)<b forallte (0,T). (3.41)

Proof. Since [;(v')*wdt is convex, (3.1) holds, and W > 0, the existence of
minimizers v. € H(I) of G. subject to the Dirichlet boundary conditions (3.39)
follows from the direct method of the calculus of variations. Since a < «,
Be < b, by replacing v. with the truncation

a if v.(t) < a,
Te(t) := < we(t) ifa<w(t) <b,
b ifu.(t) > b,

without loss of generality, we may assume that v. satisfies a < v. < b.
As dG¢(ve) = 0, we have

/I(W’(vs(t))w(t) +2e%0L ()¢ (H)w(t) dt = 0

for all p € CL(I). This implies that W’(v.)w is the weak derivative of 2e2v w.
Hence,

2e%0 (Hw(t) = ¢+ /S W' (ve)w ds.

Since the right-hand side is of class C! and w € C14(T), we have that v. is of
class C! and so we can differentiate to obtain (3.40).
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To prove (3.41), observe that if there exists ¢t € (0,7) such that ve(to) = b,
then since v. < b, the point ¢y is a point of local maximum, and so v.(tg) = 0.
Since W'(b) = 0, it follows by uniqueness of the Cauchy problem (3.40) with
initial data v (to) = b, v.(to) = 0, that the unique solution if v. = b. Similarly,
if v.(tp) = a for some ty € (0,7, then v, = a. [

Corollary 3.9 Assume that W satisfies hypotheses (2.1)-(2.4), that w satisfies
hypothesis (3.1), and that that a < ag, B < b. Let ve be the minimizer of G,
obtained in Theorem 8.8. Then there exists a constant Cy > 0, depending only
onw, T, a, b, and W, such that

ll(t)] < % foralltel

g
and for every 0 < e < 1.

Proof. In what follows Cy > 0 is a constant that changes from line to line and

depends only on w, T, a, b, and W. Consider the function vg(t) := a. (T;t) +

,65%. We have a < vy < b and |vj(t)] < b*Ta. Since v, is a minimizer of G, it
follows

[+ 2@Pde < [ (W) + 205wt

I I

(b—a)®
< (1[232)](W+ T2 detSCo.

As v. and w are continuous, by the mean value theorem for integrals, there
exists t. € [0, 7] such that

2(vl(te)’w(t.) = = /52(1);)20.) dt < Cy.
I
In turn, by (3.1),
elvi(te)| < Co.
By (3.40),
t
2620l (t)w(t) = 2620l (t)w(te) + | W' (vo)wds (3.42)

te

for every t € I. Since v, is bounded by (3.41), by (3.1) this implies that

T
2e2 vl (t)] < Coe + ﬂ/ wds < Cy (3.43)
w(t) Jo

for all t € I. Rewrite (3.40) as

W) ) = W0 (1), (3.44)

26207 (t) + 2¢2 o)
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Using (3.1) and (3.43), we obtain

w'(t)]
252 " )] < |
Next, we use a classical interpolation result. Let t € I and consider ¢; € I such

that |t —t1] = €. By the mean value theorem there exists § between ¢t and
such that

2e% vl (t)] + Cy < Co. (3.45)

ve(t) — ve(tr) = v (0)(t — t1).

In turn, by the fundamental theorem of calculus

vl (t) = vl(0) —1—/0 vl (s)ds = ve(t) = velty) +/9 vl (s) ds.

t—11
Using (3.41) and (3.45), we obtain

Co CO CO
")) < = +s "It —0] < — + e
o (8)] < 2+ sup fezlt - 6] < 2+

This concludes the proof. [
Another consequence of Theorem 3.8 is the following estimate.

Theorem 3.10 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that a < ag, B < b. Let v. be the minimizer of G. obtained in Theorem 3.8,
and for k € N let

BY = {tc[0,T]: B_ <wv.(t) <B. — Y. (3.46)

Then there exist i > 0 and 0 < g9 < 1 depending only on S_, T, w, W, such
that if I. = [pe,q] is a mazimal subinterval of BX, then

b—v:(t) < (b—ve(p))e P (b — v (ge))e a0 (3.47)
for allt € I. and all 0 < € < gg9. In particular,
diam I, < Celloge| (3.48)

for all 0 < € < gg, where the constants 0 < g9 < 1 and C > 0 depend only on
B, T, w, W and k.

Proof. We claim that there exists p > 0 such that
~W'(s) > 2u*(b—s) forall s € [3_,b]. (3.49)

Since W”(b) > 0, by the continuity of W”, we have that W (s) > 2u% > 0 for
all s € B(b, Ry) and for some p > 0 and R; > 0. Upon integration, it follows
that

b
W(s) = — / W () dr < —242(b— 5)
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for all s € B(b, Ry), with s < b. Using the fact that W’ < 0 in (¢, b), and by
taking p smaller, if necessary, we can assume that

W'(s) < =2u*(b — s)

for all s € [f_,b]. Note that pu depends upon S_ but not on €. This proves the
claim.
Write I, := [pe, ¢-] and define

B(t) 1= (b= velpe) e 7P 4 (b — ve(ge))e a0 (3:50)

with g fixed by (3.49). We note that ¢ satisfies the following differential in-
equality:

(@) = “*24” 50 (<0 = v (po))e TP 4 (b — v (ge))e )

<L)

On the other hand, w(t) > wy > 0 for all ¢ € I. Thus,

W) max|w’]
€ <e <
w(t) wo
for all ¢t € I and all ¢ sufficiently small. Therefore in I,
(Pw) <221 pw. (3.51)
We then set g(t) := b — v-(t), and using (3.40) and (3.49) we have
(Jw) = = 2(W'(ve))w > 262 gw. (3.52)

We define ¥ := g — ¢. By (3.50), (3.51) and (3.52), for € small we obtain the
following:

(V'w) > 2722w,
Y(pe) <0, ¥(g)<O0.

The maximum principle implies that ¥ < 0 for all £ € I.. Thus

1

b—v(t) < (b—ve(pe))e P 4 (b— v (ge))e a0

. Petqe
t 1= et

which proves (3.47). In turn, for , we have

b < B —v(t) < b—w.(t) < e P
which implies that —£(q. — pe)e~! > kloge — log 2b, that is,
0 < g- — pe < 2u" 'ke|loge| + 2u~ e log 2b.

This asserts (3.48). ]
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Remark 3.11 With a similar proof, one can show that if I is a mazimal subin-
terval of
AP = {t € [0,T]): a:+e" <v.(t) <a_},
then
diam I, < Celloge|

for all 0 < € < g9, where the constants 0 < g9 < 1 and C > 0 depend only on
a_, T, w, W, and k.

Next, we prove some differential inequalities for v..

Theorem 3.12 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that that a < ae, B < b. Let v. be the minimizer of G. obtained in Theorem
3.8 and let oo_, _ be given as in (2.5). Then there ezists a constant C > 0 such
that

e(v(0))? — éW(aE) <C

g

for all 0 < e < 1. Moreover, there exist a constant 79 > 0, depending only on
w, T, a, b, a_, f_ and W, such that

L7 (0elt) —a)? < 20 < 2o (welt) — a)? (3.53)
whenever a + Toe'/? < v.(t) < B_, and
S0 uel0)? < 2L < 50720~ va(1))? (3.54)

whenever a_ < v (t) < b— 7051/2, where o > 0 s the constant given in Remark
2.1.

Proof. Step 1: We claim that
1
(0L (0) — W (a:) <

for all 0 < € < 1 and for some constant C' > 0 independent of €. By Theorem
3.3,

sup /I <1W(v) + 6(1}’)2) wdt < C (3.55)

0<e<1 3

for all 0 < € < 1 and for some constant C' > 0 independent of . Subdivide I
into [¢7!] equal subintervals I; of equal length. Since

le™]

; /1 (iW(v) + 6(v’)2> wdt < C

there exists i. € {1,...., 71|} such that

J

<iW(v) + 5(1}’)2) wdt < Ce.

ie
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In turn, there exists ¢, € I;, such that

(iW(v(tE)) + s(v'(ts))2> w(t.) < C. (3.56)
Multiply (3.44) by Lv.(t) to get
(LOPY = L0V = -2 2 00 (3.57)

Integrating between 0 and ¢., we have

(L) = W) = ) = 2Wlon(e) — 2 [ St an <
where we used (3.56) and the fact that
R CAG PP 12
25/0 o0 (vl(t))=dt < /Ie(vs(t)) w(t)dt < C (3.58)

since w € C1([0,T)), infr w > 0, and (3.55).
Step 2: Integrating (3.57) between ¢ and 0 and using Step 1 and (3.58)
gives

T i
e(ul(t)® = iW(vg(t))‘ < e(v'(0))? + éW(aE) + 2:-:/0 k:}—'(v;fdt <Oy
In turn,
W(ve(t)) — Cre < 2(v.(t))* < W (ve(t)) + Cie (3.59)

for all t € I, for all 0 < ¢ < 1, and for some constant C; > 0 independent of ¢.
By Remark 2.1,
1

o?(s—a)*> <W(s) < 5

(s —ay?

for all s € [a, 5_]. Hence,

1

50'2(8 —a)? <o?(s—a)* = Cie <W(s) — Cie,
1 , 31 ,

W(s)+Cie< <(s—a)*+Cie < -=(s—a)
o2 202

for all s € [a + 0e'/2, 3_], where 70 := \/50'716111/2 and we are assuming that
0 < o < 1. In turn, by (3.59), we obtain (3.53). Estimate (3.54) can be obtained
similarly. We omit the details. |

Remark 3.13 The proof of (3.53) and (3.54) is adapted from [25].

Next, we strengthen the hypotheses on the Dirichlet data a. and [. and
derive additional properties of minimizers. In particular, we assume that 3. — b
(the case 8. — a is similar).
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Theorem 3.14 Assume that W satisfies (2.1)-(2.4), that a_, S_ satisfy (2.5),
and that w satisfies hypotheses (3.1), (3.17), where

0 < wo < —— min{dw (@, a_), dw (B_, b) }(0). (3.60)
2Cw
Let a— < ag, fe < b satisfy (3.22) and let v be the minimizer of G obtained in
Theorem 3.8. Given k € N there exist 0 < g9 < 1, u > 0, and C > 0 depending
onlyona_, B_, k, Ag, By, T, w, W, such that, for all 0 < € < g¢, the following
properties hold:

(i) Either ve > B_ in I or if R is the first time in [0,T] such that ve = B_,

then
R, < Ce. (3.61)
(ii) Either ve > B — e¥ in I or if T is the first time such that v. = B, — ¥,
then
T. < Cel|loge|. (3.62)
Moreover, if R. exists, then R. < T. and v.(t) € [B_,B. — €] for t €
R, T¢].

(ii) If T. exists, then v. > b — 19e'/? in [T.,T|, where 1y is the constant in
Theorem 3.12.

By Corollary 3.4 and the fact that 8 = b, we have that the minimizer of
GW is given by the constant function b. In turn, by Theorem 3.3 and by
standard properties of T'-convergence (see [9, Theorem 1.21]), minimizers v, of
G. converge in L'(I) tobase — 07, ie.,

ve —b in LY(I) ase— 0. (3.63)

We are now prepared to prove Theorem 3.14. For every measurable subset
E C I and for every v € H(I) satisfying (3.2), we define the localized energy

G (v E) = /E (1W(v) + 5(1/)2) w dt. (3.64)

3

Proof of Theorem 3.14. Throughout the proof, the constants 0 < g9 < 1
and C > 0 depend only on a_, 5_, k, Ag, By, T, w, W. By Theorem 3.6 there
exists 0. € H'(I) satisfying (3.2) such that

l
G (3.) < / 2W (pe (1))t dt W' (0) + Ce 27 (201 4 1) 4+ Ce271 4+ Cet|log |
0

for all 0 < € < g¢. Fixing [ and using the fact that v. is a minimizer of G¢, we
have that

G (v.) < G (5.) < GV (b) + Ce = dy (a, b)w(0) + Ce (3.65)
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for all 0 < & < &g, where C' > 0 is independent of e. We extend v, to be a. for
t<O0and 3, fort>T.
Step 1: Since

dw(a,a—) = lim 2/ . W2 (r) dr,
a-+0

§—0t
we can find 0 < §; < a_ — a so small that
(e
dw(a+d,a_) = 2/ WY2(r)dr > dyw(a,a_) — €, (3.66)
a+0d

for all 0 < § < 41, where
1
€ <7 dw (a,a-). (3.67)
We claim that there is €9 > 0 such that for all 0 < € < g¢, the set
Ac:={t€[0,T]: a<wv:(t)<a+d}
is empty. To see this, assume by contradiction that there exists t. € (0,T") such
that v.(t.) = a+01. Since v, is continuous, v-([0,7T]) 2 [a+ 61, . V Bc]. Hence,

we can find a closed interval I, such that v.(I;) = [a + 1, @ A B:] and a closed
interval J. such that v.(J;) = [ae A Be, e V Be]. Then by (3.65), and (3.17),

dw (e, b)w(0) 4+ Ce > Ggl)(vg) > Ggl)(vglE UJe)
> / VL2 (0ol | dt > / 212 (0, ol | d(w(0) — w)
I.UJe I.UJ:
= (dw(a + (51, oz N 65) + dW(aa A 5&7 oe V 55)) (w(O) - wo)'

In view of (1.10), dw (-,7) and dw (s, -) are Lipschitz continuous with Lipschitz
constant L = max|, vVW. Hence, by (3.22),

dw (e A Be,ae V Be) > dw (e, 8) — L(Age” + Boe?),
and so, using the fact that a_ < a., B, we have
dw (o, b)w(0) + Ce > (dw(a + 61,a) + dw(a, b)) (w(0) — wy) — Ce”
or, equivalently,
dw(a+ 61,0 )w(0) < (dw(a+61,a-) +dw(a,b)) wo + Ce

< Cwwy + Ce < %dw(a,a,)w(()),

for 0 < € < gg, where in the last inequality we used (3.20), and where ¢q is so
small that

Cep < idw(a,a_)w(()).
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Hence, also by (3.66),
1
dw(a,a-) —€e < dw(a+d,a_) < 3 dw (a, a_),

which contradicts (3.67).
Step 2: To prove (3.61), observe that by Step 1, for all ¢ € [0, R.) we have
that v.(t) € [a + d1,6-). Hence,

GW(v.;[0,R.]) > e 'R, E%w [agli,r}a,] w,
and so (3.61) follows from (3.65).

Step 3: To prove Item (ii), we consider three separate cases.

Substep 3 a. Assume first that either . < S or a. = f_ and v.(0) > 0.
If a. < B_, since v.(t) € [a+1, ) for all t € [0, R, ), we have that v/(R.) > 0.
On the other hand, by (3.54), v.(R.) > 0, which in turn implies, again by
(3.54), that v.(t) > 0 for all + > R, such that v.(t) < b— 7o'/, Similarly, if
ae = B and v.(0) > 0, then by (3.54) that v.(t) > 0 for all ¢ > R. = 0 such
that v.(t) < b— o'/

Hence, in both cases, there exists a maximal interval I, of the set B, defined
in (3.46) whose left endpoint is R.. Let S: be the right endpoint of I.. If
v:(S:) = B — €F, then S. = T. and so (3.62) follows from (3.48) and (3.61).

If v.(Sc) = B, then since v.(t) > 0 for all ¢ > R, such that v.(t) <
b — 1oe'/?, there exists P. € (R.,S.) such that v.(P.) = b — 1oe'/2. Tt follows
that v ([Re, P.]) = [B_,b — 7oe'/?], while v.([P-, S.]) D [B_,b — 10¢'/?]. Then
by (3.65), and (3.17), we have

dw (e, b)w(0) + Ce > GM (v.) > GM (v; [0, P U [Ps, Se])

z/ QW2 (v) |0l |w dt

[0,P.]U[P:,S.]

2/ VL2 (0, ol d(w(0) — wo)
[0,P:]U[P¢,S.]

= (dw(as,b — ’7'051/2) + dw(ﬂf, b— 7'081/2)) (UJ(O) — wo).

As in Step 1, using the fact that dy (-, ) and dw (s, ) are Lipschitz continuous
and (3.22), it follow that

dy (@, b)w(0) 4+ Ce > (dw (a, b) + dy (B—,b) — L(Age” + 210e%))(w(0) — wo),
or, equivalently,
[dw (@, b) + dw (B, b)]wo + C(e7 +€"/?) = dw (8-, b)w(0),

which contradicts (3.60), provided we take 0 < € < g¢ with ¢ sufficiently small
(depending only on S_ and W).

On the other hand, if v.(t) > S_ for all ¢ € I, then I. = [0,T,] is a maximal
interval of the set B, defined in (3.46), and so (3.62) follows from (3.48).
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Substep 3 b. Assume first that a. = 5 and v.(0) < 0. Then
(W) (0) = w(0)W'(B-) < 0

and so in both cases v.(t) < 0 for all ¢ > 0 small. It follows from (3.53), that
v (t) < 0 for all t > 0 such that v.(t) > a + me/2. Since v.(T) = f., this
implies that there exist L. < M. < N. such that v.([0, L.]) 2 [a + m0e'/2, 5_]
and v ([M., N.]) 2 [8-, B:]. Then by (3.65), and (3.17), we obtain

dy (o, )w(0) 4+ Ce = dw (B, b)w(0) + Ce > GV (v.) > GV (v; [0, L] U [M., N.])

z/ QWY (0, oo dlt
[0,Le]U[Me,N]

2/ 272 (1) dt(w(0) — wo)
[0,L.]UIM.,N.]

= (dw(a+moe'/2,82) + dw (8-, 82) ) ((0) = w).

Using the fact that dw (-, 7) and dw (s, -) are Lipschitz continuous and (3.22), it
follow that

dyw (B_, b)w(0) +Ce > (dw (a, B_) +dw (B_,b) — L(Boe™ 4 210e/?)) (w(0) — wp),
or, equivalently,
[dyw (a, B) + dw (B, b)|wo + C(e7 + £'/2) > dw (a, B_)w(0) > dw (a, a_)w(0),

which contradicts (3.60), provided we take 0 < € < g¢ with ¢y sufficiently small
(depending only on a— and W).

This contradiction shows that if « = S_, then v.(0) > 0 and so we are back
to Substep 3 a.

Substep 3 c. Finally, we consider the case in which a. > f_. We claim
that v. > S_ in I. Indeed, assume by contradiction that R. exists. Then
v.(R.) < 0 and so by (3.53), v.(t) < 0 for all ¢ > 0 such that v.(t) > a+ /2.
Since v (T) = f., this implies that there exist R, < L. < M. < N such that
v:([Re, Le]) 2 [a + 7oe'/?, -] and v.([M., N.]) 2 [B—, Bc]. Then by (3.65), and

(3.17), we have
dw (e, b)w(0) + Ce > GM (ve) > GM (v [R, L] U [Me, N.])

/ 2W Y2 (v) |0l |w dt

[0 L ME7NE]

/ W12 (10, ol dt(w(0) — wo)
[0,L.]U[M.,N.]

(d a+ 7'051/2,67) + dw(ﬁﬂﬁs)) (w(0) — wo)-
)

Using the fact that dw (-, 7) and dw (s, -) are Lipschitz continuous and (3.22), it
follow that

dy (@, b)w(0) + Ce > (dw (a, B_) + dw (B_,b) — L(Boe” + 2710e"/?))(w(0) — wp),

Y]
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or, equivalently,
[dw (a,B-) + dw (8-, b)|wo + C(e” + 51/2) > dw(a, @)w(0) > dw (a, a—)w(0),

which contradicts (3.60), provided we take 0 < € < gg with g¢ sufficiently small
(depending only on a_ and W).

Step 4. To prove Item (iii), assume that T; exists. Assume by contradiction
that there exists a first time Q. > T such that v. = b—79e'/2. Then vl (Qe) <0,
but so by (3.53) and (3.54), v.(t) < 0 for all t > Q. such that v.(t) > a+7me'/?.
Since v (T) = B, there exists a first time S. such that v. = a + T0e'/2. Hence,
v-([0,T.]) 2 [ae, Be — €¥] and v ([Q:, Sc]) D [a + T2, b — 70e'/?]. Then by
(3.65), and (3.17), we have

dw (@, b)w(0) + Ce > G (v.) > GW (w30, T2] U [Q-, Sc])

z/ QW2 (v) [0l |w dt
[0,T]U[Q¢, 5]

> / 2W1/2(v5)|v;| dt(w(0) — wp)
[0,T]U[Qc,Se]

= (dW(ag,BE - Ek) +dw(a+ T0e /%, b — 7051/2)) (w(0) — wp).

Using the fact that dw (-, 7) and dw (s, -) are Lipschitz continuous and (3.22), it
follow that

dy (@, b)w(0) 4+ Ce > (dw (a, b) + dy (a, b) — C(e* + &7 + £1/2))(w(0) — wo),
or, equivalently,
[dw (a, B_)+dw (B_,b)|wo+C(F +&7 +'/2) > dw (a, b)w(0) > dw (a, o )w(0),
which contradicts (3.60), provided we take 0 < € < g9 with ¢ sufficiently small
(depending only on a_, 5_, and W). ]
3.4 Second-Order I'-liminf

In this subsection, we prove the liminf counterpart of Theorem 3.6.

Theorem 3.15 (Second-Order I'-Liminf) Assume that W satisfies (2.1)-
(2.4), that that a_ satisfies (2.5), and that w satisfies (3.1), (3.17), and (3.20).
Let a— < ag, B < b satisfy (3.22) and let ve be the minimizer of G obtained
in Theorem 3.8. Then there exist 0 < g9 < 1, C > 0, and ly > 1, depending
only on a_, Ay, Bg, T, w, and W, such that

1
G2 (v.) > 2 (0) / W2 Yl ds—Ce¥ (I + 1)~ CeV/212—Cam | log e[ 20
0
for all 0 < e < eg and 1 > ly, where w.(s) := v.(es) for s € [0,Te1] satisfies

! !
lim [ WY2(w)w'sds = | W%(z4)2sds

e—=0% Jo 0
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for every 1 > 0 and where z, solves the Cauchy problem (1.8). In particular,

liminf G (v.) > 2w'(0)/ W2 (2,2, s ds.

e—0t 0

Note that Theorems 3.6 and 3.15 together provide the second-order asymp-
totic development by I'-convergence for the functionals G, defined in (3.38). To
prove Theorem 3.15, it is convenient to rescale the functionals G.. We define

Te !
)= [ V() + /(5))els) ds (3.68)

for all w € H'((0,Te™1)) such that
w(0) =a, w(Te ') =4, (3.69)
where
we(8) 1= w(es). (3.70)

Note that if v. is the minimizers of G. obtained in Theorem 3.8, then
we(s) :=v-(es), s€[0,Te "] (3.71)

is a minimizer of H..
We prove that the functions w. necessarily converge.

Lemma 3.16 Assume that the hypotheses of Theorem 8.15 hold. Let w. be as
in (3.71). Then we — 24 in HY((0,1)) for every | € N, where z, solves the
Cauchy problem (1.8). Moreover, the family

lw ()| < C forallt e (0,Te™t)

and all 0 < e < 1, where the constant C > 0 depends only on w, T, a, b, and
w.

Proof. Extend w. to be 3. for t > Te~!. The fact that the family {w.}.
is uniformly bounded in L*°(R) follows from Corollary 3.9. Furthermore, we
have that the functions w. are bounded in L>*(R,) by (3.41). Let &, — 0T.
After a diagonalization argument, we can find a subsequence {e,, }r of {e,}n
and wy € H} (R4 ) such that

we, — wo in Hy (Ry). (3.72)

For simplicity, in what follows, we write ¢ in place of €, .
Since w:(0) = @ — «, we have that that wy(0) = @. By Theorem 3.8 and
(3.71), we obtain

{2(wéw5)' - Wl(ws)ws =0 on (O’Tgil)’ (3.73)

we(0) = ae, w(Te 1) = B..
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Hence for every ¢ € C2°(R4) and for e small enough we find that

Te™ !
/ 2wlw.¢" + W' (w.)wepds = 0.
0
Letting ¢ — 0 and using (3.70) and (3.72) gives

/ 2wyw(0)¢" + W' (wo)w(0)pds = 0,
R
which then shows that wg solves the initial value problem

{ 2w = W' (wp) in Ry,

wol0) = o (3.74)

Furthermore, by (3.41) we know that a < wo < b, which by (3.74) implies that
|wi] < C. Also, by (3.65), the fact that H.(w.) = Ge(ve),

l l
w(0) /0 ((w6)2 + W(wp)) ds < lim ((w;)2 + W(we))we ds

e—=0 Jo

< lim H.(w.:) = dw(«, b)w(0)

e—0t

for every [ € N, and thus
/ (wh)? + W (wo)) ds < duw (@, b). (3.75)
0

If & = b, then this inequality implies that wg = b. Otherwise, if « < b, (3.75)
combined with the fact that |wy (t)| < C for all t € Ry (by (3.74)) implies that
limg 400 wi(s) = 0. In turn, |wi(t)| < C for all t € Ry, and since

liminf W(wp) =0

t—o0

in view (3.75), we have that

either tlglélo wo(t) =a or }E& wo(t) = b.

By integrating (3.74) we find that
(wh)? = W (wo). (3.76)

We now distinguish two cases. If f_ < a < b, we define R, = 0. On the other
hand, if @« < f_, then by Theorem 3.14, we have that R. < C¢e, where R,
is the first time in [0,7%] such that v. = max{a., S_}. Hence, in both cases
we(e7'R.) = v.(R.) > B_. Since e 'R, < C, by extracting a subsequence, we
can assume that e 'R, — s¢. In turn, wo(sg) = max{a,3_}. It follows from
(3.76), that wj(sg) = W/?(max{a,5_}) > 0. Hence, wy is increasing after sq
and so it is the unique solution to the Cauchy problem

{ wIO = Wl/Q(wO)v
wop(sp) = max{a, f_}.
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By uniqueness, it follows that a < wg(s) < b for all s, which means that wy is
strictly increasing. In turn,

w6 = W1/2(w0)7
wp(0) = «,

and
tllglo wop(t) = b.

This shows that wg = z,. Using the fact that {e,}, was an arbitrary sequence,
the statement of the lemma follows. [
Next, we will use the previous lemmas to derive a second-order liminf in-
equality, which immediately implies Theorem 3.15.
Proof of Theorem 3.15. By Theorem 3.14, we have v.(T.) > 3. — &* for all
0 < e < &g, where T, =0 if v, > 8. — ¥ in I and otherwise T} is the first time
that v. = 8. — €¥, and we have T. < Ce|loge|. Moreover, v.(t) € [3_, B — &¥]
for t € [R.,T:], where R. < T. is either the first time such that v. = f_ or
R.=0and v. > (_ in I.

Here, g and C depend only on a_, 8, Ag, By, T, w, W. In what follows, we
will take g¢ smaller and C' larger, if necessary, preserving the same dependence
on the parameters of the problem.

Setting I, := ¢~ 1T, we have that

we(l) > fe — ¥, (3.77)

for 0 < € < g9, where
l. <Clloge|. (3.78)
By (3.68) we have
Hs(ws) B dW(av b)w(O)
€

le le
_ 8_1/ (Wl/Q(wE) _ wé)Qwa ds + 25—1/ W1/2(w€)wé(wg - W(O)) ds
0 0

Te™ ! le
et w w)) weds + e tw 12w )w! ds — o
+ /l (W( 6) +( 5) ) Ed + (O) (2/0 w ( E) sd dW( >b)>

€

> 9:71 /015 W2 (1w ) (we — w(0)) ds + e w(0) (2 /Olg W2 (w, ) ds — dW(a,b)>

= A+ B.

To estimate B, observe that by the change of variables r = w.(s), we obtain

le wa(la)
2/ W2 (w)wl ds = 2/ W2 (r) dr
0 ot

e

b [eY b
:2/ Wl/Z(T)dr72/ WI/Z(T)dr—Q/ Wl/Z(T)dr.

€ We (ls)
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By (3.22),

2 §21[112}))]<W1/2\a5—a| < Cem.
a,

/ W1/2(7“) dr

€

On the other hand, by (2.6), (3.22), and (3.77),
b b
2/ WY2(r)dr < C/ (b—71)dr=Cb—w.(l.))* < C>** +£27).
wE(l ) ws(la)

Hence,
B>-C(e"+ 52’“).

To estimate A, we use Taylor’s formula and assumption (3.1) to get
lwe(s) — w(0) — esw(0)] < |w'|co.aetTd|s|t .

Using (3.41), Lemma 3.16 and (3.78), we have

le
5*1/ W2 (w )wl et 45|+ ds| < Ce?|loge|>.
0

Thus, we find that
le
A> 2w’(0)/ W2(w)w'sds — Ce?|loge|*+¢ (3.79)
0

l lE
= 2w’(0)/ WY (w ) wls ds + Qw’(O)/ W2 (w)wlsds — Ce|loge|*+?
0 l
= A; + Ay — C’ed| logs|2+d,

where [ is fixed.
To estimate As, we distinguish two cases. If I. < [, then we use the fact that
v(t) > b —79e'/? for all t € [T., T] to obtain

0<b—wv(t) <Tel/?
In turn, by (2.6),
W (we(s)) < o' (b —we(s)) < Ce'/?
for all s € [I.,!]. Hence, also by Lemma 3.16,
1
Ay > —2|w’(0)|/l WY (w.)|wl|sds > —Ce'/?12.
On the other hand, if I. > [, since v.(t) € [5_, 3. — €¥] for t € [R.,T.], where

R. < T is either the first time such that v, = f_ or R. =0 and v. > f_ in I,
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we have that [R.,7.] is a maximal interval of the set B defined in (3.46), and
so by Theorem 3.10, and (3.22),

b—v(t) < (b—ve(Re))e R (b — o (To))e HTemDe
< (b—ve(R.))e MBI 4 (h— B, 4 k)
< be MR L B 4 gk

for t € [R.,T.]. By Theorem 3.14, we have that R. < Ce. It follows that
re :=e 'R, < C and

0<b—w(s) < be H5=Te) 4 Boe? + &P

for all s € [re,l.] and all 0 < € < gy. Using (2.6) and Lemma 3.16, we have

le 00
Ay > —C’/ (b—w.)sds > —Cp/ e TP s ds + O + £F)12
1 !

—Cetree™ M (I 4 1) — C(e7 + )12
—Ce " (lu+1) = Ce” + &) log? e

(ALY,

where we used (3.78) and the fact that r. < C and we take | > C' > r.. Using
this estimate in (3.79) gives

!
A> 2w’(0)/ W2 (w)w'sds — Ce ™ (I + 1) — C12eY/? — Ce™|loge|*H,
0

where v1 = min{d, v, k}. Combining the estimates for A and B gives

He(we) = dw (@, b)w(0) oo o [P ~lw
€W > 2w (0)/0 W2 (wo)wls ds — Ce™ " (Iu + 1) (3.80)

— CI2e'/? — CeMt|loge|*
forall0<e<egandalll > C.

By (3.72), we can write

! !
lim Wl/Q(wE)w;sds:/ W/2(24)2 s ds.
0

e—0t 0

Taking first ¢ — 07 and then I — oo and using the Lebesgue dominated con-
vergence theorem and (2.11) gives

H _ oo
lim inf 22(We) = dw (@ D)w(0) 2/ WY2(2,)2! s dsw' (0). (3.81)
e—0t £ 0
Since H(w.) = Ggl)(va), this concludes the proof. ]
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4 Properties of Minimizers of F;

In this section, we study qualitative properties of critical points and minimiz-
ers of the functional F. given in (1.1) and subject to the Dirichlet boundary
conditions (1.2).
The following theorem is the analog of Lemma 4.3 in Sternberg and Zumbrun
[29]. Here, we replace the mass constraint with Dirichlet boundary conditions.
Recall (2.19).

Theorem 4.1 Let Q C RY be an open, bounded, connected set with boundary
of class C*? |0 < d < 1. Assume that W satisfies (2.1)-(2.4) and that g. satisfy
(1.11), (2.12)-(2.14). Let u. € HY(Q) be a critical point of (1.1) subject to the
Dirichlet boundary condition (1.2). Then

a<us(x)<b forallxzeq. (4.1)

Moreover, for every
0<p<b—eg, (4.2)

there exist p, > 0 and C, > 0, independent of €, such that for all € sufficiently
small the following estimates hold

0<b—uc(x) < Cetrdist@E)/29) for 1 € O\ K, (4.3)
where K, :={x € Q: u(x) <b—p}UQq i10ge-

The proof relies on the following proposition, which is essentially due to
Sternberg and Zumbrun [29, Proposition 4.1].

Proposition 4.2 Let Q C RN be an open, bounded, connected set with ct
boundary and let K C €2 be a compact set. Suppose that v : Q2 — R is a function
in C?(Q) N CY(Q) satisfying the conditions

2 > 2 .
{EAU_,uv in Q\ K, (4.4)

v< M on 0K,

where pu > 0 and M is a positive constant (not necessarily independent of €).
Then there exists a constant Cy independent of € such that

v(z) < CoMe rAsH @K/ (29 for 2 c O\ K
for all e > 0 sufficiently small.
Proof. By the maximum principle, v < M in Q\ K. Let
K. :={x e Q: dist(z,K) < e}

Consider the radial function ¢(x) := e ##I/¢. Letting r = ||, we have that

2 N-—1 N -1
2Ap =& @ + 7% = ple /e — epe ME < 2. (4.5)
or? r Or r
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Define

q(x) == Mle_N/ e Hlr=vlleqy 2 eQ \ K,
K.

where M7 > 0 is to be determined. If € Q\ K., then we can differentiate

under the integral sign and use (4.5) to find

2Aq < p?q in Q\ K.. (4.6)

If 79 € Q and dist(zg, K) > ¢, then there exists yg € K such that |zg — yo| =
dist(zg, K) > e. In particular, Q N B(yo, ) C K., and hence,

q(z0) > M157N/Q o )efu\wo*yl/edy > ]\/[1571\%*#dist(ﬂE,K)/Eefu|QmB(yo,€)|7
NB(yo,e
(4.7

where we used the fact that if y € B(yo,¢), then |y — xo| < |y — vo| + [yo —
xo| < dist(zo, K) + €. If B(yo,e/2) C Q, then |Q N B(yo,e)| > |B(yo,e/2)| =
an2 Vel where ay = |B(0,1)|. Otherwise, there exists y; € B(yo,&/2) N
09Q. Since 0N is of class C', it is Lipschitz continuous, hence, by taking by
taking ¢ sufficiently small, we can find a cone K, . with vertex y; and vertex
angle depending on the Lipschitz constant associated to € such that K,, . N
B(y1,¢/2) CQU{y1}. Since y1 € B(yo,€/2), we have that K,, . N B(y1,e/2) C
(21 Blyo,2)) U {y1 }, and so

LY(QN B(yo,e)) > LY (K, c N B(y1,£/2)) = coe™.
This shows that £V (Q N B(yo,)) > min{cy, an2 NV }eV. Take
M := Me** /min{co, a2V},
Observe that if g € 0K, N Q, then dist(zg, K) = ¢, and so by (4.7),
q(20) > Mie " min{cy,an2"V} > M, (4.8)
while if zg € 9Q \ K¢, then
q(zo) > Mye Hdst@ /e o=t min{ey, an2 N} > Mep—rdist@K)/e (4.9)

Next we estimate ¢ from above on Q\ K.. If g € Q\ K., then |xo — y| >
dist(zg, K;) for all y € K, and so,

alzo) =M1£_N/ e~ Hlzo—yl/(2€) g —plzo—yl/(22) gy,
K.

< MyeNendist(ao,Ko)/(22) / e ilo=yl/(2¢) g (4.10)
Ks

< MIE—Ne—udist(xo,KE)/(Ze)/ e Hlwo=yl/(22) gy
RN\ B(z¢,dist(zo,K:))

_ Mlstefu dist(zo,Kg)/(Qe)ﬂN > efp,r/(26)rN71dr

dist(zo,Ke)

< Mle—p dist(:co,KE)/(Qs)BN / e—pt/QtN—ldt — MC«Oe—;L dist(.’zco,KE)/(Qs)7
0
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where we set Sy := HV1(SV~1), we used spherical coordinates, and made the
change of variables ¢ := r/e.

If we now define w := v —gq, by (4.4) and (4.6), we have that e2Aw > p?w in
in Q\ K., while by the fact that v < M in Q\ K and (4.8), w <0 in 0K, N .
Finally, if z € 0Q\ K¢, by (4.4) and (4.9),

’U)(l‘) < Mef,udist(m,K)/(Zs) _ Me/,L*,udist(m,K)/s <0.

Hence, we have shown that

e2Aw > pPw in Q\ K.,
w<0 on O(N\ Ky).

It follows from the maximum principle that w < 0 in Q\ K., that is,
v(z) < q(z) < MCoe Hdist@K)/(2¢) 0 c O\ K.
Finally, observe that if x € Q\ K, then dist(z, K.) < dist(z, K) + ¢, and so
v(z) < MCye H2e=rdist(z.K)/(2e) 1 c \ K.

On the other hand, if x € K \ K., then dist(z, K) < € and so, using the fact
that v < M in Q \ K, we have

e H dist(z,K)/(2¢)

vie) <M< M p— ys

which concludes the proof. [ |
We turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. To prove (4.1), assume that there exists z¢ €  such

that uc(xo) > b. Assume first that u.(zo) > b. Since W'(s) > 0 for s > b and

ue < bon Jf), we can assume that u. achieves its maximum at zy. But then,

1
0> Auc(xo) = TEQW/(UE(xO)) > 0.

Similarly, we can conclude that u. > a.
Next, let v :=b—u.. In Q\ K,, we have that

2
Av=—= >
© e 2b—ugv 2 b— u, v=Hp?
where 1 W (b) = W'(s)
2 — S
= = su — >0
He 2b7p§1ts)<b b—s

by (2.2), (2.4), and (4.2). Taking M := b, we can apply Proposition 4.2 to
obtain (4.3). n
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Remark 4.3 If W is symmetric with respect to ¢, or, more generally, if ¢ :=
‘%rb, then
a <us(r)<b

for all x € Q. To see this, suppose first that a = —1, c =0, and b =1. Assume
that there exists xo € Q such that uc(xg) = £1. Let

ve = ul — 1.
Then for all x € Q such that —1 < uc(x) < 1,

o [ ou N ou\?
Av, = A(u?) = 22 5 (uaaxe) = QZ (3;) + 2u:Au,

i=1

K3
e W ()
ez u?-1

e

= 2|Vu|* + %W’(us) >

Since W'(s) > 0 for —1 < s < 0 and W'(s) < 0 for 0 < s < 1, we have that

sW'(s) >

=—1 > 0. Moreover,

sW'(s) s Wis)-w'(1) 1_,
- W'
P11 s+l so1 2 Ww=0

as s — 17 and

sW'(s) s W'(s)—W'(-1) 1.,
s2—1  s-—1 s+1 %§W(71)>O

as s — —17. Hence, by defining

Z%Wuégs) if —1<uc(z)<l,
ce(x) = %%W’ (1) ifuc(z) =1,
=W'(=1)  ifue(z) = -1,

we have that
Ave > ce(x)ve (),

where c.(x) > 0. Moreover, ve. =u2 —1=g2—1<0 on 9. Since v.(zg) = 0,
it follows from [15, Theorem 4, Chapter 6] that v. is constant in ), which is a
contradiction.

To remove the additional condition that a = —1 and b = 1, it suffices to
replace W with

T+

b—a a+b
2 2

and ue with Ue 1= 35 ue — 752
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Theorem 4.4 Let Q C RN be an open, bounded, connected set with boundary
of class C%¢ | 0 < d < 1. Assume that W satisfies (2.1)-(2.4) and that g.
satisfy (1.11), (2.12)-(2.14). Let u. € H*(Q) be a minimizer of (1.1) subject
to the Dirichlet boundary condition (1.2). Then there exists a constant C > 0
depending only on N such that

C

<
Vue(w)] < 2

for all z € Q\ Q..

Moreover, under the additional hypothesis that g. € C*(Q), with

M
V2G| (o) < =

for some constant M > 0, there exists a constant C' > 0 depending only on §2
and M, such that

V()] < &

- for all x € Q.

The following lemma is due to Bethuel, Brezis, and Hélein [8, Lemma A.1,
Lemma A.2].

Lemma 4.5 Let Q C RY be an open, bounded set, and let f € L>(£2). Assume
that w € HY(2) N L> () is a weak solution to

Au=f in Q.

Then for every x € €,

1
@) <€ (=@l =i + g o )

where C' > 0 is a constant depending only on N.
Moreover, if u € H}(Q), then

IVull7 ey < CllullLoe @)l fll Lo ),
where C' > 0 is a constant depending only on ).
We turn to the proof of Theorem 4.4.

Proof of Theorem 4.4. By Lemma 4.5, for every z € Q\ Q,

S W' (ue)

1 2
+ . 9, < u oo
2¢2 Loo(Q) diSt2 (.73, 89) || EHL (Q)>

1 1
<c (max{|a|, o s | 2L+ mane{ o, b|2}) ,

[Vue(2)* < C (Huem(n)

’ 1

2

where we used the facts that a < u. <b (4.1).
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To prove the last statement, observe that the function v, 1= u. —g. € H}(Q)
is a weak solution to

Av, = ﬁW’(uE) —Ag. in Q,
ve =0 on 0f).

It now suffices to apply the second part of Lemma 4.5.

Given the functional
me:/avmyﬂvm%m,
Q

we say that a function u € H'(Q) is a local minimizer of F if for every U €
and all w € H'(Q) with support contained in U, we have that F(u+v) > F(u).
The following theorem is a special case of a result of Caffarelli and Cordoba [10]
(we refer to the paper for the general statement).

Theorem 4.6 Assume that W satisfies hypotheses (2.1)-(2.4). Letu € H'(B(0, R)),
with a <u <b, R> 2, be a local minimizer of

Flv) ::/ (W) + Vo) de, ve H'(BO,R),  (411)
B(0,R)

and assume that for a < X\ < b there exists ¢y > 0 such that
LY(B(0,1) N {u > A}) > co.
Then there exists ¢c; > 0 (depending only on X, co, N, and W) such that
LY(B0,r) N {u> A}) > erV
for every 1 <r < R.

Remark 4.7 A similar estimate continues to hold if we replace {u > A} with
{u < A} in Theorem 4.6. To see this, define W (s) := W (a+b—s), and observe
that if w € H(B(0, R)) is a local minimizer of (4.11), then v := —u+a+b, is
a local minimizer of

Flw) = / (W (w) + |[Vwl2) dz, ve HY(BO,R)).

B(0,R)
Moreover, {u < A\} = {v>a+b—\}, where a+b—\ € (a,b). Hence, it suffices
to apply Theorem 4.6 to F.

Theorem 4.8 Let Q C RY be an open, bounded, connected set with boundary
of class C*¢ | 0 < d < 1. Assume that W satisfies (2.1)-(2.4) and that g.
satisfy (1.11), (2.12)-(2.14). Suppose also that (1.12) holds. Let u. € H*(S2) be
a minimizer of (1.1) subject to the Dirichlet boundary condition (1.2). Then

ue — b in L'(Q).
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Moreover, for every a < A < b and for every § > 0, there exists e5 > 0 such that
{ue <A} C Qs (4.12)
for all0 < e < es.

Proof. The fact that u. — b in L'(2) follows from (1.12) and standard prop-
erties of I'-convergence (see [9, Theorem 1.21]). Next, we prove (4.12). Given
a < X< band R > 0, assume by contradiction that there exist ¢, — 0% and
xn € Q\ Qag such that u., (z,) < A. By compactness, we can assume that
Zn — xo. Define v,(y) = ue, (zn + €ny), y € B(0,R/e,). By a change of
variables, and the minimality of u.,, we have that v, is a local minimizer of

F(v) = / (W(v) + |Vv|?) da.
B(0,R/en)

By Theorem 4.4 applied to u. in '\ €, there exists Cy > 0 such that
[Vu,(y)| < Cy for all y € B(0,R/ey,)

provided 0 < € < 2R. Given A < Ay < b, since v,,(0) < A, it follows that
on(y) < vn(0) + Colyl < A+ Colyl <M

for all y € B(0, (A1 — X)/Co), where, without loss of generality, we assume that
(A —A)/Cy < 1. Hence,

LY(B(0,1) N {v, < A1}) > LY(B(0, (A — \1)/Co)) = co.

It follows from Remark 4.7 that there exists ¢; > 0 (depending only on A, ¢,
N, and W) such that

LY(B0,7) N {vn < A }) > e
for every 1 < r < R/e,. By the change of variables z := x,, + €, ¥y, we find
LY (B(xn,enr) N{us, < A}) > cr(enr)V
for every 1 < r < R/e,. As a consequence,
LN (B(zn, R) N {us, < M1}) > c1RY.

But this is a contradiction, since B(x,,R) C B(xg,2R) C Q, and u. — b in
LY(Q). [

Theorem 4.9 Let Q C RY be an open, bounded, connected set with boundary
of class C*? | 0 < d < 1. Assume that W satisfies (2.1)-(2.4) and that g. satisfy
(1.11), (2.12)-(2.14). Let 0 < 6 << 1 and suppose that (1.12) holds. Then there
exist > 0 and C > 0, independent of € and §, such that for all € sufficiently
small the following estimate holds

0<b—uc(x)<Ce ™/ forazeQ\ Q. (4.13)
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Proof. Fix p as in (4.2). By Theorem 4.1, there exist 4 > 0 and C' > 0,
independent of ¢, such that for all € sufficiently small the following estimates
hold

0<b—u.(x) < Ce PIt@EN/C) for 4 € O\ K, (4.14)

where K, := {z € Q: uc(x) < b— p} UQ 10ge|- By Theorem 4.8, there exists
€s,p > 0 such that
{us <b—p} C Qs (4.15)

for all 0 < e < ¢&5,,. Thus,
0 <b—uc(zx) < Ce /(29

for all z € Q\ Qas. n

5 Second-Order I'-Limit

In this section, we finally prove Theorem 1.1.

Theorem 5.1 (Second-Order I'-Limsup) Assume that Q C RN is an open,
bounded, connected set and that its boundary 0S) is of class C>%, 0 < d < 1.
Assume that W satisfies (2.1)-(2.4) and that g. satisfy (1.11), (2.12)-(2.14).
Suppose also that (1.12) holds. Then there exists {uc}. in H'(Q) such that
tru. = g. on 0K, uc — b in L(Q), and

lim sup F{?) (u,) S/ /-@(y)/ 2W1/2(zg(y)(s))z;(y)(s)sdsd'HNfl(y)
e—0t o0 0

where zg(,) solves the Cauchy problem (1.8) with oo = g(y).

Proof. By Lemma 2.6, for § > 0 sufficiently small the function ® : 92 x [0, 6] —
Qs is of class C'?. In turn, the function

w(yv t) = det J<I> (y, t)

is of class C%? and
= mi 0 0.
wy := min, w(y,0) >

Fix Lo duw )
w —aw(a, o—
- . 1
0<wy< 1 Cor w1 (5.1)
By taking § > 0 sufficiently small, we can assume that
lw(y, t1) — w(y, t2)| < wo (5.2)

for all y € 0 and all ¢,t5 € [0,0]. -
Let . — 07 as ¢ — 0%, and for each y €  define

" €
U (y,r) = /ga(y) W ds, (5.3)
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and
0<T.(y):=T(y,b). (5.4)

Note that 7. € C*(Q) with

b 13
T:(y) < /g AW ds

< —%Elog(UQ(SE) + oelog(1+2(b—a))

by (1.11) and Proposition 2.2. Hence, there exist Cy > 0 and €¢ > 0, depending
only on W such that
T.(y) < Coel|log .| (5.5)

for all 0 < € < g and all y € 09Q.
For each fixed y € 9Q, let v.(y,-) : [0,T:(y)] — [9:(v), ] be the inverse of

V. (y,). Then v (y,0) = g-(y), ve(y, T-(y)) = b, and

Ve - v (y,t)))/?
%(y,t) _ (0 +W( 6(y t))

(5.6)

for t € [0,T-(y)]. Assume first that g. € C1(99). Then by standard results on
the smooth dependence of solutions on a parameter (see, e.g. [30, Section 2.4]),
we have that v. is of class C'*! in the variables (y,t). Extend v.(y,t) to be equal
to b for ¢t > T.(y).
We have
vy, el ) = 7

for all g.(y) < r <b. For every y € 00 and every tangent vector 7 to 9 at y,
differentiating in the direction 7 gives

dv.

W(ya \Ijs(yv T’)) +

9.

ot

(0, W) = () =

Hence,
aUE 8’05 6\118 _
87' (y7t) + 8t (yvt) 67’ (yn“) =0

for all y € 9Q and ¢ € [0, T-(y)).
By (5.3),

5 _ 13 %
or U0 = TG Wi or

and so by (5.6), we have

Ov, _ Ov, oV,
g(y’t) = _E(yat) or (y,7)

(Bt W () 9
(0 + W(ge<y)))1/2 or

(¥)
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for t € [0,T:(y)), while %”; (y,t) = 0 for t > T.(y). Observe that if g.(y) > ¢,
then since W is decreasing for ¢ < s < b and v.(y, -) is increasing, we have that

W (ve (y,t)) < W(ge (y)). Hence, 8”5 Y, )’ < ’%gf (y)‘ On the other hand, if
9:(y) < ¢, then by (1.11),

(0. + W(ge(y)))/? > min W2 = Wy > 0.

Since a < v.(y,t) < b, in both cases, we have

(5.7)

5Us(y t)\ 0‘395 ‘ if yedQ and t € [0,7T.(y)),
or 7’ 1fy€89andt€( ()a]

5
If g. € HY(09), a density argument shows that v. € H!(99Q x (0,5)) and that
(5.6) and (5.7) continues to hold a.e.

o (@71(@))
v (@72 if x € Qs,
ue(w) := { b itr e\ Qs (5-8)
Then u. € H*(Q2), with
2 Ove -1 ? 2 1 2
Vue (@) < | Z5(@71 ()| +ClIVyli oy [Vrve(@ @) (5.9)

where we used the facts that ®~1(z) = (y(z),dist(z, 09)), |V dist(z, 9Q)| =
and 7 - Vdist(z, 9Q) = 0 for every vector 7 such that 7 - v(y) = 0.

In view of Lemma 2.6, we can use the change of variables © = ®(y,t) and
Tonelli’s theorem to write

é
7O = [ (S0 @) + V0000 ) ) ™)

. / d(g(y),b) AHY ()

(/m/ < (vely, 1)) + | =,

— [ d(g(y),0)dH" " (y)
E/asz )

5
IV [ [ 1900l O ol ) et ) = A+ B,
Taking 6. as in (3.37), by Theorem 3.6, there exist constants 0 < gy < 1,

C,Cy > 0, and 79,71 > 0, depending only on a_, Agy, By, T, w, and W, such
that

J (Y
/ (;Wwy,t)) + |G

l
< / 2W (p-(y, 1))t dt %‘;’(y, 0) + Ce™27 (201 4 1) + Ce®'l + Ce"|loge| ™
0

> w(y, t) dtdHN " (y)

2 1
) w(y,t)dt — - dw (b, 9(y))

o1



for all 0 < e < &g and all I > 0, where p.(y,t) = ve(y, €t), pe(y,-) = 24(y) POINt-
wise in [0, 00), where z, solves the Cauchy problem (1.8). Hence, by Lemma
2.6,

l
A< / k(y) / oW (p.(y, 1))t dtdHN = (y) + Ce™ 27! (201 + 1)
oN 0
+ Ce® 4 O |log e[
for all 0 < ¢ < gp and all [ > 0. Since pc(y,t) — 24, (t) for all ¢ € [0,] and

a < p:(y,t) <b, we can apply the Lebesgue dominated convergence theorem to
obtain

e—0t

l
lim /i(y)/ 2W (pe(y, )t dt dHN 1 (y)
a0 0

!
:/ m(y)/ 2W (2g(y) (t))t dt dHN "1 (y).
o9 0

Hence,

!
limsup A < / n(y)/ 2W (24 (t))t dt dHN "1 (y) + Ce 27! (201 + 1)
o9 0

e—0t

By (2.11) and the Lebesgue dominated convergence theorem, the right-hand
side converges to

/ K(Y) /OO 2W (240 (1))t dt dHN 1 (y).
a9 0

On the other hand, by (5.5) and (5.7),

T-(y)
B < ClVylE o) /6 Vo) / w(yt) di dHN 1 (y)

< Cellogel||w| L= (o0x0,6)) /89 10-9-(y)[* a1 (y) = 0(1) (5.10)
by (2.13).
In conclusion, we have shown that
FOw) < [ wo) [ 20y 6)) 2l (s dsdHY ) + o).
o0 0

Step 2: We claim that
u. — ug in LY(Q).

In view of Lemma 2.6, we can use the change of variables z := ®(y,¢) and
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Tonelli’s theorem to write
5
/ |ue — ug| da = / / |ue(®(y,t))) — blw(y, t) dthN_l(y)
Q aaJo

T (y)
- / / ey ) — bleo(y, 8) dedHN " (y)
oNJo

< Celloge|,

where we used the fact that v.(y,t) = b for ¢t > T.(y) and (5.5). |
For every measurable set E C 2, we define the localized energy

E.(u,E) ;:[E(;W(U)JFWF) de, ue H' Q).

Theorem 5.2 (Second-Order I'-Liminf) Assume that Q@ C RN is an open,
bounded, connected set and that its boundary 0 is of class C>%, 0 < d < 1.
Assume that W satisfies (2.1)-(2.4) and that g. satisfy (1.11), (2.12)-(2.14).
Suppose also that (1.12) holds. Then

lim inf F® (u,) 2/ m(y)/ 2W1/2(zg(y)(s))zg(y)(s)sdsd’HN_l(y),
o0 0

e—0+
where z, solves the Cauchy problem (1.8) with o = g(y).

Proof. We choose w and ¢ as in the proof of Theorem 5.1. By Theorem 4.9
(with Q5 and Qg5 replaced by Qs/, and s, respectively), we can assume that

0<b—uc(x)<Ce ™/ forxeQ\Qs (5.11)

for all 0 < € < 4.
Write

F® (u.) = Eo(ue, Q\ Q5)

; (Eewg,ﬂa) -1 [ dwie) dHNl)
€ Jan
= A+ B.

Since A > 0, it remains to study B. In view of Lemma 2.6, we can use the
change of variables © = ®(y,t) and Tonelli’s theorem to write

)
Butuns ) = [ [ (S 00a@000) + 1900000 ) ) ™).
Since u. € C1(Q), if we define

ﬂs(yat) = uE(y + tV(y)),

]



we have that

63% (y,t) = 6?/7“;;) (y +tv(y)),
and so,
000 = e (5.12)
J ~ 2
> /aQ VO (;W(aa(y7t))+ 0;; (y,t) )w(y,t) dt — idW(g(y>’b)1 dHY1(y).

For y € 092, in view of (5.11), we have that
b— Ce 192 < gi_(y,8) <b. (5.13)
Let v¥ € H'([0,6]) be the minimizer of the functional

- /06 (;W(v(t)) + |v'(t)|2) (. 1) dt

defined for all v € H*([0, §]) such that v(0) = g.(y) and v(d) = 1. (y,d). In view
of (2.14) and (5.13), we can apply Theorem 3.15 to find 0 < gg < 1, C' > 0, and
lop > 1, depending only on a_, a, b, d, w, and W such that

J i
Ve (y) ::/O (;W(ﬁs(y,t)) + ‘%j(y,t)

) wly,0)dt ~ = dw (b, (»))

5 /9 » o 1
> [ (Swere)+ 16 0F ) s L aw.)

!
> 288—02((7;,0)/ W2 (w)wlsds — Ce™ " (I + 1)
0

— CI%Y% — CeM|log el =: ¢.(y),

for all 0 < & < g9 and [ > ly, where w.(s) := v.(es) for s € [0, 5e~] satisfies

l 1
sli%lJr ; W2 (w )w!sds = /0 W1/2(zg(y))z;(y)sds (5.14)
for every [ > 0 and where z4(,) solves the Cauchy problem (1.8) with a = g(y).
By Corollary 3.9, there exists a constant C' > 0 depending only on a_, a, b,
§, w, and W such that |w. ()| < C for all t € [0,5¢71] and for all 0 < € < &.
Hence, |¢.(y)| < C; for all y € 99 and for all 0 < & < g¢. Since ¢. — C; > 0, we
can apply Fatou’s lemma to obtain

liminf [ o (y)dHY "1(y) > / lim inf ¥, (y)dHY ()
o0 o

e—0t q €0t

> / lim inf ¢, (y) dHN " (y)
0!

q €0t

l
= /69 2k(y) (/ Wl/Q(ZQ(y))z;(y)s ds — Ce™» (lp + 1)) dHN_l(y).

0

o4



Letting | — oo and using the Lebesgue monotone convergence theorem for the
first term gives

lim inf /a . Ve (y)dHN " (y)

e—0t
= /89 2“(3/)/0 W1/2(zg(y)(3))2;(y)(S)SdeHNil(y)'

Recalling the definition of 1. concludes the proof. ]

6 Note Added to Proof

When this paper was almost complete, we became aware of the paper by
Alikakos and Fusco [1] (and consequently of [2], [19], [27]), where they stud-
ied the case g. = 2o, where 29 ¢ W~1({0}), in the vectorial case, that is, when
W :R™ — [0,00) with m > 1, and W has a finite number of wells. In [1, Lemma
3.1 and Theorem 3.3], the authors proved that there exists 23 € W~1({0}) such
that minimizers u. of F. satisfy the bound

ot HNTHO0) (1 — C1e'/3) < Fo(ue) < eo THNTH(Q) + Cae?, (6.1)

where o7 is the vectorial version of dy (29,21) and C; and Cs are positive
constants independent of . Using this estimate, they were able to show that

|u€(x) . Zl| < ‘Kvefk(dist(:}o,BQ)7C'51/[3(N_1)])+/57

x €, (6.2)
where C, K, k are positive constants independent of ¢.

In the scalar case m = 1 we are able to replace (6.1) with the sharp bound
(1.15).
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