
ANISOTROPIC MICROPOLAR FLUIDS SUBJECT TO A UNIFORM

MICROTORQUE: THE UNSTABLE CASE

ANTOINE REMOND-TIEDREZ AND IAN TICE

Abstract. We study a three-dimensional, incompressible, viscous, micropolar fluid with anisotropic mi-
crostructure on a periodic domain. Subject to a uniform microtorque, this system admits a unique nontrivial
equilibrium. We prove that this equilibrium is nonlinearly unstable. Our proof relies on a nonlinear boostrap
instability argument which uses control of higher-order norms to identify the instability at the L2 level.

1. Introduction

1.1. Brief discussion of the model. Micropolar fluids were introduced by Eringen in [Eri66] as part of
an effort to describe microcontinuum mechanics, which extend classical continuum mechanics by taking
into account the effects of microstructure present in the medium. For viscous, incompressible continua,
this results in a model in which the incompressible Navier-Stokes equations are coupled to an evolution
equation for the rigid microstructure present at every point of the continuum. This theory can be used
to describe aerosols and colloidal suspensions such as those appearing in biological fluids [Mau85], blood
flow [Ram85, BBR+08, MK08], lubrication [AK71, B L96, NS12] and in particular the lubrication of human
joints [SSP82], liquid crystals [Eri66, LR04, GBRT13], and ferromagnetic fluids [NST16].

We postpone a more thorough discussion of the model until Section 2 and here provide only a brief
overview sufficient to state the main result. The variables needed to describe the state of a micropolar
fluid at a point in three-space and time are as follows: the fluid velocity is a vector u ∈ R3, the fluid pressure
is a scalar p ∈ R, the microstructure’s angular velocity is a vector ω ∈ R3, and the microstructure’s inertia
tensor is a positive definite symmetric matrix J ∈ R3×3. We study homogeneous micropolar fluids, which
means that the microstructures at any two points of the fluid are equal up to a proper rotation. In turn,
this means that the microinertia tensors at any two points of the fluid are equal up to conjugation. Note
that the shape of the microstructure determines the inertia tensor, but the converse fails in the sense that
the same inertia tensor may be achieved by differently shaped microstructure.

We restrict our attention to problems in which the microinertia plays a significant role, and so in this
paper we only consider anisotropic micropolar fluids for which the microinertia tensor is not isotropic, i.e.
J has at least two distinct eigenvalues. In fact, we study micropolar fluids whose microstructure has an
inertial axis of symmetry, which means that the microinertia J has a repeated eigenvalue. More concretely:
there are some physical constants λ, ν > 0 which depend on the microstructure such that, at every point,
J is a symmetric matrix with spectrum {λ, λ, ν}. This is in some sense the intermediate case between the
case of isotropic microstructure where the microinertia has a repeated eigenvalue of multiplicity three and
the “fully” anisotropic case where the microstructure has three distinct eigenvalues.

The equations of motion related to these quantities in the periodic spatial domain T3 = R3/(2πZ)3,
subject to an external microtorque τe3, read:

∂tu+ (u · ∇)u = µ̃∆u+ κ∇× ω −∇p on (0, T )× T3, (1.1a)

∇ · u = 0 on (0, T )× T3, (1.1b)

J (∂tω + (u · ∇)ω) + ω × Jω = κ∇× u− 2κω + (α̃− γ̃)∇ (∇ · ω) + γ̃∆ω + τe3 on (0, T )× T3, (1.1c)

∂tJ + (u · ∇) J = [Ω, J ] on (0, T )× T3, (1.1d)
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where [ · , · ] denotes the matrix commutator, µ̃, κ, α̃, and γ̃ are physical constants related to viscosity, τ
denotes the magnitude of the microtorque, and Ω is the 3-by-3 antisymmetric matrix identified with ω via
the identity Ωv = ω × v for every v ∈ R3.

We have chosen to consider the situation in which external forces are absent and the external microtorque
is constant, namely equal to τe3 for some fixed τ > 0. Note that the choice of e3 as the direction
of the microtorque may be made without loss of generality since the equations are equivariant under
proper rotations, in the sense that if (u, p, ω, J) is a solution of (1.1a)–(1.1d) then, for any R ∈ SO (3),(
u, p,Rω,RJRT

)
is a solution of (1.1a)–(1.1d) provided that the external torque τe3 is replaced by τRe3.

There are two ways to motivate our choice to have no external forces and a constant microtorque.
On one hand, it is reminiscent of certain chiral active fluids constituted of self-spinning particles which
continually pump energy into the system [BSAV17], as our constant microtorque does. On the other hand,
this choice of an external force – external microtorque pair is motivated by the dearth of analytical results
on anisotropic micropolar fluids. It is indeed natural, as a first step in the study of non-trivial equilibria
of anisotropic micropolar fluids, to consider a simple external force – external microtorque pair yielding
non-trivial equilibria for the angular velocity ω and the microinertia J . The simplest nonzero such pair is
precisely our choice of (0, τe3).

Let us now turn to the aforementioned equilibrium. Due to the uniform microtorque, the system admits a
nontrivial equilibrium. At equilibrium the fluid velocity is quiescent (ueq = 0), the pressure is null (peq = 0),
the angular velocity is aligned with the microtorque (ωeq = τ

2κe3), and the inertial axis of symmetry of the
microstructure is aligned with the microtorque such that the microinertia is Jeq = diag(λ, λ, ν).

h

r

(a) This rigid body is inertially oblong if h2 > 6r2.

h

r

(b) This rigid body is inertially oblate if h2 < 6r2.

Figure 1. Two rigid bodies with uniform density which possess an inertial axis of symmetry.

Physically-motivated heuristics (which again we postpone until Section 2) suggest that the stability of
this equilibrium depends on the ‘shape’ of the microstructure. The heuristics suggest that if the microinertia
is inertially oblong, i.e. if λ > ν, then the equilibrium is unstable, and that if the microinertia is inertially
oblate, i.e. if ν > λ, then the equilibrium is stable. This nomenclature is justified by the fact that for
rigid bodies with an axis of symmetry and a uniform mass density, the notions of being oblong (or oblate),
which essentially means that the body is longer (respectively shorter) along its axis of symmetry than it is
wide across it, and being inertially oblong (respectivelly inertially oblate) coincide. Examples of inertially
oblong and oblate rigid bodies are provided in Figure 1. This paper deals with the instability of inertially
oblong microstructure. In future work we will study the stability of inertially oblate microstructure.

1.2. Statement of the main result. The main thrust of this paper is to prove that if the microstructure
is inertially oblong, then the equilibrium is nonlinearly unstable in L2. A precise statement of the theorem
may be found in Theorem 5.2, but an informal statement of the result is the following.

Theorem 1.1 (L2 instability of the equilibrium). Suppose that the microstructure is inertially oblong, i.e.
suppose that λ > ν, and let Xeq = (ueq, ωeq, Jeq) = (0, τ2κe3,diag(λ, λ, ν)) be the equilibrium solution of

(1.1a)–(1.1d). Then Xeq is nonlinearly unstable in L2.

Here the notion of nonlinear instability is the familiar one from dynamical systems: there exists a
radius δ > 0 and a sequence of initial data {X0

n}∞n=0, converging to Xeq in L2, such that the solutions to
(1.1a)–(1.1d) starting from X0

n exit the ball B(Xeq, δ) in finite time, depending on n.
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Figure 2. A depiction of how a subset Ω0 ⊆ T3 of the micropolar continuum behaves
under the flow of η and Q. Ω (t) = η (t,Ω0) is the image of Ω0 under the flow of η and
y ∈ Ω0 is a point in Ω0 at which the micropolar continuum has microinertia I0. At the point
x = η (t, y) the microinertia is I (t, y) = Q (t) I0Q

t (t) since the microinertia transforms as
a 2-tensor under the flow of the microrotation Q.

Note that in Theorem 1.1 the pressure has disappeared from consideration. This is because the pressure
plays only an auxiliary role in the equations and may be eliminated from (1.1a) by projecting onto the
space of divergence-free vector fields.

2. Background, preliminaries, and discussion

2.1. Micropolar fluids. To the best of our knowledge, the anisotropic micropolar fluid model has not
been studied in the PDE literature, so our aim in this subsection is to provide the reader with a brief
overview of the model and its features. We emphasize that it is a natural extension of the Navier-Stokes
model, as it follows from the same principles of rational continuum mechanics. We refer to [Eri99, Eri01]
for a complete continuum mechanics derivation of the micropolar fluid model, and we refer to [ Luk99]
for a thorough discussion of the mathematical analysis of isotropic micropolar fluids. Throughout this
discussion we will take the domain under consideration to be the (normalized) torus T3 = R3/(2πZ)3 and
we will let T ∈ (0,+∞] denote our time horizon. For the sake of brevity, in this subsection we will commit
the usual crime of assuming all quantities are “sufficiently regular” to justify the written assertions.

Just as rational continuum mechanics begins with the postulation that there exists some flow map
η : (0, T ) × T3 → T3 which describes the motion of the continuum, the micropolar theory posits the
existence of an additional (Lagrangian) microrotation map Q : (0, T ) × T3 → SO (3) which describes the
rotation of the microstructure present at every point in the continuum. The pair (η,Q) thus provides a
complete kinematic description of a micropolar continuum as illustrated in Figure 2.

A word of warning: there are two ways to define the microrotation map and we have chosen here the
convention that Q is absolute. Indeed, one may either define Q to be the rotation of the microstructure with
respect to its immediate environment, in which case Q would be equal to the identity when the micropolar
continuum undergoes rigid motions such as rotations, or one may define Q to be the identity at time t = 0
and to be the absolute rotation underwent by the micropolar continuum thereafter. We choose the latter
convention. In order to illustrate the physical interpretation of the microrotation map Q, Table 1 contrasts
the motions obtained for various simple expressions of η and Q

Analogously to how the flow map η is more conveniently characterized by its Eulerian velocity u, the
microrotation map Q is characterized by its Eulerian angular velocity ω where

u(t, · ) = ∂tη(t, · ) ◦ η(t, · )−1 and ω(t, · ) = vec ∂tQ(t, · )QT (t, · ) ◦ η(t, · )−1
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Configuration at time t = 0 •
y0

Case 1 Case 2 Case 3

η (t, ·) etR (· − y0) etR (· − y0) I
Q (t, y) etR I etR

u (t, x) Rx Rx 0
1
2∇× u (t, x) e3 e3 0
ω (t, x) e3 0 e3

1
2∇× u− ω 0 e3 −e3

Configuration at time t = π
2

•
y0

•
y0

•
y0

Table 1. Three explicit examples of the motion of a micropolar continuum with the same
initial configuration. These motions are chosen to be similar to emphasize that the microro-
tation Q is an absolute rotation. The figures shown correspond to cross-sections perpendic-
ular to e3, each colored arrow is a depiction of the orientation of the microstructure at that
point, y0 is some point in the micropolar continuum, and R = e2⊗ e1− e1⊗ e2 corresponds
to a (counter-clockwise) rotation by π/2 in the plane perpendicular to e3.

and

(vecM)i =
1

2
εaibMab for any 3-by-3 matrix M. (2.1)

Recall that the Levi-Civita symbol εijk is defined to be the sign of the permutation which maps 1 7→ i,

2 7→ j, and 3 7→ k. Note that here, since Q ∈ SO(3) we know that Ω(t) = ∂tQ(t)QT (t) ◦ η(t)−1 is
antisymmetric, and hence we may use the standard identification of a 3-by-3 antisymmetric matrix A with
a vector a = vecA via Av = a× v for any v ∈ R3, where × denotes the usual cross product in R3.

The derivation of the equations of motion for a micropolar continuum begins by postulating the conserva-
tion of mass, the balance of linear momentum, and the balance of angular momentum. For micropolar con-
tinua the angular momentum is the sum of the macroscopic angular momentum, obtained from the fluid ve-
locity u and a choice of reference point in space, and the microscopic angular momentum Jω. Additionally,
micropolar fluids conserve microinertia, which means that the Lagrangian microinertia I(t, · ) = J ◦η(t, · )
satisfies I(t, · ) = Q(t, · ) I(0, · )QT (t, · ). Differentiating in time yields ∂tI =

[
∂tQQ

T , I
]
, where [·, ·]

denotes the matrix commutator. We may rewrite this in Eulerian coordinates as

∂tJ + (u · ∇) J = [Ω, J ] . (2.2)

Note that a microinertia is physical when its spectrum {λ1, λ2, λ3} satisfies λi 6 1
2

∑3
j=1 λj = 1

2 tr J for
i = 1, 2, 3. This comes from the fact that we may compute the microinertia tensor of a rigid body of mass
M from the covariance matrix V of its mass distribution via J = M ((trV ) I − V ). The condition above on
the eigenvalues of J is then equivalent to requiring the physical condition that V be positive semi-definite.

For incompressible continua with constant density the conservation of mass reduces to the divergence-free
condition

∇ · u = 0. (2.3)



INSTABILITY OF AN ANISOTROPIC MICROPOLAR FLUID 5

Using (2.2), the conservation of linear and angular momentum then respectively take the form

∂tu+ (u · ∇)u = ∇ · T + f (2.4)

and
(∂t + u · ∇) (Jω) = J (∂tω + (u · ∇)ω) + ω × Jω = 2 vecT +∇ ·M + g (2.5)

where T is the Cauchy stress tensor which expresses the internal forces exerted by the continuum on itself,
M is the couple stress tensor which expresses the internal microtorques exerted by the continuum on itself
(and on its microstructure), and where f and g are the external forces and microtorques acting on the
continuum, respectively.

To close the system we continue along the path of rational mechanics which produces Navier-Stokes and
postulate that some constitutive equations hold which determine the stresses T and M in terms of the
velocity u, the angular velocity ω, and the pressure p. Analogously to how a Newtonian fluid is defined
as a continuum for which the stress tensor is given by T = µDu − pI, a micropolar fluid is defined as a
micropolar continuum for which

T = µDu− pI + κ ten

(
1

2
∇× u− ω

)
and M = α (∇ · ω) I + βD0ω + γ ten∇× ω, (2.6)

where: D denotes the symmetrized gradient defined by Dv = ∇v+∇vT , ten is the inverse of vec introduced
in (2.1) such that ten (v)w = v×w for every v, w ∈ R3, D0 is the trace-free part of the symmetrized gradient
defined by D0v = Dv − 2

3 (∇ · v) I, and µ, κ, α, β, γ are physical constants commonly referred to as fluid
viscosities. Note that, by contrast with classical fluids, the stress tensor T is not symmetric.

The terms in M are analogous to the terms one finds in the viscous stress tensor for a compressible fluid
and have a similar physical interpretation. The most interesting novelty in the micropolar model is the
coupling term κ ten

(
1
2∇× u− ω

)
. It serves to induce a stress when there is a mismatch between the local

rotation induced by the flow map and the rotation of the microstructure: see Table 1 for some examples.
Note that the coupling term is not symmetric, and so it spoils the usual symmetry enjoyed by the stress
tensor in standard continuum models.

Finally, thermodynamical considerations, and in particular the Clausius-Duhem inequality, tell us that
the quadratic form given by the dissipation

T : (∇u− Ω) +M : ∇ω =
µ

2
|Du|2 + 2κ

∣∣∣∣12∇× u− ω
∣∣∣∣2 + α|∇ · ω|2 +

β

2
|D0ω|2 + 2γ|∇ × ω|2

must be positive-semidefinite, from which it follows that µ, κ, α, β, γ > 0. Note that in this paper we
require that

µ, κ, α+
4β

3
, β + γ > 0. (2.7)

In particular µ and κ must be strictly positive but some of α, β, and γ may vanish. More precisely: if
β > 0 then we allow α = γ = 0 and if α, γ > 0 then we allow β = 0. This requirement comes from the fact
that

∇ ·M = (α+ 4β/3)∇ (∇ · ω) + (β + γ) (∆ω −∇ (∇ · ω))

where the symbol of ∇∇ · is −|k|2 projk and the symbol of ∆−∇∇ · is −|k|2 projk⊥ , therefore the contri-
bution of the dissipation coming from M isˆ

T3

(∇ ·M) · ω =
∑
k∈Z3

−|k|2
(
(α+ 4β/3) |projk ω̂|2 + (β + γ) |projk⊥ ω̂|2

)
.

This dissipative term will then control ||∇ω||L2 precisely when α+ 4β/3, β + γ > 0.
Putting (2.2), (2.3), (2.4), and (2.5) together with (2.6) yields (1.1a)–(1.1d) when the external forces are

taken to vanish and when the external microtorques are taken to be constant, namely g = τe3 for some
fixed τ > 0. Note also that, for simplicity, we have defined µ̃ = µ+ κ/2, α̃ = α + 4β/3, and γ̃ = β + γ in
(1.1a)–(1.1d).

It is worth noting that this system is equivariant under Galilean transformations. More precisely: if
(u, p, ω, J) is a sufficiently regular solution of (1.1a)–(1.1d) then uavg :=

ffl
T3 u is constant in time and

(0, T )× T3 3 (t, y) 7→ (u− uavg, p, ω, J) (t, y + uavg)
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also satisfies (1.1a)–(1.1d). We may therefore assume without loss of generality that u has average zero at
all times. Similarly, since the pressure only appears in the equations with a gradient, we are free to posit
that p has average zero for all times.

2.2. Previous work. Micropolar fluids have been extensively studied by the continuum mechanics com-
munity over the last fifty years and an exhaustive literature review is beyond the scope of this paper. We
restrict our attention to the mathematics literature here, in which case, to the best of our knowledge all
results relate to isotropic microstructure, where the microinertia J is a scalar multiple of the identity. In
that case the precession term ω × Jω from (1.1c) vanishes and the entire equation (1.1d) trivializes. Note
that in two dimensions the micro-inertia is a scalar, and therefore all micropolar fluids are isotropic.

In two dimensions the problem is globally well-posed, as per [ Luk01] where global well-posedness and
qualitative results on the long-time behaviour are obtained. Some quantitative information on long-time
behaviour is also known in two dimensions: for example, decay rates are obtained in [DC09]. The situation
is more delicate in three dimensions, which is an unsurprising assertion in the setting of viscous fluids. The
first discussion of well-posedness in three dimensions is due to Galdi and Rionero [GR77].  Lukaszewicz
then obtained weak solutions in [ Luk90] and uniqueness of strong solutions in [Lu89]. More recent work
has established global well-posedness for small data in critical Besov spaces [CM12] and in the space of
pseudomeasures [FVR07], as well as derived blow-up criteria [Yua10]. There is also an industry devoted to
the study of micropolar fluids when one or more of the viscosity coefficients vanishes: we refer to [DZ10]
for an illustrative example.

Various extensions of the incompressible micropolar fluid model considered here have been studied. For
example, compressible models [LZ16], models coupled to heat transfer [Tar06, KL L19], and models with
coupled magnetic fields [AS74, RM97] have all been studied. Again, to the best of our knowledge all of
these works consider isotropic micropolar fluids.

2.3. Equilibria. In this section we describe the two classes of equilibria which arise as particular solutions
of (1.1a)–(1.1d). A critical piece of this description is the following energy-dissipation relation:

d

dt

ˆ
T3

1

2
|u|2 +

1

2
J (ω − ωeq) · (ω − ωeq)−

1

2
Jωeq · ωeq (2.8)

= −
ˆ
T3

µ

2
|Du|2 + 2κ

∣∣∣∣12∇× u− (ω − ωeq)
∣∣∣∣2 + α|∇ · ω|2 +

β

2
|D0ω|2 + 2γ|∇ × ω|2.

It is obtained by testing (1.1a) and (1.1c) against u and ω−ωeq respectively and integrating by parts. For
a full derivation, see Appendix C. With the relation (2.8) in hand we may define two classes of equilibria.

Definition 2.1. We say that a solution (u, p, ω, J) of (1.1a)–(1.1d) is an equilibrium if ∂t (u, p, ω, J) = 0
and we say that it is an energetic equilibrium if d

dtErel = 0 where the relative energy Erel is given as in (2.8)
by

Erel (u, p, ω, J) =

ˆ
T3

1

2
|u|2 +

1

2
J (ω − ωeq) · (ω − ωeq)−

1

2
Jωeq · ωeq. (2.9)

There are two reasons why one might study the energetic equilibria introduced in Definition 2.1: (1) they
arise naturally as the stationary points of a Lyapunov functional and (2) we believe that they play an
essential role in characterizing the long-time behaviour of the system.

We justify (1) now and postpone the justification of (2) until after the identification of the various
equilibria is carried out in Proposition 2.2. Since the relative energy Erel is both non-increasing in time and
bounded below we may indeed view it as a Lyapunov functional. The observation that d

dtErel 6 0 follows
immediately from (2.8) and the boundedness from below of Erel follows from the fact that the spectrum of
the microinertia J is invariant over time.

More precisely: as described in Section 2.1, the conservation of microinertia for a homogeneous microp-
olar fluid means that there exists some reference microinertia Jref to which J(t, x) is similar at all times
0 6 t < T and at every point x ∈ T3. Denoting by λmax the largest eigenvalue of Jref it follows that
the only non-positive term in Erel is bounded below: −Jωeq · ωeq > −λmax|ωeq|2, and hence Erel itself is
bounded below.
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We now identify all of the (sufficiently regular) equilibria which belong to each class as defined in
Definition 2.1. Recall that we are considering a homogeneous micropolar fluid whose microstructure has an
inertial axis of symmetry, which means that there are physical constants λ, ν > 0 such that the microinertia
has spectrum {λ, λ, ν}. In particular this microinertia tensor is physical precisely when 2λ > ν > 0. We
will assume thereafter that strict inequalities hold, i.e. 2λ > ν > 0. This assumptions means that the
microstructure is not degenerate, in the sense that it corresponds to a genuinely three-dimensional rigid
body (as opposed to a degenerate rigid body which would be lower-dimensional, e.g. because it is flat in
one or more directions).

Proposition 2.2. Let (u, p, ω, J) be a sufficiently regular solution of (1.1a)–(1.1d) where u has average
zero.

(1) If (u, p, ω, J) is an equilibrium then u = 0, p = 0, ω = ωeq = τ
2κe3, and J = diag(λ, λ, ν) = λI2⊕ ν.

(2) If (u, p, ω, J) is an energetic equilibrium then either it is an equilibrium or u = 0, p = 0, ω = ωeq,

and J = et
τ
2κ
RJ̄(0)e−t

τ
2κ
R⊕λ where R =

(
0 −1
1 0

)
and where the spectrum of J̄(0) is {λ, ν}. Here

‘⊕’ denotes the direct sum of two linear operators, see Section 2.7 to recall the precise definition.

In simpler words Proposition 2.2 says that for both equilibria and energetic equilibria the microstructure
rotates in the direction of the imposed microtorque, with one crucial difference: the unique equilibrium
corresponds to the inertial axis of symmetry of the microstructure being aligned with the microtorque,
giving rise to a constant microinertia, whilst the energetic equilibria consist of an orbit where the inertial
axis of symmetry rotates in the plane perpendicular to the microtorque, giving rise to a periodic microinertia
(with period 4πκ/τ).

Proof of Proposition 2.2. Since equilibria are energetic equilibria we begin by supposing that (u, p, ω, J) is
an energetic equilibrium. It follows from the energy-dissipation relation (2.8) that the dissipation vanishes,
i.e. ˆ

T3

µ

2
|Du|2 + 2κ

∣∣∣∣12∇× u− (ω − ωeq)
∣∣∣∣2 + α|∇ · ω|2 +

β

2
|D0ω|2 + 2γ|∇ × ω|2 = 0.

In particular: ω is constant and u has constant curl. Coupling this with the fact that u is divergence-free
we deduce that u is harmonic. Since u has average zero, it follows that u = 0, and hence that p = 0 (recall
that we require p to have average zero) and ω = ωeq.

So now we know from (1.1c) that the precession term ω×Jω =
(
τ
2κ

)2
e3×Je3 vanishes, and hence J has

the block form J = J̄⊕J33 for some 2-by-2 matrix J̄ . The conservation of microinertia (1.1d) now becomes

the ODE ∂tJ = [tenωeq, J ] = τ
2κ

[
R, J̄

]
⊕0 which may be solved explicitly to yield J̄(t) = et

τ
2κ
RJ̄(0)e−t

τ
2κ
R

and J33(t) = J33(0).
There are now two cases to consider: either J̄ has a repeated eigenvalue λ or J̄ has distinct eigenvalues

λ and ν. Since et
τ
2κ
RJ̄(0)e−t

τ
2κ
R is constant in time if and only if J̄(0), and hence J̄(t), has a repeated

eigenvalue, the result follows. �

As the next section suggests, we believe that the global attractors of (1.1a)–(1.1d) may be characterized
in terms of the equilibrium and the orbit of energetic equilibria. This is summarized in the conjecture
below, which is the second reason why energetic equilibria are worthy of attention.

Conjecture 2.3.

(1) If the microstructure is inertially oblong, i.e. λ > ν, then the orbit of energetic equilibria identified
in Proposition 2.2 is the global attractor of the system (1.1a)–(1.1d).

(2) If the microstructure is inertially oblate, i.e. λ < ν, then the equilibrium identified in Proposition
2.2 is the global attractor of the system (1.1a)–(1.1d).

A depiction of the equilibrium and the energetic equilibria configurations of the microstructure can be
found in Figure 3, where we also label each configuration with its relevant conjectured long-time behaviour.
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e3

(a) Unstable.

e3

(b) Globally attracting?

e3

(c) Globally attracting?

e3

(d) Unstable?

Figure 3. Depictions of the microstructure for the equilibrium (A, C) and an energetic
equilibrium (B, D) corresponding to both the oblong (A, B) and oblate cases (C, D). B and
C are conjectured to be globally attracting for the oblong and oblate cases respectively, D
is conjectured to be be unstable for the oblate case, and we prove in Theorem 1.1 that A is
unstable.

2.4. Heuristics for the long-time behaviour. In this section we briefly discuss heuristics for the long-
term behaviour of the system (1.1a)–(1.1d). The central element of the reasoning that follows is the
energy-dissipation relation (2.8). As remarked in Section 2.3, this relation tells us that the relative energy
Erel defined in (2.9) is non-increasing in time and bounded below. Let us therefore, for the sake of this
discussion, assume that Erel approaches its absolute minimum as time approaches +∞. In particular this
means that each term in Erel approaches its absolute minimum, from which we deduce that u approaches
zero, ω approaches ωeq (since J is strictly positive-definite at time t = 0 and hence strictly positive-
definite for all time), and −J33 approaches −λmax for λmax denoting the maximum eigenvalue of J , i.e.
λmax = max(λ, ν).

This last observation is precisely where the dichotomy between inertially oblong and inertially oblate
microstructure comes in. If the microstructure is inertially oblong, i.e. λ > ν, then J33 approaches λ which
means that J̄ must consist of the distinct eigenvalues λ, ν, and hence the global attractor is conjectured to
be the orbit of energetic equilibria. If the microstructure is inertially oblate, i.e. ν > λ, then J33 approaches
ν and hence J̄ has repeated eigenvalues equal to λ, such that the global attractor is conjectured to be the
equilibrium.

2.5. Heuristics for the origin of the instability. In this section we discuss heuristics for the origin of
the instability of the system (1.1a)–(1.1d). Beyond being helpful heuristics that physically motivate the
instability of the system, the ideas presented below actually form the core of our proof of the nonlinear
instability.

We begin with another energy-dissipation relation, which is associated with the linearization of the
problem (1.1a)–(1.1d) about its equilibrium. This relation is

d

dt
Elin :=

d

dt

ˆ
T3

(
1

2
|u|2 +

1

2
Jeqω · ω −

1

2

1

λ− ν
( τ

2κ

)2
|a|2
)

= −D (u, ω − ωeq) (2.10)

where a = (J31, J32) = (J13, J23) and where the dissipation D is given as in (2.8) by

D (u, ω) =

ˆ
T3

µ

2
|Du|2 + 2κ

∣∣∣∣12∇× u− ω
∣∣∣∣2 + α|∇ · ω|2 +

β

2
|D0ω|2 + 2γ|∇ × ω|2.

Note that only part of the micro-inertia J appears in (2.10), namely a = (J31, J32) which corresponds to
the products of inertia which describe the moment of inertia about the e1-axis and e2-axis, respectively,
when the microstructure rotates about the e3-axis. This is due to the fact that, as explained in detail in
Section 3.1, the linearized problem can de decomposed into blocks which do not interact with one another.
In particular the block governing the dynamics of u, ω, and a is the only block which produces non-trivial
dynamics, and it is this block which gives rise to (2.10).

Since the integrand of Elin in (2.10), viewed as a quadratic form on (u, ω, a), has negative directions
precisely when the microstructure is inertially oblong, i.e. when λ > ν, this suggests that the equilibrium
is unstable in that case.
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(a) Physical parameters: λ = 3.2, ν = 0.6, µ = 4.3,
κ = 3.3, α = 0.9, β = 6.8, γ = 0.4, τ = 4.4.
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(b) Physical parameters: λ = 3.6, ν = 1.2, µ = 2.4,
κ = 0.4, α = 5.3, β = 3.1, γ = 1.7, τ = 20.

Figure 4. An illustration of the fact that the instability is not exclusively due to the zero
mode: depending on the physical parameter regime the eigenvalue with largest real part
may or may not occur when k = 0. Here Mk denotes the symbol of the linearization of
(1.1a)–(1.1d) about the equilibrium.

We actually know a little bit more about the instability mechanism. If we denote by M (k), where
k ∈ Z3, the symbol of the linearized operator about the equilibrium, then we can compute the spectrum of
M(0) explicitly and see that is has exactly two unstable eigenvalues, which come as a conjugate pair. An
important point to note here is that the only nonzero components of the eigenvectors corresponding to this
conjugate pair are the components corresponding to a and ω̄, which denotes the horizontal components of
ω, i.e. ω̄ = (ω1, ω2). It is thus precisely a and ω̄ that are at the origin of the instability.

This is particularly interesting since M(0) is precisely (up to neglecting its components depending on
u) the linearization of the ODE 

J
dω

dt
+ ω × Jω = τe3 − 2κω

dJ

dt
= [Ω, J ]

about its equilibrium (ωeq, Jeq) =
(
τ
2κe3,diag (λ, λ, ν)

)
, where here ω and J are only time-dependent. This

ODE describes the rotation of a damped rigid body subject to a uniform torque, which tells us that
instability of the system (1.1a)–(1.1d) stems precisely from the instability of this ODE.

Finally note that, although this ODE plays a key role in explaining the instability mechanism, it does
not fully characterize it. To understand what we mean by this, recall that the linearization of the ODE
about its equilibrium describes the evolution of the zero Fourier mode of the linearized PDE. However,
the nonzero Fourier modes play a nontrivial role in the instability mechanism. Indeed numerics show that,
depending on the physical regime, the most unstable mode (i.e. that giving rise to the eigenvalue with the
largest positive real part) may or may not be the zero mode. This is shown in Figure 4.

2.6. Summary of techniques and plan of paper. Our technique for proving Theorem 1.1 is to employ
the nonlinear bootstrap instability framework first introduced by Guo-Strauss [GS95a], which is not so
much a black-box theorem as it is a strategy for proving instability. In broad strokes, the idea is to
construct a maximally unstable solution to the linearized equations and then employ a nonlinear energy
method to prove that this solution is nonlinearly stable, i.e. the nonlinear dynamics stay close to the linear
growing mode, which then leads to instability.

An essential feature of the Guo-Strauss bootstrap instability framework is that it does not require the
presence of a spectral gap, as is required for other standard methods used to prove nonlinear instability
(see for example [FSV97]). This is crucial for us since it is quite delicate to obtain spectral information
about the problem at hand, as discussed in more detail below. In particular, note that Proposition 3.9
tells us that a pair of conjugate eigenvalues of the linearized operator approach the imaginary axis as
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the wavenumber approaches infinity. As an immediate consequence, we may thus deduce that there is no
spectral gap.

In order to implement the bootstrap instability strategy we need four ingredients. The first is the
maximally unstable linear growing mode. This is a solution to the linearized equations (linearized around
the equilibrium) that grows exponentially in time (when measured in various Sobolev norms) at a rate
that is maximal in the sense that no other solution to the linearized equations grows more rapidly. The
second is a scheme of nonlinear energy estimates that allows us to obtain control of high-regularity norms of
solutions to the nonlinear problems in terms of certain low-regularity norms. This is the bootstrap portion
of the argument. The third is a low-regularity estimate of the nonlinearity in terms of the square of the
high-regularity energy, valid at least in a small energy regime. Finally, we need a local existence theory
for the nonlinear problem that is capable of producing solutions to which the bootstrap estimates apply.
With these ingredients in hand, we can then prove that the nonlinear solution stays sufficiently close to the
growing linearized solution that it must leave a ball of fixed radius within a timescale computed in terms
of the data.

In Section 3 we construct the maximally unstable solution to the linearized equations. A principal
difficulty is encountered immediately upon linearizing: the resulting (spatial) differential operator is not
self-adjoint. This is due entirely to the anisotropy of the microstructure, and in particular to the term
ω × Jω in (1.1c); indeed, in the case of isotropic microstructure this term vanishes and the linearized
operator becomes self-adjoint. The lack of self-adjointness means we have far fewer tools at our disposal,
and in particular it means that we cannot employ variational methods to find the maximal growing mode.

Since we work on the torus and the linearization is a constant coefficient problem, we are naturally
led to seek the maximal solution in the form of a growing Fourier mode solution. This leads to an ODE
in C8 of the form ∂tX̂k = B̂kX̂k, where k ∈ Z3 is the wavenumber and B̂k ∈ C8×8 is not Hermitian.
Without the precision tools associated to Hermitian matrices, we are forced to naively study the degree
eight characteristic polynomial of B̂k, which, due to the appearance of the physical parameters α, β, γ, κ,
µ, τ , λ, ν, in addition to the wave number k, is an unmitigated mess. Numerics (see Figure 4) suggest
that for any k ∈ Z3 the spectrum consists of a conjugate pair of unstable eigenvalues, a zero eigenvalue
(coming from the incompressibility condition), and five stable eigenvalues. However, due to the inherent

complexity of B̂k and its characteristic polynomial, we were unable to prove this, except in the case k = 0.
Failing at the direct approach of simply factoring the characteristic polynomial of B̂k, we instead employ

an indirect approach based on isolating the highest order (in terms of the wavenumber k) part of the char-
acteristic polynomial and deriving its asymptotic form as |k| → ∞. For this it’s convenient to parameterize
the matrices in terms of k ∈ R3 rather than Z3. Using this idea, the special form of the highest-order
term, and the implicit function theorem, we are then able to prove the existence of an unstable conjugate
pair of eigenvalues, smoothly parameterized by k ∈ R3 in a neighborhood of infinity. Remarkably, since
the neighborhood of infinity contains all but finitely many lattice points from Z3, we conclude from this
argument that for all but finitely many wavenumbers B̂k is unstable. Combining this with a number of
delicate spectral estimates and an application of Rouché’s theorem, we are then able to find k∗ ∈ Z3 with
the largest growth rate. From this and a Fourier synthesis we then construct the desired maximal growing
mode.

The lack of self-adjointness is also an issue when we seek to use spectral information about B̂k to obtain

bounds on the corresponding matrix exponential etB̂k . These bounds are required to obtain the bounds
on the semigroup generated by the linearization that verify that our growing mode is actually maximal

among all linear solutions. We only know that etB̂k is similar to its diagonal matrix up to a change of basis
matrix whose norm depends on k. Circumventing this issue requires a good understanding of the decay of
the spectrum of the symmetric part of B̂k as k becomes large, and the precise workaround is discussed at
the beginning of the proof of Proposition 3.11.

In Section 4 we derive the nonlinear bootstrap energy estimates and the nonlinearity estimate. Here
the primary difficulty is related to rewriting the problem in a way that prevents time derivatives from
entering the nonlinearity. If we were to naively rewrite (1.1c) by writing J∂tω = Jeq∂tω + (J − Jeq) ∂tω
and considering the term (J − Jeq) ∂tω as a remainder term, then we would then not be able to close the
estimates due to this time derivative being present as part of the nonlinear remainder. Instead we must
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multiply (1.1c) by JeqJ
−1, which solves the time derivative problem but significantly worsens the form of

the remaining terms in the nonlinearity. In spite of this, we are able to derive the appropriate estimates
needed for the bootstrap argument.

We delay the development of the final ingredient, the local existence theory, until Appendix A. Our
local existence theory is built on a nonlinear Galerkin scheme that employs the Fourier basis for the finite
dimensional approximations. To solve the resulting nonlinear, but finite dimensional, ODE we borrow
many of the nonlinear estimates from Section 4.

Section 5 combines the four ingredients to prove our instability result. This culminates in Theorem 5.2,
the main result of the paper. Finally, in Appendix B we record a number of auxiliary results that are used
throughout the main body of the paper.

2.7. Notation. We say a constant C is universal if it only depends on the various parameters of the
problem, the dimension, etc., but not on the solution or the data. The notation α . β will be used to
mean that there exists a universal constant C > 0 such that α 6 Cβ.

Let us also record here some basic notation for linear algebraic operations. For any w ∈ Rn we denote
by P‖ (w) and P⊥ (w) the orthogonal projections onto the span of w and its orthogonal complement,

respectively. More precisely: for any nonzero w, P‖ (w) = w⊗w
|w|2 and P⊥ (w) = I − w⊗w

|w|2 , whilst P‖ (0) = 0

and P⊥ (0) = I. For any v ∈ R2 and w ∈ R3 we write w̄ = (w1, w2), w̄⊥ = (−w2, w1), ṽ = (v1, v2, 0),
and ṽ⊥ = (−v2, v1, 0). Finally, let X1, X2, Y1, and Y2 be normed vector spaces, let L1 ∈ L (X1, Y1), and
let L2 ∈ L (X2, Y2). The direct sum of L1 and L2, denoted L1 ⊕ L2, is the bounded linear operator from
X1 ×X2 to Y1 × Y2 defined via, for every (f1, f2) ∈ X1 ×X2, (L1 ⊕ L2) (f1, f2) := (L1f1, L2f2).

3. Analysis of the linearization

To begin we record the precise form of the linearization of (1.1a)–(1.1d) about the equilibrium solution
(ueq, peq, ωeq, Jeq) = (0, 0, τ2κe3, diag(λ, λ, ν)) and introduce notation which allows us to write the linearized
problem in a compact form. Then in Section 3.1 we note that the linearized operator has a natural block
structure with only one block which gives rise to non-trivial dynamics. It is this component whose spectrum
we study in detail in Section 3.2. The results from Section 3.2 are then used to construct the semigroup
associated with the linearization in Section 3.3 and to construct a maximally unstable solution to the
linearized problem in Section 3.4.

The linearization is
∂tu = (µ+ κ/2) ∆u+ κ∇× ω −∇p, (3.1a)

Jeq∂tω = − (ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω)

+κ∇× u− 2κω + (α+ β/3− γ)∇∇ · ω + (β + γ) ∆ω, and (3.1b)

∂tJ = [Ωeq, J ] + [Ω, Jeq] (3.1c)

subject to ∇ · u = 0 which, for X = (u, ω, J), D = I3 ⊕ Jeq ⊕ IMat(3) (where IMat(3) denotes the identity

function on the space of 3-by-3 matrices), Λ (p) = (−∇p, 0, 0), and an appropriate linear operator L̃ can
be written more succintly as

∂tDX = L̃X + Λ (p) subject to ∇ · u = 0. (3.2)

3.1. The block structure. The linearization (3.1a)–(3.1c) can be decomposed into blocks which do not
interact with one another. Notably, only one of these blocks gives rise to non-trivial dynamics, so we will
identify this block before studying its spectrum in Section 3.2. More precisely: writing

J =

(
J̄ a
aT J33

)
,
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the linearization becomes

∂tu = (µ+ κ/2) ∆u+ κ∇× ω −∇p, (3.3a)

Jeq∂tω = κ∇× u− 2κω + (α+ β/3− γ)∇∇ · ω + (β + γ) ∆ω − (λ− ν)
τ

2κ
ω̃⊥ −

( τ
2κ

)2
ã⊥,(3.3b)

∂ta = (λ− ν) ω̄⊥ +
τ

2κ
a⊥, (3.3c)

∂tJ̄ =
τ

2κ

[
R, J̄

]
, and (3.3d)

∂tJ33 = 0 (3.3e)

subject to ∇·u = 0, where R is the 2-by-2 matrix given by R = e2⊗ e1− e1⊗ e2. In particular, if we write

Y = (u, ω, a) and D̄ = I3 ⊕ Jeq ⊕ I2 then (3.3a), (3.3b), and (3.3c) can be written as ∂tD̄Y = M̃Y + Λ (p)

subject to ∇·u = 0 for an appropriate operator M̃. In particular, since M̃ commutes with the application

of the Leray projector to u it suffices to study ∂tD̄Y = M̃ P̄Y , where P̄ := PL ⊕ I3 ⊕ I2 for PL denoting
the Leray projector. Recall that the Leray projector is the projection onto divergence-free vector fields,
which on the 3-torus can be written explicitly as PL = −∇×∆−1∇× (see Lemma B.20).

So finally, for B := D̄−1M̃ P̄ we have that L := D−1L̃P, where P := PL ⊕ I3 ⊕ IMat(3), can be written
as L = B ⊕ τ

2κ [R, · ] ⊕ 0. Note that using this notation we may write the linearized problem (3.2), after
Leray projection, as

∂tX = LX. (3.4)

This is a particularly convenient formulation since it is amenable to attack via semigroup theory.
What matters for the purpose of the spectral analysis carried out in the following section is that the

equations governing the non-trivial dynamics of the problem can be written as ∂tY = BY . The punchline
is that it suffices to study the spectrum of B, which is precisely what we do in Section 3.2 below.

3.2. Spectral analysis. In this subsection we study the spectrum of the operator B introduced in the
preceding section. Since our domain is the torus it is natural to consider the symbol B̂ of this operator,
which gives a matrix in C8×8 for each wavenumber k ∈ Z3. However, it will be more convenient for us to
parameterize these with a continuous wavenumber k ∈ R3; for each such k we define B̂k ∈ C8×8 according
to

B̂k :=−
(
µ+ κ

2

)
|k|2P⊥ (k) iκk× 0

J−1
eq (iκk×)P⊥ (k) −2κJ−1

eq − α̃|k|2J−1
eq P‖ (k)− γ̃|k|2J−1

eq P⊥ (k)−
(
1− ν

λ

)
τ
2κR33 − 1

λ

(
τ
2κ

)2
R32

0 (λ− ν)R23
τ
2κR22

 ,

(3.5)

where P‖ and P⊥ are as defined in Section 2.7, and

R22 = R =

(
0 −1
1 0

)
, R23 =

(
0 −1 0
1 0 0

)
, R32 =

0 −1
1 0
0 0

 , and R33 =

0 −1 0
1 0 0
0 0 0

 .

Note here that we have abused notation by writing iκk× as a place-holder to indicate the matrix corre-
sponding to the linear map z 7→ iκk × z.

It is somewhat tricky to extract useful spectral information from B̂k directly. Instead, we introduce a
sort of similarity transformation Mk := QkB̂kQ̄k in such a way that Mk is a real matrix, i.e. Mk ∈ R8×8

for each k ∈ R3, which carries the spectral information of B̂k. Here the matrices Qk, Q̄k ∈ C8×8 are defined
by

Qk := T (k)⊕ J1/2
eq ⊕ sR22 and Q̄k := T (k)⊕ J−1/2

eq ⊕
(
−s−1

)
R22,

where T (k) := ik×
|k| if k 6= 0, T (0) := 0, and s := −1√

λ−ν
τ
2κ . Unfortunately, Qk and Q̄k are not quite

invertible, so this isn’t exactly a similarity transformation. When k 6= 0, this is due to the fact that
(k, 0, 0) belongs to the kernels of both operators, a fact that is ultimately related to the divergence-free
condition for u, which reads k · ûk = 0 on the Fourier side. In principle we could remove the kernel and
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restore invertibility, but the resulting 7-by-7 matrices are less convenient to work with. As such, we will
stick with the 8-by-8 setup and find a work-around for the invertibility issue. Ultimately we will prove in
Propositions 3.10 and 3.11 that we can gain good spectral information about Mk, and it will follow from
Definition 3.1 and Lemmas 3.2 and B.2 that the spectrum of B̂k coincides with that of Mk. Note that for
all these k-dependent matrices we will write equivalently Mk or M (k).

An important observation is that the matrix Mk ∈ R8×8 may be decomposed into its symmetric part
Sk ∈ R8×8 and its antisymmetric part A ∈ R8×8 such that A is independent of k. More precisely

Sk =

−
(
µ+ κ

2

)
|k|2P⊥ (k) κ|k|P⊥ (k) J

−1/2
eq 0

κ|k|J−1/2
eq P⊥ (k) −2κJ−1

eq − α̃|k|2J−1/2
eq P‖ (k) J

−1/2
eq − γ̃|k|2J−1/2

eq P⊥ (k) J
−1/2
eq φI32

0 φI23 0

 (3.6)

and

A = 0⊕ cR33 ⊕ dR22, (3.7)

where

φ =

√
1− ν

λ

τ

2κ
, c =

(ν
λ
− 1
) τ

2κ
, and d =

τ

2κ
. (3.8)

Note that Mk is written out explicitly in all its gory details in Appendix D.
We now turn to the issue of proving that the spectra of B̂k and Mk coincide. To do this we will need to

use the notion of linear maps acting on quotient spaces. Here we quotient out by the spaces Vk defined as
V0 := span

{
(v, 0, 0)

∣∣ v ∈ R3
}

as well as, for any nonzero k ∈ R3, Vk := span (k, 0, 0).

Definition 3.1 (Linear maps acting on quotient spaces). Let A ∈ Cn×n and let V be a subspace of Cn.
We say that A acts on Cn/ V if and only if kerA = V and imA ⊆ V ⊥, where V ⊥ is the orthogonal
complement relative to the standard Hermitian structure on Cn.

We refer to Lemma B.2 for the key property of linear maps acting on quotient spaces which we will use
in the sequel, namely conditions under which two matrix representations of such maps are equivalent, even
when the ‘change of basis’ matrices involved are not invertible. We now prove that the matrices we are
dealing with here do satisfy the hypotheses of Lemma B.2.

Lemma 3.2. For any k ∈ R3, B̂k, Qk, and Q̄k act on C8/ Vk and QkQ̄k = Q̄kQk = projV ⊥k
.

Proof. First we consider B̂k for k 6= 0. Since B̂†k (k, 0, 0) = B̂k (k, 0, 0) = 0, where † denotes the conjugate

transpose, we know that im B̂k ⊆ Vk and that Vk ⊆ ker B̂k, so we only have to show that ker B̂k ⊆ Vk. Let

y = (v, θ, b) ∈ ker B̂k. The third row of (3.5) tells us that b = 2κ(λ−ν)
τ θ̄ and hence

0 = D̄B̂ky · y = −µ|k|2|v⊥|2 − 2κ

∣∣∣∣12 ik × v − θ
∣∣∣∣2 − α̃|k|2∣∣θ‖∣∣2 − γ̃|k|2|θ⊥|2.

Therefore θ = v⊥ = 0, and hence also b = 0, such that indeed y =
(
v‖, 0, 0

)
∈ Vk. So indeed B̂k acts on

C8/ Vk.

Now we consider B̂0, proceeding essentially as we did above for the case k 6= 0. Since B̂†0 (v, 0, 0) =

B̂0 (v, 0, 0) = 0 for any v ∈ R3 it follows that im B̂0 ⊆ V0 and that V0 ⊆ ker B̂0. Now let y = (v, θ, b) ∈ ker B̂0

and observe that, as above, b = 2κ(λ−ν)
τ θ̄ and that hence 0 = D̄B̂0y · y = −2κ|θ|2. Therefore θ = 0 and

b = 0 such that indeed y = (v, 0, 0) ∈ V0. So ker B̂0 ⊆ V0 and thus indeed B̂0 acts on C8/ V0.

We now turn our attention to Qk and Q̄k. Since (k, 0, 0)TQk = (k, 0, 0)T Q̄k = (k · T (k)) ⊕ 0 ⊕ 0 = 0
for any nonzero k ∈ R3 and since (v, 0, 0) ·Q0 = (v, 0, 0) · Q̄0 = v · T (0)⊕ 0⊕ 0 = 0, we may deduce that

imQk, im Q̄k ⊆ V ⊥k for all k ∈ Z3. Now observe that, since J
1/2
eq and R22 are invertible, we deduce that

kerQk = ker Q̄k = (kerT (k)) ⊕ 0 ⊕ 0. Therefore, since kerT (k) = span {k} when k is nonzero and since
kerT (0) = R3, we have that indeed kerQk = ker Q̄k = Vk for all k ∈ Z3, i.e. Qk and Q̄k act on C8/ Vk for
all k ∈ Z3.
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Finally observe that, since R2
22 = −I2, it follows that QkQ̄k = Q̄kQk = T (k)2⊕I3⊕I2, where T (0)2 = 0

and T (k)2 = (ik×)2

|k|2 = projspan{k}⊥ for k 6= 0. Note that we have used the ε-δ identity εaijεakl = δikδjl−δilδjk
to deduce that (k×)2 = −|k|2 projspan{k}⊥ . So indeed QkQ̄k = Q̄kQk = projV ⊥k

. �

We now record how Mk behaves under transformations of the form k 7→ −k and k = (k̄, k3) 7→ (H̄k̄, k3)
for H̄ an orthogonal map. This comes in handy when constructing the maximally unstable solution in
Section 3.4.

Lemma 3.3 (Equivariance and invariance of M). Let H be a horizontal rotation, i.e. H ∈ R3×3 such that

H = H̄ ⊕ 1 for some 2-by-2 orthogonal matrix H̄. We call H̃ := H ⊕H ⊕ H̄ the joint horizontal rotation
associated with H.

(1) M is equivariant under horizontal rotations, i.e. for any k ∈ R3 and any horizontal rotation H,

M (Hk) = H̃M (k) H̃T and
(2) M is even, i.e. for any k ∈ R3, M (−k) = M (k).

Proof. Note that k 7→ P‖ (k) , P⊥ (k) are both even and equivariant under horizontal rotations, i.e., for any

horizontal rotation H, P‖ (Hk) = HP‖ (k)HT and similarly for P⊥, whilst k 7→ |k| is even and invariant
under horizontal rotations. We can therefore write

S (k) =

A (k) B (k) 0
C (k) −2κJ−1

eq +D (k) φI32

0 φI23 0


for some A,B,C,D which are equivariant under horizontal rotations and even. It follows immediately that
M is even. Now let H be a horizontal rotation. Since H̄I23H = I23, HI32H̄ = I32, and since H commutes

with J−1
eq one may readily compute that S (Hk) = H̃S (k) H̃T . Finally, since two-dimensional rotations

(i.e. elements of O (2)) commute with one another, A = H̃AH̃T and so indeed M is equivariant under
horizontal rotations. �

We now obtain some fairly crude bounds on the spectrum of Mk in Lemmas 3.5, 3.6, and 3.7. These
bounds are nonetheless essential in the proofs of Propositions 3.10 and 3.11. As a first step in obtaining
these bounds we identify the quadratic form associated with Sk, the symmetric part of Mk, in Lemma 3.4.

Lemma 3.4 (Quadratic form associated with Sk). For any y = (v, θ, b) ∈ R3 × R3 × R2 = R8 and any
k ∈ R3,

S (k) y · y = −µ|k|2|v⊥|2 − 2κ

∣∣∣∣12 |k|v⊥ − J−1/2
eq θ

∣∣∣∣2 − α̃|k|2∣∣∣∣(J−1/2
eq θ

)
‖

∣∣∣∣2 − γ̃|k|2∣∣∣(J−1/2
eq θ

)
⊥

∣∣∣2 + 2φθ̄ · b.

where, for any w ∈ R3, w‖ := projk w and w⊥ := (I − projk)w, and φ is as in (3.8).

Proof. This follows immediately from the definition of S in (3.6). �

We now use Lemma 3.4 to obtain upper bounds on the eigenvalues of S.

Lemma 3.5 (Spectral bounds on Sk). For any k ∈ R3, it holds that maxσ (Sk) 6 min
(
φ, Cσ
|k|2

)
, where

Cσ := φ2λ
min(α̃,γ̃) and φ is as in (3.8).

Proof. Let k ∈ R3 and let y = (v, θ, b) ∈ R3 × R3 × R2. By Lemma 3.4

S (k) y · y 6 −α̃|k|2
∣∣∣∣(J−1/2

eq θ
)
‖

∣∣∣∣2 − γ̃|k|2∣∣∣(J−1/2
eq θ

)
⊥

∣∣∣2 + 2φθ̄ · b (3.9)

from which it follows that S (k) y · y 6 φ
(
|θ̄|2 + |b|2

)
and hence that maxσ (Sk) 6 φ. Now observe that

− α̃|k|2
∣∣∣∣(J−1/2

eq θ
)
‖

∣∣∣∣2 − γ̃|k|2∣∣∣(J−1/2
eq θ

)
⊥

∣∣∣2 6 −min (α̃, γ̃) |k|2
∣∣∣J−1/2
eq θ

∣∣∣2 6 − 1

λ
min (α̃, γ̃) |k|2|θ̄|2. (3.10)
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Combining (3.9) and (3.10) tells us that, for k 6= 0,

S (k) y · y 6 −φ
2|k|2
Cσ

|θ̄|2 + 2φθ̄ · b = −φ
2|k|2
Cσ

∣∣∣∣θ̄ − Cσ
φ|k|2 b

∣∣∣∣2 +
Cσ
|k|2 |b|

2 6
Cσ
|k|2 |y|

2

from which we deduce that maxσ (Sk) 6
Cσ
|k|2 . �

The bounds on S from Lemma 3.5 coupled with elementary considerations from linear algebra allow us to
deduce bounds on the real parts of the eigenvalues of Mk.

Lemma 3.6 (Bounds on the real parts of eigenvalues of Mk). For any k ∈ R3, and with φ as in (3.8), it
holds that max Reσ (Mk) 6 φ.

Proof. This follows immediately from Lemmas 3.5 and B.3. �

To conclude this batch of spectral estimates we obtain bounds on the imaginary parts of the eigenvalues
of Mk as a corollary of the Gershgorin disk theorem (Theorem B.4).

Lemma 3.7 (Bounds on the imaginary parts of eigenvalues of Mk). For any k ∈ R3 it holds that

max|Imσ (Mk)| 6
√

7τ
2κ .

Proof. This follows from Corollary B.5 since

||A||22 = 2
(
c2 + d2

)
=
( τ

2κ

)2
(1− 2ν (ν − 2λ)) 6

( τ
2κ

)2
.

�

We now record some useful facts about the characteristic polynomial p of Mk. Computing p was done
by using a computer algebra system, and we thus record Mk in Appendix D in a form which can readily
be used for computer-assisted algebraic manipulations.

Upon computing p we observe that it is a polynomial in k of degree 10 and that it only depends on even
powers of |k̄| and k3. Therefore we may write

p (x, k) =

5∑
q=0

rq
(
x, |k̄|, k3

)
(3.11)

where each rq is a polynomial in
(
x, |k̄|, k3

)
which is homogeneous of degree 2q in

(
|k̄|, k3

)
. In particular:

r5

(
x, |k̄|, k3

)
= C0x

(
x2 + d2

)
|k|10 and r4

(
x, |k̄|, k3

)
= |k|6

(
t1 (x) |k̄|2 + t2 (x) k2

3

)
(3.12)

where
ti (x) = x2

(
−Ci,0 + Ci,1x+ Ci,2

(
x2 + d2

))
(3.13)

and

C0 = (µ+ κ/2)2 (α+ 4β/3) (β + γ)2/(νλ2),

C1,0 = (α+ 5β/3 + γ) (β + γ) (µ+ κ/2)2φ/(νλ), C2,0 = 2 (α+ 4β/3) (β + γ) (µ+ κ/2)φ/(νλ),

C1,1 = C2,1 = 2κ (µ+ κ/2) (β + γ) (2µ (α+ 4β/3) + (µ+ κ/2) (β + γ)) /(νλ2),

C1,2 = (µ+ κ/2) (β + γ) (2 (α+ 4β/3) (β + γ) + (µ+ κ/2) ((α+ 5β/3 + γ)λ+ (α+ 4β/3) ν)) /(νλ2) and

C2,2 = 2 (µ+ κ/2) (β + γ) ((α+ 4β/3) (β + γ) + (µ+ κ/2) ((α+ 4β/3)λ+ (β + γ) ν/2)) /(νλ2).

The exact dependence of these constants on the various physical parameters is not of concern here, since
all that matters is that all these constants are strictly positive, i.e. C0, Ci,j > 0 for all i, j.

We now use Rouché’s Theorem (c.f. Theorem B.10) and our explicit expressions for the leading factors
(with respect to |k|) of the characteristic polynomial p of Mk to control the number of eigenvalues remaining
within bounded neighbourhoods of the origin as |k| becomes large. This is stated precisely in Lemma 3.8
below, which is another ingredient of the proof of Proposition 3.10.

Lemma 3.8 (Isolation of some eigenvalues of M for large wavenumbers). For any R > τ
2κ there exist

KI > 0 such that for any k ∈ R3, if |k| > KI then there are precisely three eigenvalues of Mk in an open
ball of radius R about the origin.
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Proof. Let k ∈ R3 be nonzero, let p (·, k) denote the characteristic polynomial of Mk, and let us write
s := p − r5 for r5 as in (3.12). The key observations are that r5 has precisely three roots in BR when
R > τ

2κ and that s is lower-order in k than r5. The result then follows from Rouché’s Theorem since r5

dominates s for large |k|.
More precisely, let R > d = τ

2κ and let r̃5 (x) := C0x
(
x2 + d2

)
for C0 as in (3.12) such that r5 (x, k) =

r̃5 (x) |k|10. Since r̃5 is a polynomial whose roots are away from ∂BR, since s (x, k) is a polynomial of degree

8 in k, and since ∂BR is compact, it follows that Cr := inf∂BR |r̃5| > 0 and that Cs := sup
x∈∂BR
k 6=0

s(x,k)
|k|8 <∞.

So pick KI :=
√

Cs
Cr

and observe that for any k ∈ Z3, if |k| > KI then, on ∂BR,

|r5 (·, k)| = |r̃5||k|10 > Cr|k|8K2
I >

Cr
Cs
K2
I |s (·, k)| = |s (·, k)|. (3.14)

Since r5 (·, k) has three roots in BR, namely 0 and ± τ
2κ , we may use (3.14) to deduce from Theorem B.10

that p (·, k) has three roots in BR. �

In Proposition 3.9 below we use the Implicit Function Theorem to identify the trajectories of some
unstable eigenvalues of Mk when |k| is large. In particular we will see in the proof of Proposition 3.10
that, combining this result with earlier results from this section, we may deduce that these eigenvalues are
the most unstable eigenvalues of Mk for large k. Here we say that an eigenvalue is unstable when it has
strictly positive real part.

Proposition 3.9 (Trajectories of some eigenvalues of M for large wavenumbers). There exists KT > 0
and a function z :

{
k ∈ R3 : |k| > KT

}
→ C, which is continuously differentiable in the real sense (i.e.

after identifying C with R2 in the canonical way), such that

(1) for every k ∈ R3, if |k| > KT then
(a) z (k) and z (k) are eigenvalues of M (k) and
(b) Re z (k) > 0, and

(2) z (k)→ iτ
2κ as |k| → ∞.

Proof. Recall that d = τ
2κ and let p (·, k) denote the characteristic polynomial of Mk. We proceed in three

steps: first we define s to be essentially |ε|5p
(
· , ε−1/2

)
(such that the study of s about zero is equivalent

to the study of p about infinity) and verify that we may apply the Implicit Function Theorem to s about
(x, ε) ∼ (id, 0), second we deduce from explicit computations of p (namely (3.12)) that, for small nonzero

ε, s has two roots with strictly positive real parts, and third we write k ∼ ε−1/2 to turn our result from
step 2 about ε ∼ 0 into a result about k ∼ ∞ which allows us to conclude that, for large |k|, p has two
roots with strictly positive real part.

Step 1: Recall (from (3.11) and the preceding discussion) that p only depends on |k̄| and k3, so we
may write p (x, k) = p̃

(
x, |k̄|, k3

)
. Now define, for any x ∈ C and any ε = (εh, εv) ∈ R2

>0, s (x, ε) :=

|ε|51 p̃
(
x,

(
√
εh,
√
εv)

|ε|1

)
, where | · |1 denotes the l1 norm. It follows from (3.11) that s (x, ε) =

∑5
q=0 uq (x, ε)

for u5−q (x, ε) := |ε|51 rq
(
x,
√
εh
|ε|1 ,

√
εh
|ε|1

)
. Since the only dependence of rq on k is through

(
|k̄|, k3

)
, i.e. since

rq
(
x, |k̄|, k3

)
= r̃q

(
x, |k̄|2, k2

3

)
for some r̃q, we may write rq

(
x, |k̄|, k3

)
= Cq (x) •

(
|k̄|2, k2

3

)⊗q
for some

polynomial Cq. In particular, it follows that

u2 (x, ε) = C3 (x) • ε
⊗3

|ε|1
, u3 (x, ε) = |ε|1C2 (x) • ε⊗2, u4 (x, ε) = |ε|31C1 (x) , and u5 (x, ε) = |ε|51C0 (x)

such that, for q > 2, uq (x, 0) = 0 and both ∂xuq (x, 0) = 0 and ∇εuq (x, 0) = 0. Moreover we may compute,
using (3.12), that

u0 (x, ε) = C0x
(
x2 + d2

)
=: u0 (x) and u1 (x, ε) = (t1 (x) , t2 (x)) · ε =: ū1 (ε) . (3.15)

So finally, for v := s − (u0 + u1) =
∑5

q=2 uq, we have that s (x, ε) = u0 (x) + ū1 (x) · ε + v (x, ε) where

v (x, 0) = 0 and both ∂xv (x, 0) = 0 and ∇εv (x, 0) = 0. In particular, note that s (id, 0) = u0 (id) = 0 and
that ∂xs (id, 0) = u′0 (id) = −2C0d

2 6= 0.
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Step 2: By step 1 we may apply Theorem B.11 to s about id to deduce that there exists a number ξ > 0
and a function w : B+

1,ξ → C which is continuously differentiable in the real sense, where B+
1,ξ is the inter-

section of the first quadrant and the l1-ball of radius ξ, i.e. B+
1,ξ := {(εh, εv) | εh, εv > 0 and εh + εv < ξ},

such that w (0) = id, s (w (ε) , ε) = 0 for every ε ∈ B+
1,ξ, and ∇εw (0) = −∇εs(id,0)

∂xs(id,0) . Moreover we may

compute from (3.13) and (3.15) that ∇εw (0) = 1
2C0

(
C1,0 + iC1,1d
C2,0 + iC2,1d

)
, such that Re∇εw (0) ∈ R2

>0. It

follows that there exists 0 < σ < ξ such that Rew (ε) > 0 for all ε ∈ B+
1,σ.

Step 3: Pick KT := 1/
√
σ and define z via, for every k ∈ R3 such that |k| > KT , z (k) := w (ε (k))

for ε (k) := 1
|k|4
(
|k̄|2, k2

3

)
. Note that z is well-defined on

{
k ∈ R3 : |k| > KT

}
since, for every k ∈ R3,

|k| > KT ⇐⇒ |ε (k)| = 1/|k|2 < σ. Now observe that, for every k ∈ R3 such that |k| > KT , p̃ (z (k) , k) =
1
|ε|51
s (w (ε (k)) , ε (k)) = 0, i.e. indeed z (k) is a root of p (·, k) and hence an eigenvalue of Mk. Since Mk

is a matrix with real entries, we may deduce that z̄ (k) is also an eigenvalue of Mk. Moreover it follows
from step 2 above that Re z (k) > 0 for every |k| > KT . Finally, note that since w (0) = id, since w is
continuous, and since ε (k) is continuous away from k = 0, we may conclude that z (k)→ id as k →∞. �

We now have all the ingredients in hand to prove one of the two key results of this section, namely
Proposition 3.10. This result tells us that there exists a most unstable eigenvalue of Mk, i.e. an eigenvalue
with largest strictly positive real part.

Proposition 3.10 (Maximally unstable eigenvalues). There exist k∗ ∈ Z3 and w∗ ∈ C with strictly positive
real part such that

(1) w∗ is an eigenvalue of M (k∗) and
(2) for every k ∈ Z3 and every eigenvalue w of M (k), Rew 6 Rew∗.

We define η∗ := Rew∗.

Proof. The key observations are that: (i) by combining Proposition 3.9 and Lemmas 3.6 and 3.7, we can
show that for |k| large enough, the eigenvalues whose trajectory can be obtained via the implicit function
theorem in Proposition 3.9 are the most unstable eigenvalues (i.e those with the largest real part) and that
(ii) by Proposition 3.9 we know that Re z (k) → 0 as |k| → ∞. We prove the first observation in step 1
below, and in step 2 we use the first step and the second observation to conclude.

Step 1: We show that there exists K∗ > 0 such that, for every |k| > K∗, Re z (k) = max
w∈σ(M(k))

Rew.

Pick R > φ2 + 7d2 and note that since R > d = τ
2κ we may pick KI = KI (R) as in Lemma 3.8. Let K∗ :=

max (KI ,KT ) for KT as in Proposition 3.9, let H denote the half-slab
{
w ∈ C

∣∣ Re z 6 φ, |Im z| 6
√

7d
}

,
and let BR ⊆ C denote the open ball of radius R about the origin.

Let k ∈ Z3 such that |k| > K∗. By Lemmas 3.6 and 3.7 we know that all the eigenvalues ofM (k) are inH,
and by Lemma 3.8 we know that exactly three eigenvalues of M (k) are in BR∩H. Moreover, by Proposition
3.9 we know that the three eigenvalues of M (k) in BR ∩H are precisely 0 (since M (k) (k, 0, 0) = 0), z (k),
and ¯z (k), for z as in Proposition 3.9.

In particular, since R > φ2 + 7d2 such that no points in the half-slab H have larger real parts than all
points in BR ∩H, it follows that indeed the eigenvalues of M (k) with largest real part are z (k) and ¯z (k).

Step 2: We want to show that the supremum

sup
k∈Z3

max
w∈σ(M(k))

Rew

is strictly positive and attained. It is clearly strictly positive since for any k ∈ Z3 such that |k| > KT it
follows from Proposition 3.9 that z (k) is an eigenvalue of M (k) with strictly positive real part. To see
that this supremum is attained, we write for simplicity

s (E) := sup
k∈E

max
w∈σ(M(k))

Rew

for any E ⊆ Z3. We thus want to show that s
(
Z3
)

is attained. On one hand, by step 1, the supremum

s
({
k ∈ Z3 : |k| > K∗

})
is achieved. Indeed, we may pick the eigenvalue z (kcrit) of M (kcrit) corresponding

to any kcrit such that |kcrit| is equal to the smallest integer strictly larger than K∗ which can be written as
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Figure 5. A pictorial summary of step 1 of the proof of Proposition 3.10.

a sum of squares of integers. On the other hand the supremum s
({
k ∈ Z3 : |k| 6 K∗

})
is attained since

it is taken over a finite set. Since Z3 is the union of
{
k ∈ Z3 : |k| > K∗

}
and

{
k ∈ Z3 : |k| 6 K∗

}
we may

conclude that the supremum s
(
Z3
)

is attained. �

We conclude this section with the second of its two key results: Proposition 3.11. This result is essential
in the construction of the semigroup associated with the linearized operator. This construction is performed
in Section 3.3 below.

Proposition 3.11 (Uniform bound on the matrix exponentials). Let η∗ be as in Proposition 3.10. There
exists CS > 0 such that for every k ∈ Z3 and every t > 0, |etMk | 6 CS

(
1 + t8

)
eη∗t. As a consequence, for

every ε > 0 there exists CS (ε) > 0 such that for every k ∈ Z3 and every t > 0, |etB̂k | 6 CS (ε) e(η∗+ε)t.

Proof. Naively, one may seek to use the bound from Corollary B.8 to control etMk . However, this bounds
only holds up to a constant dependent on k. To circumvent this issue, we observe that alternatively one
may bound etMk using its symmetric part (as per Lemma B.3). Coupling this observation with the fact
that we have an upper bound which decays as |k|−2 for the spectrum of Sk, namely Lemma 3.5, we see
that for sufficiently large |k| the exponential etMk grows at most like eη∗t. It thus suffices to use Corollary
B.8 for the finitely many modes with non-large |k|, in which case the dependence of the constant on k is
harmless.

More precisely: let KS :=
√

Cσ
η∗

where Cσ is as in Lemma 3.5, write C (k) := C (Mk) for C (M) as

in Corollary B.8, and let CS := max

(
1, max
|k|<KS

C (k)

)
> 0. Then, for every k ∈ Z3, if |k| > KS then

Cσt
|k|2 6

Cσt
K2
S

= η∗t and hence, by Lemmas B.3 and 3.5,
∣∣∣∣etMk

∣∣∣∣
L(l2, l2)

6 e
Cσt

|k|2 6 eη∗t, and if |k| < KS then

by Corollary B.8, the choice of CS , and Proposition 3.10∣∣∣∣etMk
∣∣∣∣
L(l2, l2)

6 C (k)
(
1 + t8

)
e(max Reσ(Mk))t 6 CS

(
1 + t8

)
eη∗t

from which the first part of the result follows. To obtain the second part we simply use the fact that
polynomials of arbitrarily large degree can be controlled by exponentials of arbitrarily slow growth, i.e.
the fact that for every j ∈ N and every ε > 0 there exists C = C (j, ε) > 0 such that, for every t > 0,
1 + tj 6 Ceεt. �



INSTABILITY OF AN ANISOTROPIC MICROPOLAR FLUID 19

3.3. The semigroup. In this section we proceed in a standard fashion and use Proposition 3.11 to con-
struct the semigroup associated with the linearized problem as recorded after Leray projection in (3.4).

Proposition 3.12 (Semigroup for the linearization). Let η∗ be as in Proposition 3.10. For every t > 0 we

define the operator etB on L2
(
T3, R8

)
via the Fourier multiplier

(
etB
)∧

(k) := etB̂k for every k ∈ Z3 and we

define etL as etL := etB⊕et[Ω̄eq , · ]⊕1, i.e. for every
(
f, J̄ , J33

)
∈ L2

(
T3, R8

)
×L2

(
T3, R2×2

)
×L2

(
T3, R

)
,

etL
(
f, J̄ , J33

)
:=
(
etBf, et[Ω̄eq , · ]J̄ , J33

)
.

Then
(
etL
)
t>0

is a semigroup on L2 and for every ε > 0 it is an (η∗ + ε)-contractive semigroup with

domain H2
(
T3, R6

)
× L2

(
T3, R2

)
× L2

(
T3, R2×2

)
× L2

(
T3, R

)
=: D and generator L.

Moreover, for every ε > 0 there exists a constant CS (ε) > 0 such that, for every p, q, r > 0 and every
t > 0, etL is a bounded operator on Hp,q,r := Hp

(
T3,R8

)
×Hq

(
T3,R2×2

)
×Hr

(
T3,R

)
such that for any(

f, J̄ , J33

)
∈ Hp,q,r,

∣∣∣∣etL (f, J̄ , J33

)∣∣∣∣2
Hp,q,r 6 C

2
S (ε) e2(η∗+ε)t

∣∣∣∣(f, J̄ , J33

)∣∣∣∣2
Hp,q,r , where∣∣∣∣(f, J̄ , J33

)∣∣∣∣2
Hp,q,r := ||f ||2Hp +

∣∣∣∣J̄∣∣∣∣2
Hq + ||J33||2Hr .

Finally: the semigroup propagates incompressibility. More precisely: let

X0 =
(
u0, ω0, a0, J̄0, (J33)0

)
∈ L2

(
T3, R3

)
× L2

(
T3, R3

)
× L2

(
T3, R2

)
× L2

(
T3, R2×2

)
× L2

(
T3, R

)
and let X (t, ·) =

(
u, ω, a, J̄ , J33

)
(t, ·) := etLX0 for all t > 0. If u0 is incompressible, in a distributional

sense, then u (t, ·) is incompressible for all time t > 0.

Proof. Step 1: We begin by constructing the semigroup etB. Note that, in this proof, all matrix norms
are norms in L

(
l2, l2

)
. To construct this semigroup we will use Proposition B.9 and must therefore verify

that (i) for every ε > 0 there exists CS (ε) > 0 such that for every k ∈ Z3 and every t > 0,
∣∣∣∣∣∣etB̂k ∣∣∣∣∣∣ 6

CS (ε) e(η∗+ε)t and that (ii) there exists CD > 0 such that for every (v, θ, b) ∈ R3×R3×R2,
∣∣∣B̂k (v, θ, b)

∣∣∣ 6
CD

(
〈k〉4

(
|u|2 + |ω|2

)
+ |a|2

)
. Note that (ii) follows immediately from the expression provided for B̂ in

(3.5). To obtain (i) we note that it follows from Lemmas 3.2 and B.2 that

B̂nk =
(
Q̄kMkQk

)n
= Q̄kM

n
kQk for every n > 1

whilst B̂0
k = id = projVk + projV ⊥k

= projVk +Q̄kM
0
kQk. Therefore

etB̂k = projVk + Q̄ke
tMkQk (3.16)

where

1

2

(
||Qk||2 +

∣∣∣∣Q̄k∣∣∣∣2) 6 ∣∣∣∣∣∣∣∣ ik×|k|
∣∣∣∣∣∣∣∣2 +

1

2

(∣∣∣∣∣∣J1/2
eq

∣∣∣∣∣∣2 +
∣∣∣∣∣∣J−1/2

eq

∣∣∣∣∣∣2)+
1

2

(
s+ s−1

)
||R||2 6 Cb (3.17)

for some Cb > 0 independent of k. We may thus deduce from (3.16), (3.17), and Proposition 3.10 that (i)
holds.

With (i) and (ii) in hand we apply Proposition B.9 and obtain that etB is a semigroup on L2 which is
(η∗ + ε)-contractive on all Hr spaces, for r > 0, with domain H2

(
T3, R3 × R3

)
×L2

(
T3, R3

)
and generator

B.
Step 2: Now we construct the full semigroup etL. First observe that, since

[
Ω̄eq, ·

]
is a finite-dimensional

linear operator,
(
et[Ω̄eq , · ]

)
t>0

is a semigroup on R2×2 and moreover

the domain of
(
et[Ω̄eq , · ]

)
t>0

is R2×2 and its generator is
[
Ω̄eq, ·

]
. (3.18)

Moreover, Lemma B.14 tells us that
[
Ω̄eq, ·

]
is antisymmetric, and thus it follows from Lemma B.6 that(

et[Ω̄eq , · ]
)
t>0

is a contractive semigroup, i.e.∣∣∣∣∣∣et[Ω̄eq , · ]∣∣∣∣∣∣
L(l2,l2)

6 1. (3.19)



20 ANTOINE REMOND-TIEDREZ AND IAN TICE

From (3.19) and step 1 it follows that etL = etN ⊕ et[Ω̄eq , · ]⊕ 1 is a direct sum of semigroups which are, for
every ε > 0, (η∗ + ε)-contractive (since contractive semigroups are η-contractive for any η > 0 and since
1 = e0 is the trivial semigroup, which is contractive), and is hence (η∗ + ε)-contractive itself. Moreover, it
follows from the observation (3.18) and step 1 that the domain and generator of etL are as claimed. Finally
the Hp,q,r estimates follow immediately from (3.19) and the Hr estimates of step 1, upon observing that

since, for each t > 0, et[Ω̄eq , · ] is a linear operator independent of the spatial variable x, it commutes with
partial derivatives and with the Fourier transform.

Step 3: We now prove that incompressibility is propagated. Let us write Y (t, ·) := (u, ω, a) (t, ·). The

key observation is that, as a consequence of Lemma 3.2, ∂t

(
(k, 0, 0) · Ŷk

)
= (k, 0, 0) · B̂kŶk = 0 for every

k ∈ Z3. In particular, if ∇ ·0 u = 0 then indeed

(∇ · u) (t, ·) =
∑
k∈Z3

(k, 0, 0) · Ŷk (t) =
∑
k∈Z3

(k, 0, 0) · Ŷk (0) = ∇ · u0 = 0.

�

3.4. A maximally unstable solution. In this section we construct a maximally unstable solution of the
linearized problem (3.4). Recall that (3.4) is obtained from the linearized problem by Leray projection. In
particular, since (3.4) is invariant under the transformation u 7→ u+C for any constant C, the component
corresponding to u in this maximally unstable solution will have average zero (this is as expected in light
of the Galilean equivariance of the original system of equations, as discussed at the end of Section 2.1).
Note that, just as Proposition 3.12 is essentially a semigroup version of Proposition 3.11, Proposition 3.13
below is essentially a semigroup version of Proposition 3.10.

Proposition 3.13 (Maximally unstable solution). Let η∗ be as in Proposition 3.10. There is a smooth
function Y : [0,∞) × T3 → R8 such that ∂tY = BY and ||Y (t, ·)||Hr(T3,R8) = eη∗t||Y (0, ·)||Hr(T3,R8) for

every t > 0 and every r > 0. Moreover, if we write Y = (u, ω, a) ∈ R3 × R3 × R2, then ∇ · u = 0, and for
every t > 0 and every r > 0

||u (t, ·)||Hr(T3,R3) = eη∗t||u (0, ·)||Hr(T3,R3),

||ω (t, ·)||Hr(T3,R3) = eη∗t||ω (0, ·)||Hr(T3,R3), and

||a (t, ·)||Hr(T3,R3) = eη∗t||a (0, ·)||Hr(T3,R3).

Proof. Let k∗ ∈ Z3 and w∗ ∈ C be as in Proposition 3.10 and recall that η∗ := Rew∗. It follows from
Lemma 3.2 and Lemma B.2 that, for any k ∈ Z3, B̂k and Mk are similar, so in particular w∗ is an eigenvalue
of B̂k and thus there exists v∗ ∈ C8 such that B̂ (k∗) v∗ = w∗v∗. Now define, for every t > 0 and every

x ∈ T3, Y (t, x) := v∗e
w∗t+ik∗·x + v†∗e

w†∗t−ik∗·x where, for any complex number w, we denote its complex
conjugate by w†. For a complex matrix A we will write, in this proof only, A† to denote its entry-wise
complex conjugate (and not its conjugate transpose).

Observe that Y † = Y and hence Y is real-valued. Note that since B̂k = QkMkQ̄k (which follows from

Lemmas 3.2 and B.2), since Mk has real entries and is even in k (i.e. M−k = Mk), and since Q (k)† = Q (−k)

and Q̄ (k)
†

= Q̄ (−k), we obtain that B̂ (k)
†

= B̂ (−k) and hence
(
w†∗, v

†
∗

)
is an eigenvalue-eigenvector pair

for B̂ (−k∗). Therefore

∂tY = w∗v∗e
w∗t+ik∗·x + w†∗v

†
∗e
w†∗t−ik∗·x = B̂ (k∗) v∗e

w∗t+ik∗·x + B̂ (−k∗) v†∗ew
†
∗t−ik∗·x = BY. (3.20)

Now we argue that u := (Y1, Y2, Y3) is divergence-free. Observe that if k∗ = 0 then Y is constant in the
spatial variable x ∈ T3 and thus u is constant and hence divergence-free. Now consider the case k∗ 6= 0.
Note that we have proved in Lemma 3.2 that, for all k ∈ Z3, im B̂k ⊆ V ⊥k and hence (k, 0, 0) · v = 0 for any

eigenvector v of B̂k. We may thus compute:

∇ · u =
∑
k∈Z3

k · û (k) = (k∗, 0, 0) · Ŷ (k∗) + (−k∗, 0, 0) · Ŷ (−k∗) = 0. (3.21)
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Finally, observe that for any j = 1, . . . , 8, Yj (t, x) = (v∗)j e
w∗t+ik∗·x + (v†∗)j e

w†∗t−ik∗·x and hence, pro-
ceeding as above yields

||Yj (t, ·)||2Hr = 〈k∗〉2r|(v∗)j |2 |eRew∗t|2 + 〈k∗〉2r|(v†∗)j |2 |eRew†∗t|2 = 2〈k∗〉2r|v∗| e2η∗t = e2η∗t ||Yj (0, ·)||2Hr .

We can thus conclude that, for u = (Y1, Y2, Y3), ω = (Y4, Y5, Y6), and a = (Y7, Y8),

||u (t, ·)||2Hr = e2η∗t||u (0, ·)||2Hr , ||ω (t, ·)||2Hr = e2η∗t||ω (0, ·)||2Hr , and ||a (t, ·)||2Hr = e2η∗t||a (0, ·)||2Hr .

�

4. Nonlinear energy estimates

In this section we perform the nonlinear energy estimates necessary to carry out the bootstrap instability
argument in Section 5. First we record the precise form of the nonlinearities and introduce, in Definitions 4.1
and 4.2, notation used in the remainder of the paper. In Section 4.1 we obtain bounds on the nonlinearity in
L2. We record the energy-dissipation relations satisfied by solutions of (1.1a)–(1.1d) and their derivatives
in Section 4.2. In Section 4.3 we estimate the interaction terms appearing in the relations obtained in the
preceding section. Finally we use the results of Sections 4.2 and 4.3 in Section 4.4 to obtain a chain of
energy inequalities from which we deduce the key bootstrap energy inequality.

Writing the problem compactly using the same notation as that which was used in (3.2) and defining
Z := X −Xeq and q := p− peq we may write the original problem (1.1a)–(1.1d) as

∂tDZ = L̃Z + Λ (q) +N (Z) subject to ∇ · u = 0. (4.1)

For simplicity we will abuse notation in this section and write the components of the perturbative unknown
Z as Z = (u, ω, J). This does conflict with the notation used in Section 3 for X. However confusion may
be avoided by noting that all the unknowns appearing in this section are perturbative, i.e. (u, ω, J) will
always denote the components of Z. We also abuse notation and, in this section, write p = q.

Using this notation we have that N = (N1, N2, N3) for

N1 (Z) = − (u · ∇)u, N3 (Z) = [Ω, J ]− (u · ∇) J, (4.2)

and

N2 (Z) = −Jeq (u · ∇)ω −
(
I + JJ−1

eq

)−1
(ω × Jω + ωeq × Jω + ω × Jeqω + ω × Jωeq)

−JJ−1
eq

(
I + JJ−1

eq

)−1 (
κ∇× u− 2κω + (α̃− γ̃)∇ (∇ · ω) + γ̃∆ω

−ω × Jeqωeq − ωeq × Jωeq − ωeq × Jeqω
)

(4.3)

Note that Z being a solution of (4.1) is equivalent to Z being a solution of

∂tZ = LZ + Λ (p) +D−1N (Z) subject to ∇ · u = 0, (4.4)

for L as in (3.4). The fact that both of these formulations are equivalent is very handy since (4.1) is
particularly convenient for energy estimates whilst semigroup theory may be readily applied to (4.4).

Definition 4.1. Let B :=
{
A ∈ Rn×n

∣∣∣ ||A||op < 1
}

and define m (A) := (I +A)−1 for any A ∈ B. Note

that m is well-defined by Corollary B.13.

Definition 4.2 (Small energy regime). Since n = 3 there exists C0 > 0 such that ||J ||∞ 6 C0||J ||H4 for

every J ∈ H4
(
T3, R3×3

)
. We define δ0 := min

(
1
2 ,

1
2C0||J−1

eq ||∞

)
.

4.1. Estimating the nonlinearity. In this section we record some preliminary results in Lemmas 4.3
and 4.4 and then estimate the nonlinearity in L2 in Proposition 4.5.

First we record for convenience some elementary consequences of the Sobolev embeddings. In particular
Lemma 4.3 tells us that in the small energy regime Z, ∇Z, and ∇2Z are L∞-multipliers, which simplifies
many of the estimates below. It is precisely because the estimates are easier to perform when ∇2Z is in
L∞ that we have chosen to close the estimates in H4.

Lemma 4.3. Let Z ∈ H4
(
T3,R3 × R2×2 × R

)
.
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(1) There exists C > 0 independent of Z such that ||Z||L∞ + ||∇Z||L∞ +
∣∣∣∣∇2Z

∣∣∣∣
L∞
6 C||Z||H4.

(2) For any polynomial p with no zeroth-order term there exists C (p) > 0 such that if ||Z||H4 6 1 then
p (||Z||H4) 6 C (p) ||Z||H4.

Proof. (1) follows from the Sobolev embedding H2
(
T3
)
↪→ L∞

(
T3
)

and (2) is immediate. �

The result below ensures, when combined with Corollary B.13, that the nonlinearities written in (4.2)
and (4.3) are well-defined. Note that the only subtlety in ensuring that the nonlinearities are well-defined

comes from the presence of
(
I + JJeq−1

)−1
= m

(
JJ−1

eq

)
. This terms owes its appearance to our choice to

write (1.1c) in a form such that the left-hand side is Jeq∂tω, and not J∂tω. The former is more convenient
since it makes it possible to use semigroup theory.

Lemma 4.4. Let δ0 be as in the small energy regime (c.f. Definition 4.2). If ||Z||H4 6 δ0 then∣∣∣∣JJ−1
eq

∣∣∣∣
∞ 6

1
2 and

∣∣∣∣m (JJ−1
eq

)∣∣∣∣
∞ 6 2.

Proof. If ||Z||H4 6 δ0 then
∣∣∣∣JJ−1

eq

∣∣∣∣
∞ 6 ||J ||∞

∣∣∣∣J−1
eq

∣∣∣∣
∞ 6 C0||J ||H4

∣∣∣∣J−1
eq

∣∣∣∣
∞ 6 C0δ0

∣∣∣∣J−1
eq

∣∣∣∣
∞ 6

1
2 and

hence, by Corollary B.13,
∣∣∣∣m (JJ−1

eq

)∣∣∣∣
∞ 6

1
1−||JJ−1

eq ||∞
6 2. �

We now prove the main result of this section, namely the L2 bound on the nonlinearity.

Proposition 4.5 (Estimate of the nonlinearity). Let δ0 be as in the small energy regime (c.f. Definition

4.2). There exists CN > 0 such that if ||Z||H4 6 δ0 then ||N (Z)||L2 6 CN ||Z||2H2.

Proof. Recall that N = (N1, N2, N3) is recorded in (4.2)–(4.3). In particular, one immediately obtains that

||N1||L2 + ||N3||L2 . ||Z||L2 ||Z||H1 . ||Z||2H2 . Dealing with N2 is only slightly more delicate. Considering
m
(
JJ−1

eq

)
as a fixed L∞ multiplier we see that all terms in N2 are quadratic or cubic in Z (more precisely:

the only cubic term is −
(
I + JJ−1

eq

)−1
(ω × Jω)). We can thus use the generalized Hölder inequality as

well as the Sobolev embeddings H1
(
T3
)
↪→ L6

(
T3
)
↪→ Lp

(
T3
)

for all p ∈ [1, 6] and H2
(
T3
)
↪→ L∞

(
T3
)

to obtain that ||N2||L2 . ||Z||2H2 + ||Z||3H2 . (1 + δ0) ||Z||2H2 . �

Remark 4.6. The operator which must be estimated in the bootstrap instability argument is actually PN
(and not merely N as is done in Proposition 4.5 above), where P = PL⊕ id⊕ id for PL denoting the Leray

projector. However, since P̂L (k) = proj(span k)⊥ = I − k⊗k
|k|2 for every k ∈ Z3, i.e. since PL is a bounded

Fourier multiplier, it follows that it is bounded on L2.

4.2. The energy-dissipation identities. In this section we begin by recording the energy-dissipation
relation and then remark on the coercivity of the dissipation.

Proposition 4.7 (The energy-dissipation relation). If Z solves (4.1) then for any multi-index α ∈ N3

1

2

d

dt

∣∣∣∣∣∣√D (∂αZ)
∣∣∣∣∣∣2
L2

+D (∂αu, ∂αω) = B (∂αω̄, ∂αa) +

ˆ
T3

∂αN (Z) · ∂αZ

where

D (u, ω) :=

ˆ
T3

µ

2
|Du|2 + 2κ

∣∣∣∣12∇× u− ω
∣∣∣∣2 + α|∇ · ω|2 +

β

2
|D0ω|2 + 2γ|∇ × ω|2

and

B (ω̄, a) :=

(
2 (λ− ν) +

( τ
2κ

)2
) ˆ

T3

ω̄⊥ · a.

Proof. To compute the energy-dissipation relation we take a derivative ∂α of (4.1), multiply by Z, and
integrate over the torus. Note that due to incompressibility

´
T3 ∂

αΛ (p) · ∂αZ =
´
T3 − (∇∂αp) · ∂αu = 0.

Now we compute
´
T3 L̃Z · Z. Observe that for T and M as in (2.6), if we write T̃ for the trace-free part

of T , i.e. T̃ = T + pI, then we have thatˆ
T3

((µ+ κ/2) ∆u+ κ∇× ω) · u+

ˆ
T3

(κ∇× u− 2κω + (α+ β/3− γ)∇ (∇ · ω) + (β + γ) ∆ω) · ω

=

ˆ
T3

(
∇ · T̃

)
· u+

(
2 vec T̃ +∇ ·M

)
· ω = −

ˆ
T3

T̃ : (∇u− Ω) +M : ∇ω = −D (u, ω) . (4.5)
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Moreover, we may compute

ωeq × Jωeq =
( τ

2κ

)2
ã⊥, ωeq × Jeqω =

λτ

2κ
ω̃⊥, and [Ω, Jeq] = (λ− ν)

 0 0 −ω2

0 0 ω1

ω2 −ω1 0


such thatˆ

T3

− (ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω) · ω +

ˆ
T3

([Ωeq, J ] + [Ω, Jeq]) : J = B (ω̄, a) (4.6)

where we have used that [Ωeq, J ] : J = 0 (c.f. Lemma B.14). Combining (4.5) and (4.6), we obtain that´
T3 L̃Z · Z = −D (u, ω) +B (ω̄, a), and hence we may conclude that

1

2

d

dt

∣∣∣∣∣∣√D (∂αZ)
∣∣∣∣∣∣2
L2

=

ˆ
T3

∂t (D∂αZ) · ∂αZ =

ˆ
T3

L̃ ∂αZ · ∂αZ +

ˆ
T3

∂αN (Z) · ∂αZ

= −D (∂αu, ∂αω) +B (∂α (ω) , ∂αa) +

ˆ
T3

∂αN (Z) · ∂αZ.

�

Besides the interaction term
´
T3 ∂

αN (Z)·∂αZ, the only term appearing in the energy-dissipation relation
which does not have a sign is the term B (∂αω̄, ∂αa). We refer to this term as the unstable term since, as
detailed in Section 2.5 the instability originates from ω̄ and a. In Lemma 4.8 below we estimate this term
in a manner which allows us to absorb a high-order contribution into the dissipation and leaves us with a
lower-order term which is controlled by the energy.

Lemma 4.8 (Bounds on the unstable term). For any σ > 0 there exists Cσ > 0 such that for any
sufficiently regular (ω, a) and any nonzero multi-index α,

|B (∂αω̄, ∂αa)| 6 σ
∣∣∣∣∂α+1ω̄

∣∣∣∣2
L2 + Cσ

∣∣∣∣∂α−1a
∣∣∣∣2
L2

where we write α± 1 := α± ei for some i such that αi nonzero.

Proof. This follows immediately from integrating by parts and applying an ε-Cauchy inequality: if we

define C := 2 (λ− ν) +
(
τ
2κ

)2
then, for any ε > 0,

|B (∂αω̄, ∂αa)| = C

∣∣∣∣ˆ
T3

∂α+1ω̄⊥ · ∂α−1a

∣∣∣∣ 6 ε∣∣∣∣∣∣∂α+1ω̄⊥
∣∣∣∣∣∣2
L2

+
C2

4ε

∣∣∣∣∂α−1a
∣∣∣∣2
L2 .

�

We now prove that the dissipation is coercive, since the velocity u has average zero.

Lemma 4.9 (Coercivity of the dissipation over linear velocities of average zero). There exists a constant

CD > 0 such that for every (u, ω) ∈ H1
(
T3, R3 × R3

)
, if
ffl
u = 0 then D (u, ω) > CD

(
||u||2H1 + ||ω||2H1

)
.

Proof. Since u has average zero, it follows from Propositions B.15 and B.16 that

||u||2H1 . ||Du||2L2 . D (u, ω) . (4.7)

To see that the dissipation also controls the H1 norm of ω we observe that, by (4.7),

||ω||2L2 .
ˆ
T3

∣∣∣∣12∇× u− ω
∣∣∣∣2 +

ˆ
T3

∣∣∣∣12∇× u
∣∣∣∣2 . D (u, ω) + ||u||2H1 . D (u, ω)

whilst, by Lemma B.17, ||∇ω||2L2 =
´
T3 |∇·ω|2+

´
T3 |∇×ω|2 . D (u, ω), such that indeed ||ω||2H1 . D (u, ω).

�

Recall that, as detailed in Section 2.1, due to the Galilean equivariance of (1.1a)–(1.1d) solutions of that
system can be assumed without loss of generality to have an Eulerian velocity with average zero. Since
ueq = 0 it follows that we can assume that the perturbative velocity u has average zero as well, and hence
the coercivity result proven in Lemma 4.9 applies.
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4.3. Estimating the interactions. In this section we introduce notation which makes it easier to write
down the Faà di Bruno formula for the chain rule, use this notation to record useful bounds on m (defined
in Definition 4.1), and finally we estimate the interactions arising from the energy-dissipation relations
satisfied by derivatives of solutions to (1.1a)–(1.1d) in Proposition 4.16.

Definition 4.10 (Integer partitions and derivatives). Let k ∈ N.

• Let i1 > i2 > · · · > il > 1 be integers such that k = i1 + i2 + · · ·+ il. The sequence (i1, i2, . . . , il) is
called an integer partition of k and l is referred to as the size of that partition.
• For 1 6 i 6 k we denote by Pi (k) the set of integer partitions of k of size i, and by P (k) the set

of integer partitions of k. In particular note that P (k) =
∐k
i=1 Pi (k).

• Let f : Rn → Rm be k-times differentiable. For any π = (i1, . . . , il) ∈ P (k) (where possibly
ip = iq for p 6= q) we define ∇πf := Sym

(
∇i1f ⊗ · · · ⊗ ∇ilf

)
where for any tensor T of rank r,

(SymT )j1 ... jr := 1
r!

∑
σ∈Sr Tjσ(1) ... jσ(r) .

Example 4.11. Examples of integer partitions and derivatives indexed by integer partitions are

• P2(4) = {(3, 1) , (2, 2)},
• P (4) = {(4) , (3, 1) , (2, 2) , (2, 1, 1) , (1, 1, 1, 1)}, and

• ∇(2,1,1)f = Sym
(
∇2f ⊗∇f ⊗∇f

)
= Sym

(
∇f ⊗∇2f ⊗∇f

)
= Sym

(
∇f ⊗∇f ⊗∇2f

)
.

Remark 4.12. Derivatives indexed by integer partitions, denoted by ∇πf , are a convenient shorthand for
terms appearing in the Faà di Bruno formula for derivatives of compositions. Their key property which we

will use in estimates is that, for any integer partition π = (i1, . . . , il), |∇πf | 6
∏l
j=1

∣∣∇ijf ∣∣. For example∣∣∇(2,1,1)f
∣∣ 6 ∣∣∇2f

∣∣ |∇f |2.

Having introduced notation for derivatives indexed by integer partitions we now use it to obtain bounds
on derivatives of m in Lemma 4.13 below.

Lemma 4.13 (Bounds on derivatives of m). The function m from Definition 4.1 is smooth and moreover
for every k ∈ N there exists Ck > 0 such that, for every A ∈ B,

∣∣∇km (A)
∣∣ 6 Ck|m (A)|k+1.

Proof. First we observe that it suffices to show that, for ∂ijm := ∂m(A)
∂Aij

,

∂ijmkl = −mkimjl, (4.8)

To prove that (4.8) holds, note that for any smooth A : (−1, 1) → B (where B is as in Definition 4.1),
d
dtm (A (t)) = −m (A (t))

(
d
dtA (t)

)
m (A (t)). Since we can pick A such that A (0) and d

dtA (0) are arbitrarily
specified, it follows that for any A0 ∈ B and any V ∈ Rn×n, ∇m (A0)V = −m (A0)V m (A), i.e. indeed
∂ijmkl = ∇mkl (ei ⊗ ej) = −(m (ei ⊗ ej)m)kl = −mkimjl. �

We now use the bounds on m we have just obtained to derive bounds on post-compositions with m.

Lemma 4.14 (Bounds on derivatives of post-compositions with m). Let 0 < δ < 1 and consider m from
Definition 4.1, which is smooth by Lemma 4.13. For every k ∈ N there exists Ck,δ > 0 such that for every

smooth A : Tn → Rn×n, if ||A||∞ < δ then, for every x ∈ Tn,
∣∣∇k (m (A)) (x)

∣∣ 6 Ck,δ
∑

π∈P (k) |∇πA (x)|,
where P (k) and ∇π are defined in Notation 4.10.

Proof. Note that since ||A||∞ < δ < 1 it follows from Corollary B.13 that ||m (A)||∞ < 1
1−δ . Therefore, by

Proposition B.18 and Lemma 4.13,

|∇k (m (A)) (x)| 6 C
k∑
i=1

|∇im (A (x))|
∑

π∈Pi(k)

|∇πA (x)| 6 C
k∑
i=1

|m (A (x))|i+1
∑

π∈Pi(k)

|∇πA (x)|

6 Ck,δ
∑

π∈P (k)

|∇πA (x)|.

�

Below we specialize Lemma 4.14 to the only case which matters for us, namely the case of m
(
JJ−1

eq

)
.
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Corollary 4.15. Let δ0 be as in the small energy regime (c.f. Definition 4.2). For every k ∈ N there
exists Ck > 0 such that if ||Z||H4 6 δ0 then

∣∣∇k (m (JJ−1
eq

))
(x)
∣∣ 6 Ck∑π∈P (k) |∇πJ (x)|, for almost every

x ∈ T3.

Proof. This follow immediately from combining Lemmas 4.4 and 4.14. �

Having obtained good estimates on terms involving m which appear in the nonlinearity we are ready to
estimate the interaction terms.

Proposition 4.16 (Estimates of the interactions). Let δ0 be as in the small energy regime (c.f. Definition
4.2). For every k = 0, 1, 2, 3, 4 there exists CI, k > 0 such that if ||Z||H4 6 δ0 then∣∣∣∣ˆ

T3

N (Z) · Z
∣∣∣∣ 6 CI, 0||Z||H4 ||Z||2L2

and ∑
|α|=k

∣∣∣∣ˆ
T3

∂αN (Z) · ∂αZ
∣∣∣∣ 6 CI, k||Z||H4

(
k∑
i=1

∣∣∣∣∇iZ∣∣∣∣2
L2 +

∣∣∣∣∣∣∇k+1 (u, ω)
∣∣∣∣∣∣2
L2

)
.

Proof. The nonlinearities are all of one of three types, and so we write N = NI +NII +NIII for

NI := − ((u · ∇)u, Jeq (u · ∇)ω, (u · ∇) J) ,

NII :=
(

0, JJ−1
eq m

(
JJ−1

eq

)
(ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω + 2κω)

−m
(
JJ−1

eq

)
(ω × Jω + ω × Jωeq + ω × Jeqω + ωeq × Jω) , [Ω, J ]

)
, and

NIII :=
(
0, −JJ−1

eq m
(
JJ−1

eq

)
(κ∇× u+ α̃∇ (∇ · ω) + γ̃∆ω) , 0

)
.

We first consider the case of α nonzero and so for T ∈ {I, II, III} and i = 1, 2, 3, 4 we write NT,i :=∑
|α|=i

´
T3 ∂

αNT (Z) · ∂αZ.

Estimating nonlinearities of type I is fairly straightforward. We expand out
´
T3 ∂

αNI (Z) · ∂αZ and

use the generalized Hölder inequality, putting two factors in L2 and putting the remaining factors in L∞

(thanks to Lemma 4.3). For example, writing for simplicity NI (Z) = (u · ∇)Z and considering the case
where ∂α = ∂ijkl, one of the terms that appears is

´
T3 (∂ijku · ∇)∇lZ · ∂ijklZ, and it can be estimated in

the following way, which is typical of how nonlinear interactions of type I are handled:∣∣∣∣ˆ
T3

(∂ijku · ∇)∇lZ · ∂ijklZ
∣∣∣∣ 6 ∣∣∣∣∇3u

∣∣∣∣
L2

∣∣∣∣∇2Z
∣∣∣∣
∞
∣∣∣∣∇4Z

∣∣∣∣
L2 . ||Z||H4

(∣∣∣∣∇3Z
∣∣∣∣2
L2 +

∣∣∣∣∇4Z
∣∣∣∣2
L2

)
.

The only subtlety for these nonlinear terms is the fact that when ∂α hits ∇Z in (u · ∇)Z, the interaction
vanishes due to the incompressibility constraint. Indeed, for any multi-index α,ˆ

T3

(u · ∇) ∂αZ · ∂αZ = −1

2

ˆ
T3

(∇ · u) |∂αZ|2 = 0.

This cancellation is essential since we have no dissipative control of J and hence we would not be able to
control interactions involving ∇∂αJ (which is a component of ∇∂αZ). Estimating all the nonlinearities of
type I in this manner we obtain:

|NI,1| . ||Z||H4 ||∇Z||2L2 , |NI,3| . ||Z||H4

(∣∣∣∣∇3Z
∣∣∣∣2
L2 +

∣∣∣∣∇2Z
∣∣∣∣2
L2

)
, and

|NI,2| . ||Z||H4

∣∣∣∣∇2Z
∣∣∣∣2
L2 , |NI,4| . ||Z||H4

(∣∣∣∣∇4Z
∣∣∣∣2
L2 +

∣∣∣∣∇3Z
∣∣∣∣2
L2

)
.

To estimate nonlinearities of type II we proceed similarly, namely applying the generalized Hölder
inequality with two factors in L2 and the rest in L∞. In particular we use Lemma 4.4 and Corollary
4.15 to control m

(
JJ−1

eq

)
and its derivatives, as well as the second part of Lemma 4.3 for the terms

appearing when applying Corollary 4.15 which are cubic or higher-order. As an illustrative example let
us write the nonlinearities of type II as NII (Z) = m (J) b (Z,Z) for some bilinear form b and consider
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´
T3 ∂ijk

(
m
(
JJ−1

eq

))
b (∂lZ,Z) · ∂ijklZ. This terms appears when ∂α = ∂ijkl and can be estimated as

follows: ∣∣∣∣ˆ
T3

∂ijk
(
m
(
JJ−1

eq

))
b (∂lZ,Z) · ∂ijklZ

∣∣∣∣ . ˆ
T3

(
|∇3J |+ |∇2J ||∇J |+ |∇J |3

)
|∇Z||Z||∇4Z|

.
(∣∣∣∣∇3Z

∣∣∣∣
L2 + ||Z||H4

∣∣∣∣∇2Z
∣∣∣∣
L2 + ||Z||2H4 ||∇Z||L2

)
||Z||2H4

∣∣∣∣∇4Z
∣∣∣∣
L2

. ||Z||H4

(∣∣∣∣∇3Z
∣∣∣∣
L2 +

∣∣∣∣∇2Z
∣∣∣∣
L2 + ||∇Z||L2

) ∣∣∣∣∇4Z
∣∣∣∣
L2

. ||Z||H4

(∣∣∣∣∇4Z
∣∣∣∣2
L2 +

∣∣∣∣∇3Z
∣∣∣∣2
L2 +

∣∣∣∣∇2Z
∣∣∣∣2
L2 + ||∇Z||2L2

)
.

Estimating all terms of type II in this fashion yields, for i = 1, 2, 3, 4, |NII,i| . ||Z||H4

∑i
j=1

∣∣∣∣∇jZ∣∣∣∣2
L2 .

Nonlinearities of type III are the most delicate to estimate due to the presence of ∇× u, ∇ (∇ · ω), and
∆ω. The presence of these terms causes two difficulties

(1) when ∂α hits ∆ω (or ∇ (∇ · ω)) we must integrate by parts since we do not have any control, even

through the dissipation, on ∇|α|+2ω, and
(2) there are precisely two terms in which more than two derivatives of order three or above appear,

terms for which we cannot simply use L2 and L∞ in the right-hand side of the generalized Hölder
inequality. This is easily remedied by more carefully choosing the Lp spaces used, which is done
explicitly below.

Let us write the nonlinearity schematically as NIII (Z) = m
(
JJ−1

eq

)
b
(
Z,∇2ω

)
for some bilinear form b.

Here is how we handle (1) discussed above: for any multi-index α

Nα :=

ˆ
T3

m
(
JJ−1

eq

)
b (Z,∆∂αω) · ∂αω = −

ˆ
T3

∂i
(
m
(
JJ−1

eq

))
b (Z, ∂i∂

αω) · ∂αω

−
ˆ
T3

m
(
JJ−1

eq

)
b (∂iZ, ∂i∂

αω) · ∂αω −
ˆ
T3

m
(
JJ−1

eq

)
b (Z, ∂i∂

αω) · ∂i∂αω

and hence

|Nα| . (||∇Z||∞||Z||∞ + ||∇Z||∞)
∣∣∣∣∣∣∇|α|+1ω

∣∣∣∣∣∣
L2

∣∣∣∣∣∣∇|α|ω∣∣∣∣∣∣
L2

+ ||Z||∞
∣∣∣∣∣∣∇|α|+1ω

∣∣∣∣∣∣
L2

. ||Z||H4

(∣∣∣∣∣∣∇|α|+1ω
∣∣∣∣∣∣2
L2

+
∣∣∣∣∣∣∇|α|+1ω

∣∣∣∣∣∣2
L2

)
.

Now we show how to handle (2) discussed above. Both terms under consideration appear when |α| =
4, and so we write ∂α = ∂ijkl. Note that we will use Corollary 4.15 to bound |m

(
JJ−1

eq

)
| above by

|∇3J |+ |∇2J ||∇J |+ |∇J |3, but below we will only indicate how to deal with the first one amongst these
three terms (since the last two can be taken care of by a generalized Hölder inequality using only L2 and
L∞). We have, using the fact that H1

(
T3
)
↪→ L4

(
T3
)
,∣∣∣∣ˆ

T3

m
(
JJ−1

eq

)
b (∂ijkZ,∆∂lω) · ∂ijklω +

ˆ
T3

∂ijk
(
m
(
JJ−1

eq

))
b (Z,∆∂lω) · ∂ijklω

∣∣∣∣
.
ˆ
T3

|∇3Z||∇3ω||∇4ω|+ ||Z||∞
ˆ
T3

|∇3J ||∇3ω||∇4ω|+ . . .

.
ˆ
T3

|∇3Z||∇3ω||∇4ω| .
∣∣∣∣∇3Z

∣∣∣∣
H1

∣∣∣∣∇3ω
∣∣∣∣
H1

∣∣∣∣∇4ω
∣∣∣∣
L2

. ||Z||H4

(∣∣∣∣∇3ω
∣∣∣∣
L2 +

∣∣∣∣∇4ω
∣∣∣∣
L2

) ∣∣∣∣∇4ω
∣∣∣∣
L2 . ||Z||H4

(∣∣∣∣∇4ω
∣∣∣∣
L2 +

∣∣∣∣∇3ω
∣∣∣∣
L2

)
.

Estimating all nonlinearities of type III in this fashion yields, for i = 1, 2, 3, 4,

|NIII,i| . ||Z||H4

 i∑
j=1

∣∣∣∣∇jZ∣∣∣∣2
L2 +

∣∣∣∣∇i+1 (u, ω)
∣∣∣∣2
L2

 .
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Finally we consider the case α = 0. Using the fact that
´
T3 (u · ∇)Z ·Z = 0 and that [Ω, J ] : J = 0 (see

Lemma B.14) we see thatˆ
T3

N (Z) · Z = −
ˆ
T3

m
(
JJ−1

eq

)
(ω × Jω + ω × Jωeq + ω × Jeqω + ωeq × Jω) · ω

+

ˆ
T3

JJ−1
eq m

(
JJ−1

eq

)
(ω × Jeqωeq + ωeq × Jωeq + ωeq × Jeqω + 2κω − κ∇× u− α̃∇ (∇ · ω)− γ̃∆ω) · ω.

It thus follows from Lemmas 4.3 and 4.4 that
∣∣´

T3 N (Z) · Z
∣∣ . ||Z||H4 ||Z||2L2 . �

4.4. The chain of energy inequalities. We begin this section by combining the results of Sections 4.2
and 4.3 in order to obtain a chain of energy inequalities.

Proposition 4.17 (Chain of energy inequalities). There exist C0, C1, CD > 0 such that for every 0 < ε < 1
there exists 0 < δ (ε) < 1 such that if sup06t6T ||Z (t)||H4 6 δ (ε) and Z solves (4.1) then

1

2

d

dt

∣∣∣∣∣∣√DZ∣∣∣∣∣∣2
L2

+D (u, ω) 6 ε||Z||2L2 + C0

(
||ω̄||2L2 + ||a||2L2

)
and, for k = 1, 2, 3, 4,

1

2

d

dt

∣∣∣∣∣∣∇k (√DZ)∣∣∣∣∣∣2
L2

+
CD
2

∣∣∣∣∣∣∇k (u, ω)
∣∣∣∣∣∣2
H1
6 ε
∣∣∣∣∣∣∇kZ∣∣∣∣∣∣2

L2
+ C1

k−1∑
i=0

∣∣∣∣∇iZ∣∣∣∣2
L2 .

Proof. Let ε > 0, let CD and CI, k be as in Lemma 4.9 and Proposition 4.16 respectively, let Cσ be as in

Lemma 4.8 for σ := CD
4 , let nk := # {multi-index α : |α| = k}, and pick δ := min

06k64

{
δ0,

ε
CI,knk

, CD
4CI,k

}
.

First we consider k = 0. Observe that for 2C0 := 2 (λ− ν) +
(
τ
2κ

)2
,

B (ω̄, a) = 2C0

ˆ
T3

ω̄⊥ · a 6 C0

(
||ω̄||2L2 + ||a||2L2

)
. (4.9)

By Propositions 4.7, 4.16, (4.9), and the fact that δ 6 ε
CI,0

we deduce the energy inequality for k = 0.

Now we consider k = 1, 2, 3, 4. For any nonzero multi-index α it follows from Propositions 4.7 and 4.16
and from Lemmas 4.9 and 4.8 that

1

2

d

dt

∣∣∣∣∣∣√D (∂αZ)
∣∣∣∣∣∣2
L2

+ CD||∂α (u, ω)||2H1 6

(
CD
4

∣∣∣∣∂α+1ω
∣∣∣∣2
L2 + Cσ

∣∣∣∣∂α−1a
∣∣∣∣2
L2

)
+CI,k||Z||H4

(
k∑
i=1

∣∣∣∣∇iZ∣∣∣∣2
L2 +

∣∣∣∣∣∣∇k+1 (u, ω)
∣∣∣∣∣∣2
L2

)
.

Summing over |α| = k and using that δ 6 min
(

CD
4CI,k

, ε
CI,knk

)
we observe that, after absorbing

∣∣∣∣∂α+1ω
∣∣∣∣2
L2

and
∣∣∣∣∇k+1 (u, ω)

∣∣∣∣2
L2 into the dissipation on the left-hand side,

1

2

d

dt

∣∣∣∣∣∣∇k (√DZ)∣∣∣∣∣∣2
L2

+
CD
2

∣∣∣∣∣∣∇k (u, ω)
∣∣∣∣∣∣2
H1
6 nkCσ

∣∣∣∣∣∣∂k−1a
∣∣∣∣∣∣2
L2

+ ε

k∑
i=1

∣∣∣∣∇iZ∣∣∣∣2
L2

from which the result follows upon taking C1 := max (1, n4Cσ). �

We now record, in abstract form, a Gronwall-type lemma for chains of differential inequalities.

Lemma 4.18 (Chain of Gronwall inequalities). Consider, for k > −1, Ek : [0,∞)→ [0,∞). Suppose that
there exists C−1, C > 0, 0 < θ 6 θ0 < ψ, and kmax > −1 such that for every t > 0, E−1 (t) 6 C−1e

ψt and
every k > 0,

d

dt
Ek (t) 6 θEk (t) + C

k−1∑
i=−1

Ei (t) . (4.10)
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Then, for every 0 6 k 6 kmax, there exist Ck > 0 such that for every t > 0

Ek (t) 6 Ck

(
C−1 +

k∑
i=0

Ei (0)

)
eψt =: C̃ke

ψt. (4.11)

Moreover: if (4.10) holds for every k > −1 then so does (4.11).

Proof. We induct on k, noting that the base case k = −1 holds by assumption. Now suppose that (4.11)

holds for every i = −1, . . . , k − 1. Then, by (4.10), d
dt

(
Ek (t) e−θt

)
6 C

∑k−1
i=−1Ei (t) e−θt and hence,

integrating in time and using (4.11), where C̃−1 := C−1,

Ek(t)6Ek(0) eθt + C
k−1∑
i=−1

eθt
ˆ t

0
C̃ie

(ψ−θ)sds6

(
Ek(0) +

C

ψ − θ0

k−1∑
i=−1

C̃i

)
eψt6Ck

(
C−1 +

k∑
i=0

Ei(0)

)
eψt.

for some Ck > 0. �

We conclude this section by applying Lemma 4.18 to the chain of differential inequalities obtained in
Proposition 4.17, which yields a bootstrap energy inequality.

Proposition 4.19 (Bootstrap energy inequality). There exists 0 < δB < 1 such that if Z solves (4.1) and
sup06t6T ||Z (t)||H4 6 δB then for every ψ > 0 there exists C (ψ) > 0 such that if there exists Cins > 0

such that Eins (t) := ||ω̄ (t)||2L2 + ||a (t)||2L2 satisfies Eins (t) 6 Cinse
ψt for all t > 0 then, for all t > 0,

||Z (t)||2H4 6 C (ψ)
(
||Z (0)||2H4 + Cins

)
eψt.

Proof. Let us define E−1 := Eins, Ek (t) :=
∣∣∣∣∣∣∇k (√DZ)∣∣∣∣∣∣2

L2
for every t > 0 and every k > 0, and

C := max (C0, C1) for C0 and C1 as in Proposition 4.17. Observe that |J1/2
eq w|2 > ν/2|w|2 for any w ∈ R3

and hence ||Z||2L2 6 max (1, 2/ν)
∣∣∣∣∣∣√DZ∣∣∣∣∣∣2

L2
. Let ψ > 0 and note that we may deduce from Proposition

4.17, picking ε = 1
2 min (1, ψ/2, ψν/2), δB := δ (ε), and neglecting the dissipation, that for k = 0, . . . , 4

and every t > 0

d

dt
Ek (t) 6

ψ

2
Ek (t) + C

k−1∑
i=−1

Ei (t) . (4.12)

Now suppose that, for every t > 0, E−1 (t) = Eins (t) 6 Cinse
ψt =: C−1e

ψt. Using Lemma 4.18 we obtain

that for k = 0, . . . , 4 there exists Ck > 0 such that Ek (t) 6 Ck
(
C−1 +

∑k
i=0Ei (0)

)
eψt. Finally, summing

over k = 0, . . . , 4 we obtain that

||Z (t)||2H4 6 max (1, 2/ν)
4∑

k=0

Ek (t) 6 C̃ (ψ)

(
C−1 +

∣∣∣∣∣∣√DZ (0)
∣∣∣∣∣∣2
H4

)
eψt

6 max (1, λ, ν) C̃ (ψ)
(
Cins + ||Z (0)||2H4

)
eψt

for some C̃ (ψ) > 0, so we may simply pick C (ψ) := max (1, λ, ν) C̃ (ψ). �

5. The bootstrap instability argument

In this section we prove our main result using a Guo-Strauss bootstrapping argument. This technique
was introduced by Guo and Strauss in [GS95a], inspired by [GS95b] and [FSV97]. For a cleanly written
and very readable form of the bootstrap instability argument we refer to Lemma 1.1 of [GHS07].

For the purpose of the theorem below, we define what we mean by a strong solution of (1.1a)–(1.1d).

Definition 5.1 (Strong solutions). For any X0 ∈ H2
(
T3
)

and any T > 0 we define a strong so-

lution of (1.1a)–(1.1d) with initial condition X0 to be any function X ∈ L∞
(
[0, T ] , H2

(
T3
))

with

∂tX ∈ L∞
(
[0, T ] , L2

(
T3
))

for which (1.1a)–(1.1d) is satisfied almost everywhere in (0, T )× T3 and such
that X(0) = X0.
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Theorem 5.2 (Bootstrap instability). Let η∗ be as in Proposition 3.10 and assume that (2.7) holds. There
exists θ, δ > 0 and Z0 ∈ L2

(
T3, R3 × R3 × R3×3

)
such that for all 0 < ι < δ if we define TI := 1

η∗
log θ

ι

then there exists a strong solution X = (u, ω, J) ∈ L∞
(
[0, TI ] , H

4
(
T3
))

of (1.1a)–(1.1d) with pressure

p ∈ L∞
(
[0, TI ] , H

4
(
T3
))

and initial condition X (0) = Xeq + ιZ0 such that ||X (TI)−Xeq||L2 >
θ
2 .

Proof. The crux of the argument is to compare three timescales: the instability timescale TI , the linear-
dominance timescale TL, and the smallness timescale TS . We will show that at times living in both the
linear-dominance and the smallness timescale (i.e. times anterior to both TL and TS) two key estimates
hold, namely (5.1) and (5.2). This will allow us, by way of contradiction, to show that the instability
timescale is the shortest of the three. It will thus follow that instability occurs while the dynamics are
dominated by the linearization and while we are in the small energy regime.

We begin by recalling appropriate notation from previous results. Let (u0, ω0, a0) =: Y be as in Proposi-
tion 3.13 and note that without loss of generality we may assume that ||Y ||L2 = 1. Define Z0 := (u0, ω0, J0)

where J0 =

(
02×2 a0

aT0 0

)
. Let δ0 be as in the small energy regime (c.f. Definition 4.2), let CS := CS

(η∗
2

)
as

in Proposition 3.12, let CN be as in Proposition 4.5, let ψ := 2η∗ such that CB := C (ψ) and δB are as in
Proposition 4.17, and let δlwp be as in Theorem A.3 with δlwp being chosen small enough so as to ensure
that L 6 η∗.

We can now define the appropriate small scales θ and δ, which in turn will later allow us to precisely
define the timescales. Let

θ =
1

2
min

(
δ0, δB,

1

C
, ||Z0||L2

(
δlwp

||Z0||H4

)η∗/L)
,

δ =
1

2
min

(
1, δlwp,

θ

||Z0||H4

,
(
CB

(
||Z0||2H4 + 4

)
θ
)−1/2

,
1

2Cθ

)
,

and let 0 < ι < δ.
By our local well-posedness result (see Section A and Corollary A.6 in particular) there exists TE > 0

and a unique strong solution Z ∈ L∞
(
[0, TE ] ; H4

(
T3
))

of (4.1) with pressure p ∈ L∞H4 and initial
data Z (0) = ιZ0. Note that our local existence result (Theorem A.3) tells us moreover that the solu-
tion Z may be continued as long as Z remains in an open H4-ball of radius δlwp. We may thus with-
out loss of generality assume TE to be the maximal time of existence of the solution in the sense that
TE := sup

{
T > 0 : Z exists on [0, T ] and sup06t<T ||Z (t)||H4 < δlwp

}
. Expanding out the definition of

the notation in (4.1) we see that X := Xeq + Z is a strong solution of (1.1a)–(1.1d) with initial condition
X (0) = Xeq + ιZ0.

We may now define the timescales. We define TL := sup
{

0 < t < TE : ||ω̄ (t)||L2 + ||a (t)||L2 6 2ιeη∗t
}

,

TI := 1
η∗

log θ
ι , and TS := sup {0 < t < TE : ||Z (t)||H4 < θ}. Note that TL > 0 since ||Z (0)||L2 = ι, that

TS > 0 since ||Z (t)||H4 = ι||Z0||H4 < θ, and that TS , TL 6 TE
Step 1: Since θ 6 δB we deduce from Proposition 4.19 that if t 6 min (TL, TS) then

||Z (t)||2H4 6 CBι
2
(
||Z0||2H4 + 4

)
e2η∗t. (5.1)

Now we apply the Leray projector to eliminate the pressure and write (4.1) in the reduced form ∂tZ =

LZ+ Ñ (Z), where Ñ := PD−1N . More precisely we apply P and observe that P̄B = B and hence PL = L.

Indeed this follows from the observation that on one hand, for k 6= 0, ˆ̄P (k) =
(
I − k⊗k

|k|2

)
⊕I3⊕I2 = I−projVk

and the fact that, since B̂k acts on C8/ Vk, it follows that projVk ◦B̂k = B̂k, whilst on the other hand, for

k = 0, we have that P̂L (0) = I3 (since constant vector fields are divergence-free) and hence P̂ (0) = id.
We can thus apply the Duhamel formula to obtain

Z (t)− etLZ (0) =

ˆ t

0
e(t−s)LÑ (Z (s)) ds

which can be estimated, when t 6 min (TL, TS), using the fact that θ 6 δ0, Proposition 3.12, the fact that

the Leray projector is bounded on L2, the inequality
∣∣∣∣D−1

∣∣∣∣ 6 √max (1, 2/ν), and Proposition 4.5 to
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yield, for C := 2
η∗

max (1, 2/ν)CSCNCB

(
||Z0||2H4 + 4

)
,∣∣∣∣Z (t)− etLιZ0

∣∣∣∣
L2 6 Cι

2e2η∗t. (5.2)

Step 2: Now we show that TI = min (TI , TL, TS), using the key estimates (5.1) and (5.2). First suppose
for the sake of contradiction that TL = min (TI , TL, TS). By definition of TL,

||ω̄ (TL)||L2 + ||a (TL)||L2 = 2ιeη∗TL . (5.3)

Now note that (5.2) applies since TL 6 TS and thus it follows from Proposition 3.13 and the choice
of Z0 that ||Z (TL)||L2 6

(
1 + Cιeη∗TL

)
ιeη∗TL < 2ιeη∗TL , where we have used that TL 6 TI and hence

Cιeη∗TL 6 Cιeη∗TI = Cθ < 1. This contradicts (5.3) and hence the linear-dominance timescale TL is not
the smallest of the three timescales considered.

Now suppose for the sake of contradiction that TS = min (TI , TL, TS). By definition of TS ,

||Z (TS)||H4 = θ. (5.4)

Since TS 6 TL we may use (5.1) and since TS 6 TI we have that e2η∗TS 6 e2η∗TI = θ. Putting these two

facts together tells us that ||Z (TS)||2H4 6 CBι
2
(
||Z0||2H4 + 4

)
θ2 < θ which contradicts (5.4). Therefore

the smallness timescale TS is not the smallest of the three timescales considered. We thus deduce that
TI = min (TI , TL, TS).

Step 3: Finally we show that ||Z (TI)||L2 > θ
2 . Since TI is smaller than both TL and TS (and hence

smaller than TE) we may use (5.1) and (5.2), as well as Proposition 3.13, the choice of Z0, and the fact
that ιeη∗TI = θ to see that ||X (TI)−Xeq||L2 = ||Z (TI)||L2 > ιeη∗TI − Cι2e2η∗TI = θ (1− Cιθ) > 1

2 . �

Appendix A. Local well-posedness

In this section we prove the local well-posedness of (1.1a)–(1.1d). This is done in two steps: we prove
local existence in the small energy regime in Theorem A.3 and we prove uniqueness within a broader class
of solutions in Theorem A.5. Notably, this uniqueness result makes no smallness assumption and only
requires that the unknowns belong to appropriate Sobolev spaces.

A key step on the way to our local existence result is to prove that the nonlinearity is sufficiently regular.
We do this below in Lemma A.1 where we prove that the nonlinearity is analytic.

Lemma A.1 (Analyticity of the nonlinearity). Let 0 < δ 6 δ0 for δ0 as in the small energy regime. For
every s > 3

2 , N : Hs+2 ∩H4
δ0
→ Hs is analytic (as a mapping from Hs+2 to Hs). Moreover the Lipschitz

constant of N on Hs+2 ∩H4
δ0
→ Hs approaches zero as δ ↓ 0.

Proof. The two key observations are that (i) we may write N (Z) = P
(
m
(
JJ−1

eq

)
, Z,∇Z,∇2Z

)
for some

polynomial P and that (ii) m is analytic (recall that m is defined in Definition 4.1). Indeed m can be

written as a geometric series, namely m (A) =
∑∞

i=0 (−1)iAi for every A ∈ B, where B is defined in
Definition 4.1.

Using Lemma B.19, the fact that Hs is a continuous algebra when s > 3
2 , and the fact that polynomials

are analytic, it follows that we may write N = F
(
J 2Z

)
for some function F : domF ⊆ Hs → Hs which

is analytic on its domain (i.e. where it is well-defined), where J 2Z :=
(
Z,∇Z,∇2Z

)
. The last observation

we need is that J 2
(
Hs ∩H4

δ0

)
⊆ domF . This holds since, if Z = (u, ω, J) ∈ Hs+2 ∩ H4

δ0
for δ0 as in

the small energy regime, then by Lemma 4.4 we know that J 7→ m
(
JJ−1

eq

)
is well-defined, and hence

analytic. Since J is a bounded linear map from Hs+2 to Hs it is also analytic, and so we may conclude
that N : Hs+2 ∩H4

δ0
→ Hs is analytic as a map from Hs+2 to Hs.

Finally, note that the polynomial P above is at least quadratic in
(
Z,∇Z,∇2Z

)
and that therefore

DN (0) = 0. In particular it follows that the Lipschitz constant of N on balls of vanishingly small radii
approaches zero, as claimed. �

Remark A.2. See [Whi65] for a brief and clean summary of basic results regarding analytic functions
between Banach spaces.

With Lemma A.1 in hand we may now prove our local existence result.
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Theorem A.3 (Local existence and continuous dependence on the data). There are universal constants
ρ, δlwp, C > 0 such that for any Z0 = (u0, ω0, J0) ∈ H4 with ∇ · u0 = 0,

ffl
T3 u0 = 0, and ||Z0||H4 < δlwp,

there exists a time of existence Tlwp > 0, there exists Z = (u, ω, J) ∈ L∞H4 with (u, ω) ∈ L2H5, ∂tZ ∈
L∞H2 ∩ L2H3, and ∂tJ ∈ L∞H3, and there exists p ∈ L∞H4 ∩ L2H5 with average zero such that u is
divergence-free and has average zero, (u, p, ω, J) solves

∂tDZ = L̃Z + Λ (p) +N (Z) a.e. in (0, Tlwp) and Z (0) = Z0 in H4− 1
4 , (A.1)

and the estimates

||Z||L∞H4 + ||(u, ω)||L2H5 + ||∂tZ||L∞H2∩L2H3 + ||∂tJ ||L∞H3 6 C||Z0||H4 (A.2)

and

||p||L∞H4∩L2H5 6 C||u||2L∞H4∩L2H5 . (A.3)

hold. Moreover we have the lower bound Tlwp >
1
ρ log

δlwp

||Z0||H4
.

Proof. We proceed via a standard Galerkin scheme and thus omit the fine details of the proof here. A key
point is that everything we need to know about the nonlinearity for the purpose of this local well-posedness
result is obtained in Lemma A.1.

We now proceed in five steps. In Step 1 we eliminate the pressure via Leray projection, in Step 2 we
prove local well-posedness for a sequence of appropriate approximate problems, in Step 3 we obtain uniform
bounds on these approximate solutions, in Step 4 we pass to the limit via a compactness argument, and
in Step 5 we reconstruct the pressure.

First we recall some notation from earlier results which is required to define the smallness parameter
δlwp. Let δ0 be as in the small energy regime, let δ = δ

(
1
2

)
be as in Proposition 4.17, and define C2 :=

max (1, λ, ν) max (1, 2/ν). Then take δlwp := 1
3 min (δ0/C2, δ).

Step 1: Leray projection eliminating the pressure.
Recall that we denote the Leray projector by PL and that we write P = PL ⊕ I3 ⊕ I3×3. Upon applying

P to (A.1) we thus see that (noting that PZ = Z since ∇ ·u = 0 and that P and L̃ commute since they are

both Fourier multipliers): ∂tDZ = L̃Z + PN (Z).
Step 2: Local well-posedness of a sequence of approximate problems.

Let Vn :=
{
Z ∈ L2

(
T3;R3 × R3 × R3×3

) ∣∣∣ Ẑ (k) = 0 if |k| > n and ∇ · u = 0
}

, let Un := Vn ∩ H4
δ0/2

where Hα
R denotes the open ball around zero of radius R in Hα, and let Pn be the orthogonal projection

onto Vn defined by P̂n (k) = 1 (|k| 6 n).
We approximate the system obtained after Leray projection in Step 1 by

∂tDZn = L̃Zn + PnPN (Zn) and Zn (0) = PnZ0. (A.4)

In order to use standard finite-dimensional ODE theory we write (A.4) as

∂tZn = Fn (Zn) and Zn (0) = PnZ0 (A.5)

for Fn = D−1
(
L̃+ PnPN

)
. It follows from Lemma A.1 that Fn is analytic from H4

δ0
to H2, and since Un

is a subset of H4
δ0

and P ◦ P maps onto Vn we deduce that Fn maps Un to Vn.
We may now apply standard ODE theory, which tells us that if we pick an initial condition Z0 =

(u0, ω0, J0) ∈ H4 which satisfies ∇ · u0 =,
ffl
T3 u0 = 0, and ||Z0||H4 < δlwp then there exists a maximal

time of existence Tn > 0, a unique Zn ∈ C∞ ([0, Tn) ;Un) solving (A.5), and the following blow-up criterion

holds: for any T > 0 if sup06t6T ||Zn (t)||H4 < δ0
2 then T 6 Tn.

Step 3: Uniform bounds on the approximate solutions.
To obtain uniform bounds it suffices to apply Proposition 4.17 to the approximate solutions Zn. Since

Proposition 4.17 is only applicable in a small energy regime we must first ensure that ||Zn||H4 remains

sufficiently small. We defined T̃n to this effect below.
Let δu = 1

3 min (δ0, δ), and let T̃n = sup {t > 0 | ||Zn||H4 6 δu}. Note that T̃n > Tn by the blow-up

criterion from Step 1. We may now apply a time-integrated version of Proposition 4.17 (with ε = 1
2) to
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obtain

1

2

∣∣∣∣∣∣√DZn (t)
∣∣∣∣∣∣2
L2
− 1

2

∣∣∣∣∣∣√DZn (0)
∣∣∣∣∣∣2
L2

+

ˆ t

0
D (un, ωn) (s) ds 6

ˆ t

0

(
1

2
+ C0

)
||Zn (s)||2L2ds (A.6)

and, for k = 1, 2, 3, 4,

1

2

∣∣∣∣∣∣∇k (√DZn (t)
)∣∣∣∣∣∣2

L2
− 1

2

∣∣∣∣∣∣∇k (√DZn (0)
)∣∣∣∣∣∣2

L2
+

ˆ t

0

CD
2

∣∣∣∣∣∣∇k (un, ωn) (s)
∣∣∣∣∣∣2
H1
ds

6
ˆ t

0
max

(
1

2
, C1

) k∑
i=0

∣∣∣∣∇iZn (s)
∣∣∣∣2
L2ds. (A.7)

where C0, C1, and CD are as in Proposition 4.17. Note that Proposition 4.17 as stated applies to solutions

of ∂tDZ = L̃Z+N (Z)+Λ (p) whereas Zn satisfies ∂tDZn = L̃Zn+PnPLN (Zn). Nonetheless, Proposition
4.17 applies to Zn as well since this theorem relies solely on energy estimates, and in particular, since´
T3 Λ (p) · Z = 0 when ∇ · u = 0 and

´
T3 PnPN (Zn) · Zn =

´
T3 N (Zn) · Zn since Zn belongs to the image

of the projection Pn ◦ P, it follows that the estimate obtained for Z in Proposition 4.17 also holds for Zn.
Summing (A.6) and (A.7) and using the integral form of the Gronwall inequality tells us that, for any

0 < t < T̃n,

||Zn (t)||2H4 +

ˆ t

0
||(un, ωn)||2H5 6 C2e

ρt||Z0||2H4 (A.8)

where ρ := 2 (1 + C0 + C1) max (1, 2/ν). In particular we deduce from the blow-up criterion that if we

denote by Tlwp the infimum of Tn over n then Tlwp >
1
ρ log

δlwp

||Z0||H4
. In other words we have a uniform lower

bound on the time of existence of the approximate solutions.
Now we obtain bounds on the time derivative ∂tZn, which are required for the compactness argument

in Step 4. Note first that (A.8) tells us that, for C4 = C2e
ρTlwp ,

sup
n

(
||(un, ωn, Jn)||2L∞H4 + ||(un, ωn)||2L2H5

)
6 C4||Z0||2H4 (A.9)

where LpHs denote Lp ([0, Tlwp] ;Hs). Using Lemma A.1 and the boundedness of L̃, Pn, and P we deduce
from (A.9) that, for some C5 > 0,

sup
n

(
||∂t (un, ωn, Jn)||2L∞H2 + ||∂t (un, ωn)||2L2H3

)
6 C5||Z0||2H4 . (A.10)

Finally we improve this bound on ∂tZn by paying closer attention to the structure of the PDE (A.4).

Specifically: since L̃3 and N3 lose fewer derivatives than L̃ and N do, we obtain an improved estimate for
∂tJn:

sup
n
||∂tJn||2L∞H3 6 C4||Z0||2H4 . (A.11)

Step 4: Passing to the limit by compactness.
By applying Banach-Alaoglu (i.e. the weak-∗ compactness of bounded sets) to the bounds provided by

(A.9), (A.10), and (A.11) we obtain a subsequence of (Zn), which for simplicity we do not relabel, such
that

Zn
∗
⇀ Z in L∞H4, (un, ωn) ⇀ (u, ω) in L2H5, (A.12)

∂tZn
∗
⇀ ∂tZ in L∞H2, ∂tZn ⇀ ∂tZ in L2H3, and ∂tJn

∗
⇀ ∂tJ in L∞H3 (A.13)

for some Z = (u, ω, J) ∈ L∞H4 with (u, ω) ∈ L2H5, ∂tZ ∈ L∞H2 ∩ L2H3, and ∂tJ ∈ L∞H3. Moreover,
it follows from Aubin-Lions-Simon that, passing to another subsequence which we do not relabel,

Zn → Z in C0H4− 1
4 (A.14)

and that Z ∈ C0H4− 1
4 .

We now pass to the limit. It follows immediately from (A.12) and (A.13) that

∂tDZn
∗
⇀ ∂tDZ and L̃Zn ∗

⇀ L̃Z in L∞H2. (A.15)
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To pass to the limit in the nonlinearity we write

PnPN (Zn)− PN (Z) = PnP (N (Zn)−N (Z)) + (Pn − I)PN (Z) := A+B.

Passing to the limit in B is immediate: by weak-∗ lower semi-continuity of the L∞H4 norm we know that
sup06t6T0 ||Z (t)||H4 6 δ0

2 < δ0 such that N (Z) is a well-defined element of L∞H2. In particular, since
||(I − Pn) f ||Hs → 0 for all s > 0 and all f ∈ Hs, it follows that

||B||L∞H2 = ||(I − Pn)PN (Z)||L∞H2 → 0. (A.16)

Passing to the limit in A relies on the analyticity of the nonlinearity obtained in Lemma A.1: since Zn → Z

in C0H4− 1
4 and since, as observed above, both the sequence (Zn) and its limit Z lie in H4

δ0/2
, it follows

from Lemma A.1 (since 2− 1
4 >

3
2) that N (Zn)→ N (Z) in C0H4− 1

4 . So finally:

||A||
L∞H2− 1

4
= ||PnP (N (Zn)−N (Z))||

L∞H2− 1
4
6 ||N (Zn)−N (Z)||

L∞H2− 1
4
→ 0. (A.17)

We conclude from (A.4), (A.15), (A.16), and (A.17) that Z is a strong solution of ∂tDZ = L̃Z + PN (Z).
As a consequence we deduce that the conditions ∇ · u = 0 and

ffl
T3 u = 0 are propagated in time, i.e. they

hold for every 0 6 t < Tlwp.
Finally we deduce from (A.9), (A.10), and (A.11) and the weak and weak-∗ lower semi-continuity of the

appropriate norms that, for some C > 0,

||(u, ω, J)||L∞H4 + ||(u, ω)||L2H5 + ||∂t (u, ω, J)||L∞H2∩L2H3 + ||∂tJ ||L∞H3 6 C||Z0||H4 . (A.18)

Step 5: Reconstructing the pressure.
The key observation is that since P = PL ⊕ I3 ⊕ I3×3 we may reconstruct p via I − PL, where I − PL =

∇∆−1∇· as per Lemma B.20. More precisely: let p := ∆−1 (∇ ·N1 (Z)) and note that p thus defined has
average zero. Then, by Lemma B.20, ∇p = (I − PL)N1 (Z) and hence Λ (p) = − (I − P)N (Z) such that
(A.1) holds. Finally, since N1 (Z) = − (u · ∇)u and since Hs is an algebra for s > 3/2 we have that, for
s = 3 or 4,

||p||Hs . ||N1 (Z)||Hs−1 = ||(u · ∇)u||Hs−1 . ||u||Hs−1 ||u||Hs .

Combining these estimates with (A.18) yields (A.3). �

Remark A.4. It may appear somewhat odd that the initial condition Z (0) = Z0 of (A.1) holds in H4− 1
4

and not in H4 as one might expect. This is due to the loss of spatial regularity incurred when applying

the Aubin-Lions-Simon lemma to obtain strong convergence of the approximate solutions in C0H4− 1
4 . In

particular, note that the only thing which is special about 1
4 is that it sits squarely between 0 and 1

2 and

that we use that
(
4− 1

4

)
− 2 > 3

2 when we leverage Lemma A.1 to pass to the limit in the nonlinearity in

Step 4 of the proof of Theorem A.3. This means that we can actually show that Z (0) = Z0 in H4−ε for
any 0 < ε < 1

2 , since then 4 − ε < 4 such that Aubin-Lions-Simon applies and (4− ε) − 2 > 3
2 such that

we may still use Lemma A.1.

We now state and prove our uniqueness result. Note that the only assumptions made are boundedness
of appropriate Sobolev norms of the solutions. No smallness assumptions are made here.

Theorem A.5 (Uniqueness). Suppose that, for i = 1, 2, (ui, pi, ωi, Ji) are strong solutions of
∂tui + (ui · ∇)ui = (∇ · T ) (ui, pi, ωi) ,

∇ · ui = 0,

Ji (∂tωi + (ui · ∇)ωi) + ωi ∧ Jiωi = 2 vecT (ui, pi, ωi) + (∇ ·M) (ωi) + τe3, and

∂tJi + (ui · ∇) Ji = [Ωi, Ji]

on some common time interval (0, T ) which agree initially, i.e. which agree at time t = 0. If J1 is uniformly
positive-definite, pi, ∂t (ui, ωi, Ji) ∈ L2

TL
2, (ui, ωi, Ji) ,∇ (ui, ωi, Ji) ∈ L∞T L∞, and ∂tJ1, ∂tω2 ∈ L∞T L∞, then

these solutions coincide on (0, T ).
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Proof. This follows from simple energy estimates for the equations satisfied by the difference of the two
solutions. The difference (u, p, ω, J) = (u1 − u2, p1 − p2, ω1 − ω2, J1 − J2) satisfies

(∂t + u1 · ∇)u = (∇ · T ) (u, p, ω) + f, (A.19a)

∇ · u1 = 0, (A.19b)

(J1 (∂t + u1 · ∇) + ω1 ∧ J1)ω = 2 vecT (u, p, ω) + (∇ ·M) (ω) + g, (A.19c)

(∂t + u1 · ∇) J1 = [Ω1, J1] , and (A.19d)

(∂t + u1 · ∇) J = [Ω, J ] + h (A.19e)

for 
f = − (u · ∇)u2

g = −J∂tω2 − J1 (u · ∇)ω2 − J (u2 · ∇)ω2 − ω1 ∧ Jω2 − ω ∧ J2ω2, and

h = − (u · ∇) J2 + [Ω, J2] .

We can thus multiply (A.19a), (A.19c), and (A.19e) by u, ω, and J respectively to see that, for every
0 < t < T ,ˆ

T3

1

2
|u|2 +

1

2
J1ω · ω +

1

2
|J |2

∣∣∣∣
s=t

−
ˆ
T3

1

2
|u|2 +

1

2
J1ω · ω +

1

2
|J |2

∣∣∣∣
s=0

+

ˆ t

0

ˆ
T3

µ

2
|Du|2 + 2κ

∣∣∣∣12∇× u− ω
∣∣∣∣2 + α|∇ · ω|2 +

β

2
|D0ω|2 + 2γ|∇ × ω|2 =

ˆ t

0

ˆ
T3

f · u+ g · ω + h : J.

We can write this energy-dissipation-interaction relation more succintly as E(t) − E(0) +
´ t

0 D =
´ t

0 I for
I =
´
T3 f ·u+ g ·ω+h : J . It follows from straightforward application of the Hölder and Cauchy-Schwartz

inequalities that the interactions are controlled by the energy, i.e. |I| 6 CE for some constant C > 0.
Note that since the two solutions agree initially we have that E(0) = 0. Therefore the integral version of
Gronwall’s inequality tells us that E(t) = 0 for all 0 < t < T . Since J1 is uniformly positive definite we
deduce that (u, ω, J) = 0. Finally, since −∆p = ∇u1 : ∇uT +∇u : ∇u2

T = 0, we conclude that indeed the
two solutions coincide. �

Putting Theorem A.3 and Theorem A.5 together yields our local well-posedness result, stated below.

Corollary A.6 (Local well-posedness). The solution obtained in Theorem A.3 is unique.

Proof. This is immediate since the assumptions of Theorem A.3 ensure that Theorem A.5 applies. �

Appendix B. Auxiliary results

Here we record auxiliary results which are used throughout the main body of the paper. Whilst these
results are typically either elementary lemmas or well-known theorems, they are of interest since they are
applicable beyond the scope of this paper.

Lemma B.1 (Lower bound on the real part of complex square roots). Let x, y ∈ R with y 6= 0 and
let α > 0. We follow the convention according to which the square root of a complex number with non-
trivial imaginary part is chosen to have a strictly positive real part. Then Re

√
x+ iy > α if and only if

x > α2 − y2

4α2 .

Proof. Let us write
√
x+ iy = u+ iv for some u > 0 and v ∈ R, such that x = u2− v2 and y = 2uv. What

we wish to prove can then be written as u > α if and only if u2 − v2 > α2 − u2v2

α2 . The latter inequality

can be rearranged as u2 − α2 > − v2

α2

(
u2 − α2

)
. This can be simplified, using the fact that u + α > 0, to

(u− α)
(

1 + v2

α2

)
> 0. This is indeed equivalent to u > α so we are done. �

Lemma B.2 (Similarity of matrices acting on quotient spaces). Let V be a subspace of Cn and let A, G,
and H be complex n-by-n matrices which act on Cn/ V (c.f. Definition 3.1) such that GH = HG = projV ⊥.
Then (1) B := GAH acts on Cn/ V , (2) A = HBG, and (3) A and B are similar.
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Proof. First we show that B acts on Cn/ V . We know that imB ⊆ imG ⊆ V ⊥ and that V = kerH ⊆ kerB,
so it is enough to show that kerB ⊆ V . Let x ∈ kerB. Since Hx ∈ V ⊥, it suffices to show that Hx ∈ V
as then Hx = 0, i.e. x ∈ kerH = V . The key observation is that since imA ⊆ V ⊥ and since G and
H are inverses on V ⊥, we obtain that A = HGA. It follows that AHx = HGAHx = HBx = 0, i.e.
Hx ∈ kerA = V , and hence (1) holds.

Now observe that in order to prove that A = HBG it is enough to show that HGA = A, which was
done above, and that AHG = A, which we do now. Pick any x ∈ Cn and write x = x‖+x⊥ for x‖ ∈ V and

X⊥ ∈ V ⊥. Since kerG = kerA = V and since HG = projV ⊥ it follows that AHGx = AHGx⊥ = Ax⊥ =
Ax, i.e. indeed AHG = A.

Finally we show that A and B are similar by explicitly finding an appropriate change-of-basis matrix.
Let P be the orthogonal projection onto V , i.e. kerP = V ⊥ and P |V = id |V . Observe that, since
kerB = V = imP and since imB ⊆ V ⊥ = kerP , we may deduce that BP = PB = 0. Therefore

(H + P )B (G+ P ) = A. (B.1)

We will now show that G+P and H+P are invertible and (G+P )−1 = H+P , from which it follows that
(B.1) witnesses (3). Let x ∈ ker (G+ P ) and let us write x = x‖ + x⊥ as above. Then 0 = (G+ P )x =

Gx⊥ + x‖ with Gx⊥ ∈ V ⊥ and x‖ ∈ V , and hence we must have Px⊥ = 0 and x‖ = 0. In particular, since

kerG = V , we know that x⊥ belongs to both V and V ⊥ and hence x⊥ = 0, such that x = 0. This shows
that G+P has trivial kernel and is thus invertible. We may deduce in exactly the same way that H +P is
invertible. To conclude we simply compute (H + P )(G+ P ) = HG+HP + PG+ P 2 = HG+ P = I. �

Lemma B.3 (Bounds on the real parts of the eigenvalues of a matrix using the spectrum of its symmetric
part). Let S and A be symmetric and antisymmetric real n-by-n matrices respectively. It then holds that
minσ (S) 6 Reσ (S +A) 6 maxσ (S).

Proof. Let us denote by λ+ and λ− the maximal and minimal eigenvalues of S, respectively, let us define
M = S + A, and let a + ib, a, b ∈ R, be an eigenvalue of M with eigenvector x + iy, x, y ∈ Rn. Then,
since M (x+ iy) = (a+ ib) (x+ iy) it follows that Mx = ax − by and My = bx + ay. In particular
Sx·x+Sy ·y = Mx·x+My ·y = a

(
|x|2 + |y|2

)
where Sx·x+Sy ·y 6 λ+

(
|x|2 + |y|2

)
, and therefore a 6 λ+.

We may obtain in exactly the same way that a > λ−, and hence indeed λ− 6 Reσ (S +A) 6 λ+. �

Theorem B.4 (Gershgorin disk theorem). Let A be a complex n-by-n matrix and let Ri :=
∑

j 6=i|Aij | for

i = 1, . . . , n. Every eigenvalue of A lies in one of the closed disks B (Aii, Ri), where i = 1, . . . , n. These
disks are called the Gershgorin disks of A.

Proof. Let v be an eigenvector of A with eigenvalue λ. Without loss of generality (otherwise we may divide
v by ±||v||∞): vi = 1 for some index i and |vj | 6 1 for all indices j different from i. Now observe that

(Av)i = λvi ⇔ Aiivi +
∑
j 6=i

Aijvj = λvi ⇔ λ−Aii =
∑
j 6=i

Aijvj

and thus |λ − Aii| 6
∑

j 6=i|Aij ||vj | 6
∑

j 6=i|Aij | = Ri i.e. indeed λ lies in B (Aii, Ri), which is one of the
Gershgorin disks of A. �

Corollary B.5 (Bounds on the imaginary parts of the eigenvalues of a matrix using the Frobenius norm
of its antisymmetric part). Let S and A be symmetric and antisymmetric real n-by-n matrices respectively.

Then |Imσ (S +A)| 6
√
n− 1||A||2, where ||A||2 :=

√
A : A is the Frobenius norm of A.

Proof. Since S is symmetric, there exists an orthogonal matrix Q and a diagonal matrix D such that
QSQT = D. Therefore Q (S +A)QT = D +QAQT . In particular, for Ã := QAQT , we know that S + A

and D+ Ã have the same spectrum. Writing D = diag (λ1, . . . , λn) where the λi’s are the eigenvalues of S,

we may apply Theorem B.4 to deduce that the eigenvalues of D + Ã lie within closed disks centered at λi
(since Ã is antisymmetric and hence all its diagonal entries are equal to zero) and with corresponding radii

Ri =
∑

j 6=i|Ãij | 6
√
n− 1 ||Ã||2. The result then follows from the observation that the eigenvalues λi of

the symmetric matrix S are real and the fact that ||Ã||22 = QAQT : QAQT = QTQAQTQ : A = ||A||22. �
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Lemma B.6 (Bounds on matrix exponentials using the symmetric part). Let M be a real n-by-n matrix,
let S := 1

2

(
M +MT

)
denote its symmetric part, and let σ denote the largest eigenvalue of S. Then, for

every t > 0,
∣∣∣∣etM ∣∣∣∣L(l2,l2)

6 eσt.

Proof. This follows from a simple Gronwall inequality upon noticing that, for any x ∈ Rn, Mx ·x = Sx ·x.
More precisely: pick any x0 ∈ Rn and define x (t) := etMx0 for every t > 0. Observe that d

dtx (t) = Mx (t)

and hence d
dt ||x (t)||22 = 2Sx (t) · x (t) 6 2σ||x (t)||22. Since x (0) = x0, applying Gronwall’s inequality yields

that, for every t > 0,
∣∣∣∣etMx0

∣∣∣∣2
2

= ||x (t)||22 6 e2σt||x0||22, from which the result follows. �

Lemma B.7 (Bounds on matrix exponentials for Jordan canonical forms). For any matrix norm | · |
there exists a constant Cn > 0 such that for every complex n-by-n matrix M in Jordan canonical form, if
η := max Reσ (M) then, for every t > 0, |etM | 6 Cn (1 + tn) eηt.

Proof. Since M is in Jordan canonical form it can be written as M = Ja1 (λ1) ⊕ · · · ⊕ Jak (λk) where the
λi’s are eigenvalues of M and Ja (λ) = λIa + Na for (Na)ij = 1 if j = i + 1 and (Na)ij = 0 otherwise,
Note that, since Na is an a-by-a matrix whose only non-zero entries are those immediately above the
diagonal, it is nilpotent of order a. In particular, note that since the identity commutes with all matrices,
it follows that eJa(λ) = eλeNa , and recall that for any nilpotent matrix N of order q its matrix exponential
is given by a finite sum, i.e. eN =

∑q−1
j=0

1
j!N

j . We can thus compute the matrix exponential of M to be

etM = eλ1tetNa1⊕eλktetNak which can be estimated by |etM | 6∑k
i=1 e

(Reλi)t
∣∣∣∑ai

j=0
1
j!(tNai)

j
∣∣∣ . eηt (1 + tn)

where have used that polynomials of degree q in a real variable x can be bounded above (up to a constant)
by 1 + xq, and where the constants up to which the inequalities above hold only depends on n and the
choice of the matrix norm. �

Corollary B.8 (Bounds on matrix exponentials). Let M be a real n-by-n matrix and let η :=max Reσ (M).
For any matrix norm | · | there exists a constant C = C (M) > 0 such that, for every t ∈ R, it holds that
|etM | 6 C (1 + tn) eηt.

Proof. This follows from Lemma B.7 since every matrix M is similar to a matrix in Jordan canonical form.
The constant obtained depends on M since the norm of the matrices used to conjugate M to put it in
Jordan canonical form depend on M . �

Proposition B.9 (Construction of a semigroup via matrix exponentials as Fourier multipliers). Let
M : Zn → Rl×l be a family of matrices for which there exists η ∈ R and CF > 0 such that, for
every k ∈ Zn and every t > 0, ∣∣∣∣∣∣etM(k)

∣∣∣∣∣∣
L(l2, l2)

6 CF e
ηt. (B.2)

For any t > 0 the operator etL defined by the multiplier
(
etL
)∧

(k) := etM(k) is a bounded operator on

L2
(
Tn;Rl

)
such that

(
etL
)
t>0

defines an η-contractive semigroup, i.e.

(1) e0L is the identity,

(2) for every t, s > 0, etLesL = esLetL = e(t+s)L,
(3) for every f ∈ L2

(
Tn;Rl

)
, t→ etLf is a continuous map from [0,∞) to L2

(
Tn;Rl

)
, and

(4) for every r > 0,
∣∣∣∣etL∣∣∣∣L(Hr(Tn;Rl);Hr(Tn;Rl)) 6 CF e

ηt.

Moreover, let us write v = (v1, . . . , vp) ∈ Rq1 × · · · × Rqp, where q1 + · · · + qp = l, and suppose that there

exists α1, . . . , αp ∈ N and CD > 0 such that for every k ∈ Zn and every v ∈ Rl,

|M (k) v|2 6 CD
p∑
i=1

〈k〉2αi |vi|2. (B.3)

Then

(5) the domain of the semigroup
(
etL
)
t>0

is Hα1 (Tn,Rq1)× · · · ×Hαp (Tn,Rqp) and

(6) its generator is the linear differential operator L with symbol M , i.e. L̂ (k) := M (k).
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Proof. The boundedness of etL and (4) follow directly from (B.2). (1) and (2) follow from the fact that,
for any matrix M ,

(
etM

)
t>0

is a representation of the semigroup (R>0,+), i.e. e0M = I and etMesM =

esMetM = e(t+s)M . To prove that (3) holds it suffices to show that t 7→ etLf is continuous at t = 0. This
is immediate since ∣∣∣∣etLf − f ∣∣∣∣

L2 6
∑
|k|6K

|
(
etMk − I

)
f̂(k)|2 +

(
eηt + 1

)2 ∑
|k|>K

|f̂(k)|2

︸ ︷︷ ︸
=:Rf (K)

where Rf (K)→ 0 as K →∞ since f ∈ L2, and hence, since for any fixed K the collection
{
t 7→ etMk

}
|k|6K

is as finite collection of continuous maps, we indeed obtain that etLf → f in L2 as t→ 0.
Finally, to prove (5) and (6) we proceed as we did for (3). First we note that, by the mean-value theorem,

for every k ∈ Zn and every t > 0, etMk−I
t −Mk =

´ 1
0

(
estMk − I

)
Mkds. Therefore, for any f ∈ L2 and any

0 < t < δ, if we write f̂ =
(
f̂1, . . . , f̂p

)
∈ Rq1 × · · · × Rqp then∣∣∣∣∣∣∣∣etLf − ft

− Lf
∣∣∣∣∣∣∣∣2
L2

6
∑
k∈Zl

∣∣∣∣∣∣∣∣ˆ 1

0

(
estMk − I

)
ds

∣∣∣∣∣∣∣∣2
L(l2, l2)

∣∣∣Mkf̂ (k)
∣∣∣2

6 C (K, f)
∑
|k|<K

∣∣∣∣∣∣∣∣ˆ 1

0

(
estMk − I

)
ds

∣∣∣∣∣∣∣∣2
L(l2, l2)

+ C (η, δ)
∑
|k|>K

p∑
i=1

〈k〉2αi
∣∣∣f̂i (k)

∣∣∣2
︸ ︷︷ ︸

=:Hf (K)

In particular, if f ∈ Hα1 × · · · × Hαp then Hf (K) → 0 as K → ∞ and thus, since, for any fixed K,{
t 7→ etMk

}
|k|6K is as finite collection of continuous maps, we may conclude that indeed etLf−f

t → Lf in

L2 as t→ 0. �

Theorem B.10 (Rouché). Let Ω ⊆ C be a connected open set whose boundary is a simple curve and let
f and g be holomorphic in Ω. If |f − g| < |f | on ∂Ω then f and g have the same number of zeros in Ω.

Proof. See Chapter 4 of [Ahl78]. �

Theorem B.11 (Implicit Function Theorem for mixed real-complex functions). Let f : O ⊆ C×Rm → C,
where O is open, be continuously differentiable in the real sense (i.e. after identifying C with R2 in the
canonical way) is continuously differentiable. Let (z0, v0) ∈ O and let us write f = f (z, v) for z ∈ C
and v ∈ Rm. If (1) f (z0, v0) = 0 and (2) ∂zf (z0, v0) 6= 0 then there exist open sets U ⊆ C × Rm and
W ⊆ Rm and a function g : W → C which is continuously differentiable in the real sense such that
(1) (z0, v0) ∈ U , v0 ∈ W , (2) g (v0) = z0, (3) (g (v) , v) ∈ U for every v ∈ W , (4) f (g (v) , v) = 0 for every
v ∈W and

∇vg (v0) =
−∇vf (z0, v0)

∂zf (z0, v0)
.

Moreover, if f is more regular, in the real sense, then so is g.

Proof. See Chapter 9 of [Rud76]. �

Lemma B.12 (Coercivity implies invertibility and bounds on the inverse). Let B be a real n-by-n matrix.
If B is coercive, i.e. if there exists C0 > 0 such that for every x ∈ Rn, |Bx| > C0|x|, then B is invertible
and

∣∣∣∣B−1
∣∣∣∣
op
6 1

C0
.

Proof. Observe that since B is coercive, it has trivial kernel, and is hence invertible. To obtain the bound
on the operator norm of B−1 simply observe that for every y ∈ Rn, |y| = |BB−1y| > C0|B−1y|. �

Corollary B.13 (Invertibility and bounds for perturbations of the identity). Let B be a real n-by-n matrix.

If ||B||op < 1 then I +B is invertible and
∣∣∣∣∣∣(I +B)−1

∣∣∣∣∣∣
op
6 1

1−||B||op
.

Proof. The key observation is that I + B is coercive with coercivity constant 1− ||B||op. The result then
follows from Lemma B.12. �
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Lemma B.14. Let A and N be real n-by-n matrices such that N is normal, i.e. NNT = NTN . Then
[A,N ] : N = 0.

Proof. This follows from a direct computation: NA : N = A : NTN = A : NNT = AN : N and hence
[A,N ] : N = AN : N −NA : N = 0. �

Proposition B.15 (Korn inequality). There exists CK > 0 such that for every u ∈ H1
(
T3, R3

)
,

||∇u||L2 6 CK (||u||L2 + ||Du||L2).

Proof. See Lemma IV.7.6 in [BF13]. �

Proposition B.16 (Korn-Poincaré inequality). There exists CKP > 0 such that for every u ∈ H1
(
T3, R3

)
,

||u||L2 6 CKP
(∣∣ffl u∣∣+ ||Du||L2

)
.

Proof. This is a consequence of Proposition B.15 – see for example Lemma IV.7.7 in [BF13] – noting that
∇× u has average zero on the torus. �

Lemma B.17 (A div-curl identity on the torus). For any v ∈ H1
(
T3, R3

)
, it holds that ||∇v||2L2 =

||∇ · v||2L2 + ||∇ × v||2L2.

Proof. The key observation is that for any w ∈ R3 and any nonzero k ∈ Z3, w 7→ k×w
|k| is an isometry

on span⊥k , and hence |w|2 = |projk w|2 + |projk⊥ w|2 = |k·w|2
|k|2 + |k×w|2

|k|2 . Combining this observation with

Parseval’s identity allows us to conclude:

||∇v||2L2 =
∑
k∈Z3

|k⊗ v̂ (k)|2 =
∑

k∈Z3\{0}

|k|2|v̂ (k)|2 =
∑
k∈Z3

|k · v̂ (k)|2 +
∑
k∈Z3

|k× v̂ (k)|2 = ||∇ · v||2L2 + ||∇ × v||2L2 .

�

Proposition B.18 (Estimates from the Faà di Bruno formula). Let U ⊆ Rn and V ⊆ Rp be open and let
g : U → V and F : V → Rq be k-times differentiable. There exists a constant C = C (n, p, q, k) > 0 which
does not depend on F or g such that, for every x ∈ U ,∣∣∣∇k (F ◦ g) (x)

∣∣∣ 6 C k∑
i=1

∣∣∇iF (g (x))
∣∣ ∑
π∈Pi(k)

|∇πg (x)| .

Proof. This estimate follows immediately from the Faà di Bruno formula, which was first proven in [Arb00]
and can be found in a rather clean form in [Har06]. �

Lemma B.19 (Post-compositions by analytic functions are analytic). Suppose that F : Rk → Rl is
analytic about zero and let s > n

2 . There exists δ > 0 such that F ∗ : Hs
δ

(
Tn;Rk

)
→ Hs

(
Tn;Rl

)
, defined

by F ∗ (G) = F ◦G for every G ∈ Hs
δ , is analytic.

Proof. Let δ = R
Cs

where R is the radius of convergence of F about zero and Cs is the constant from the

continuous embedding Hs ·Hs ↪→ Hs and suppose that F (x) =
∑∞

i=0 Fi •X⊗i for every x ∈ B (0, R), for
some fixed tensorial coefficients Fi. Then indeed, for every G ∈ Hs

δ , F ∗ (G) =
∑∞

i=0 Fi •G⊗i with

∞∑
i=0

|Fi|
∣∣∣∣G⊗i∣∣∣∣

Hs 6
∞∑
i=0

|Fi|Cis ||G||iHs 6
∞∑
i=0

|Fi|Ri <∞.

�

Lemma B.20 (Formula for the Leray projector and its complement). Let PL denote the Leray projector
on the torus. Then PL = −∇×∆−1∇× and I − PL = ∇∆−1∇·.

Proof. This is immediate since P̂L (0) = I and P̂L (k) = I− k⊗k
|k|2 if k 6= 0 and since k×k×· = |k|2−k⊗k. �
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Appendix C. Derivation of the perturbative energy-dissipation relation

In this section we derive the energy-dissipation relation (2.8), which is satisfied by solutions of (1.1a)–
(1.1d). First recall that the Cauchy stress tensor T and the couple stress tensor M are defined in (2.6).
We will write Teq = −κΩeq for the equilibrium version of the stress tensor. For simplicity we will also write
Dt := ∂t + u · ∇ for the advective derivative. The conservation of linear momentum (1.1a) can then be
written as Dtu = ∇ · T such that multiplying by u yields

d

dt

ˆ
T3

1

2
|u|2 =

ˆ
T3

Dt

(
1

2
|u|2
)

=

ˆ
T3

Dtu · u =

ˆ
T3

(∇ · T ) · u = −
ˆ
T3

T : ∇u. (C.1)

Similarly, the conservation of angular momentum (1.1c) can be written as

JDtω + [Ω, J ]ω = 2 vec (T − Teq) +∇ ·M

and hence multiplying by ω − ωeq yields

JDtω · (ω − ωeq) + [Ω, J ]ω · (ω − ωeq) = 2 vec (T − Teq) · (ω − ωeq) + (∇ ·M) · (ω − ωeq) . (C.2)

The right-hand side of (C.2) is dealt with in the usual way:

ˆ
T3

2 vec (T − Teq) · (ω − ωeq) + (∇ ·M) · (ω − ωeq) =

ˆ
T3

(T − Teq) : (Ω− Ωeq)−M : ∇ (ω − ωeq) . (C.3)

Dealing with the left-hand side of (C.2) requires further rearranging. Using the fact that the conservation of
micro-inertia (1.1d) can be written as DtJ = [Ω, J ] and adding and subtracting 1

2DtJ (ω − ωeq) · (ω − ωeq)
yields

JDtω · (ω − ωeq) + [Ω, J ]ω · (ω − ωeq) = Dt

(
1

2
J (ω − ωeq) · (ω − ωeq)

)
+

1

2
DtJ (ω + ωeq) · (ω − ωeq) .

(C.4)

The key observation that allows us to conclude is the identity [Ω, J ] (ω + v) · (ω − v) = − [Ω, J ] v · v for
every v ∈ R3. Combining this identity with DtJ = [Ω, J ] tells us that

1

2
DtJ (ω + ωeq) · (ω − ωeq) = −1

2
(DtJ)ωeq · ωeq = −Dt

(
1

2
Jωeq · ωeq

)
. (C.5)

Finally: combining (C.3), (C.4), and (C.5) yields

d

dt

(ˆ
T3

J (ω − ωeq) · (ω − ωeq)−
1

2
Jωeq · ωeq

)
=

ˆ
T3

(T − Teq) : (Ω− Ωeq)−M : ∇ (ω − ωeq) .

Adding this equation to (C.1) yields the energy-dissipation relation (2.8).

Appendix D. The 8-by-8 matrix M in all its glory

In this section we record the matrix Mk in an explicit form. Recall that Mk is introduced in Section
3.2, and is written there in a compact form well-suited to the analysis of its spectrum. However, in order
to compute the characteristic polynomial of M , we employed the assistance of a symbolic algebra package,
and this thus requires providing an explicit form of the matrix Mk. Mk can be written in block form as

Mk =

 A B 03×2

BT C D
02×3 E F


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where

A =− (µ+ κ/2)
(
|k|2I3 − k ⊗ k

)
= (µ+ κ/2)

−k2
2 − k2

3 k1k2 k1k3

k1k2 −k2
1 − k2

3 k2k3

k1k3 k2k3 −k3
2 − k2

3

 ,

B =
κ

|k|
(
|k|2I3 − k ⊗ k

)
diag

(
λ−1/2, λ−1/2, ν−1/2

)
=

κ√
k2

1 + k2
2 + k2

3

(k2
2 + k2

3

)
/
√
λ −k1k2/

√
λ −k1k3/

√
ν

−k1k2/
√
λ

(
k2

1 + k2
3

)
/
√
λ −k2k3/

√
ν

−k1k3/
√
λ −k2k3/

√
λ

(
k2

1 + k2
2

)
/
√
ν


D =

τ

2κ

√
1− ν

λ

1 0
0 1
0 0

 , E =

(
1 0 0
0 1 0

)
, F =

τ

2κ

(
0 −1
1 0

)
and

C =− diag
(
λ−1/2, λ−1/2, ν−1/2

) (
2κI3 + (α+ β/3− γ) k ⊗ k + (β + γ) |k|2I3

)
diag

(
λ−1/2, λ−1/2, ν−1/2

)
−
(

1− ν

λ

) τ

2κ
(e2 ⊗ e1 − e1 ⊗ e2)

such that

C11 = −λ−1
(
2κ+ (α+ 4β/3) k2

1 + (β + γ)
(
k2

2 + k2
3

))
, C12 = −λ−1 (α+ β/3− γ) k1k2 +

τ

2κ

(
1− ν

λ

)
,

C22 = −λ−1
(
2κ+ (α+ 4β/3) k2

2 + (β + γ)
(
k2

1 + k2
3

))
, C21 = −λ−1 (α+ β/3− γ) k1k2 −

τ

2κ

(
1− ν

λ

)
,

C33 = −ν−1
(
2κ+ (α+ 4β/3) k2

3 + (β + γ)
(
k2

1 + k2
2

))
, C13 = C31 = −λ−1/2ν−1/2 (α+ β/3− γ) k1k3,

C23 = C32 = −λ−1/2ν−1/2 (α+ β/3− γ) k2k3.
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