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Abstract

We develop a general theory of geometrically necessary dislocations based on the decomposition F =
F*F?. The incompatibility of F* and that of FP are characterized by a single tensor G giving the
Burgers vector, measured and reckoned per unit area in the microstructural (intermediate) configuration.
‘We show that G may be expressed in terms of F* and the referential curl of F?, or egquivalently in terms
of F°~* and the spatial curl of F*~!. We derive explicit relations for G in terms of Euler angles for a
rigid-plastic material and — without neglecting elastic strains — for strict plane strain and strict anti-
plane shear. We discuss the relationship between G and the distortion of microstructural planes. We
show that kinematics alone yields a balance law for the transport of geometrically necessary dislocations.

Keywords: A. dislocations, B. crystal plasticity, B. Finite strain.

1 Introduction
Modern treatments of finite plasticity are based on the Kréner-Lee decomposition?
F = F°F? (1.1)

of the deformation gradient F' = Vy into structural (elastic) and plastic components, where & = y(X,t)
represents the deformation that carries material points X in the reference configuration into their positions
T at time ¢ in the deformed configuration. For a single crystal, FP{X) represents the “local deformation” of
referential line segments to line segments dl = F?(X )d X in the microstructural configuration.? a deformation
resulting solely from the formation of defects such as dislocations; F*°(X) represents the “local deformation”
of the segments di into segments dz=F°(X)dl due to stretching and rotation of the lattice.

An important feature of the Kroner-Lee decomposition is that, while F is compatible {the gradient of
a vector field), F* and F? are generally incompatible, a property related to the formation of dislocations.
Such dislocations are termed geometrically necessary, as they arise solely from the underlying kinematics,
and their intrinsic characterization is basic to general theories of plasticity.

In crystal physics dislocations may be quantified by the Burgers vector, which represents the closure-
deficit of circuits deformed from a perfect lattice, and one may ask whether in a continuum theory it is

!Kréner (1960), Lee (1969).
?We also use the term lattice configuration when discussing single crystals.
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possible to characterize such dislocations through a tensor field G that measures the local Burgers vector
per unit area. In fact, the problem is not the absence of such a field, but rather the plethora of fields that
have appeared in the literature. Here our central task is to show that there is but a single measure of
geometrically necessary dislocations consistent with physically motivated requirements. To place our ideas
in context we begin, after fixing notation, with a brief historical discussion of this question.

1.1 Notation for differential operators

Throughout,
V, Div, and Curl

denote the gradient, divergence, and curl with respect to the material point X in the reference configuration;
grad, div, and curl

denote the divergence, gradient, and curl with respect to the point £ =y(X, t) in the deformed configuration;
given any field ¢, 5
; 4
¢ and 5

denote its material time-derivative (holding X fixed) and its spatial time-derivative (holding @ fixed).

1.2 Historical perspective. Critical comments

The early treatments of geometrically necessary dislocations, generally referred to as GNDs, are based on a
representation of the crystalline structure by three independent director-fields ex (). These fields are viewed
as the generators, on a microscopic scale, of a Bravais lattice deformed via a tensor field A(z) through a
transformation ex ()= A(x)c, of a basis ¢; of a fixed reference lattice £. Defectiveness is then measured,
in the spirit of Burgers, by quantifying the closure failure of infinitesimal circuits in this microscopic lattice.
This point of view is easily reconcilied with the formulation in terms of (1.1) upon identifying the elastic
deformation tensor F** with A. This approach to defectiveness is apparently due to Kondo (1952, 1955),
who framed his treatment within a differential-geometric framework using the theory of connections with
defectiveness characterized by the non-holonomicity of the director fields. His measure of GNDs — the torsion
of the connection generated by the director fields — results in a third-order tensor-field that equivalently
may be expressed as the second-order tensor-field

G, = JSF " lcurl F*~1, (1.2)

with J® = detF*.3 At about the same time, and independently, Nye {1953) used physical arguments to
justify a formula relating the local Burgers vector to the local rotation of the directors; tacit in Nye’s work is
the neglect of elastic strains and the assumption of infinitesimal rotations, and his resulting defect measure
is

curl We,

with W* the skew tensor that represents infinitesimal rotations of the lattice. Based on Nye's ideas, Bilby,
Bullough, and Smith (1955), Eshelby (1956), Fox (1966), and Acharya and Bassani (2000), respectively,
proposed tensor fields essentially equivalent to

curl FEF*™T, cwrl Fe, F*lcurl F*!, and R*Tcurl F*~! (1.3)

as measures of GNDs in finite deformations.
An approach essentially different from those described above is that of Kréner (1960), who, based on the
decomposition (1.1), introduces the defect measures?

Gk, = cutl F*71FT  and  G%, = Curl F?. (1.4)

8Teodosiu (1970, 1982) noted that G§in represents the Burgers vector — measured in the reference lattice — for an
infinitesimal circuit in £ enclosing a surface element with unit normal n. Davini (1986) showed that Gf is invariant under
superposed compatible elastic deformations (cf. Davini and Parry (1989) and Cermelli and Sellers (2000)). Cf. also Nolt (1967),
who is led to G¥%, in his theory of materially uniform simple bodies with inhomogenieties.

4@, was used by Naghdi & Srinivasa (1993), G, by Diuzewski (19986).
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Kréner then goes on to develop a complete theory in the context of infinitesimal displacements, where
G%, = G%,. This is apparently the first instance in which the problem of the equivalence of elastic and
plastic defect measures is addressed.

The variety of measures described above — each proposed as a representation of GNDs — begs the
question as to which measure(s), if any, have an intrinsic physical meaning. Requirements, not mutually
independent, that one might consider as reasonable characterizations of such a measure are that:®

(#} G should measure the local Burgers vector in the microstructural configuration, per unit area in that
configuration;

(#1) G should, at any point, be expressible in terms of the field FP in a neighborhood of the point, since,
by fiat, F'? characterizes the defect structure near the point in'question;

(%) G should be invariant under superposed compatible elastic deformations and also under compatible
local changes in reference configuration, since these - being compatible — should not result in an
intrinsic change in the distribution of GNDs near any point.

- It is clear from the work of Teodosiu (1970, 1982) and Davini (1986) that the measure G%, satisfies (4}
and (éit), but (i) would seem problematic. On the other hand, G%, trivially satisfies (¢), but violates (z).
The remaining measures listed in (1.3) violate (i) and ().

1.3 The geometric dislocation tensor G

Our main result is the existence of a tensorial measure of GNDs, geomnetric dislocation tensor G ; specifically,

G'n gives the local Burgers vector in the microstructural configuration — per unit areq in
that configuration — for those dislocation lines piercing the plane II with unit normal n.

More simply, we refer to G'n as the Burgers vector for II. What is most important, G may be expressed in
a form®
4

G= jlp—F” Curl F? (1.5)

that depends only on the plastic part F? of the deformation gradient and equivalently in Kondo’s form
G = JeFe leurl o1, (1.6)

which depends only on the field F*©.
The importance of the alternative plastic and elastic representations of G is that:

() For situations in which lattice strains are small, GNDs would seem amenable to experimental study
through measurement of lattice rotations;” the relation for G in terms of F*® (in this case a rotation)
allows for its experimental study.

(#) In developing a constitutive theory that allows for GNDs, it would seem advantageous to use the
representation for G in terms of F¥, which characterizes defects, leaving F'® to describe the stretching
and rotation of the lattice. The importance of the relation for G in terms of F? is underlined by a
relation we derive giving G for a single crystal as a function of F?, Curl F?, the slips, and the slip
gradients. :

Given a fixed unit vector n, consider the microstructural plane II normal to n. We show that 7 - & (z)n
— the normal component of the Burgers vector for IT — is related to the distortion of IL. Precisely, we show
that, n-Gn =0 everywhere if and only if I is undistorted; that is, if and only if II convects to a family of

5Nate that the conditions (i) and (iii) trivially render G frame-indifferent; of (1.3), only (1.3)3,4 are frame-indifferent.
5Because we do not require that det F? = 1, our discussion allows for the formation of voids and the interaction of voids
with other defects.

TCf. Sun et. al. {1998, 2000).
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smooth surfaces in the deformed configuration. Our proof of this result is based on a classical theorem of
Frobenius in conjunction with the equivalence

nGn=0 & dfcurln=0 ' {1.7)

in which fi(x) represents that unit normal field in the deformed configuration to which n convects. We use
(1.7) to show that II is locally undistorted at a given point if and only if n-Gn vanishes at that point. These
results would seem to indicate that the field n-G'n might be useful as a constitutive quantity related to
hardening due to the formation of GNDs.®

When elastic strains are negligible, so that F° is a rotation R®, GNDs are amenable to experimental
study through the measurement of lattice rotations as described by R®. Materials scientists typically describe
rotations by means of Euler angles via a decomposition of the form

R = Q3Q2Q1, Qi(m) - Q(ﬁi(w)! Ci)

in which the c¢; are constant unit vectors and Q(¥;(x), ¢;) represents a counterclockwise rotation about ¢;
through an angle 9;(z).° As one of our main results we show that the geometric dislocation tensor

G = R°GR*"

referred to the deformed configuration has the simple form
' 3
G =) {c:®gradd; — (& - grad9;)1},
i=]
with &; the vectors ¢; convected to the deformed configuration.

1.4 Strict plane strain and strict anti-plane shear

Two important classes of deformations are plane strain and anti-plane shear in which the matrices of the
" deformation gradient F, in components with respect to an orthonormal basis {e;,e;,e3} with ez the out-
of-plane normal, have the respective forms

[we I ]
=]

0
0 and
1

OO

00
with entries independent of X3. We consider generalizations of plane strain and anti-plane shear defined by
the requirement that in each case the tensor fields F* and F* have a form identical to that of F'; we use the

adjective strict to denote these generalizations.
For strict plane strain with e=e3, G is a “pure edge tensor”

G=e@g, e-g =0,

with e the out-of-plane normal and g the principal Burgers vector. A consequence of this relation is that
microstructural planes parallel to e are undistorted. Moreover, if the material is rigid-plastic, then, for ¢
the rotation angle corresponding to R®, g may be expressed in the simple form

g = —R%"grad 9.

Thus g rotated to the deformed configuration is normal to surfaces ¥¢ = constant.
For strict anti-plane shear,
FP=1+e®4",

8This field, which we term the “distortion modulus”, accounts for the normal component of the Burgers vector of those
dislocations impinging transversally II. When II is a slip plane, these are traditionally termed “forest dislocations” and are
thought to be responsible for stage I hardening (Kuhimann-Wilsdorf 1989).

9The standard Euler-angle representation is obtained by choosing ¢; =e3 =k and ¢z =14, with (i, j, k) an orthogonal basis;
in this case the angles are generally denoted by 93 =1, ¥2 =1, 61 =43,
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with +® orthogonal to e, and the geometric dislocation tensor is a “pure screw-tensor”

G=e®h
with principal Burgers vector
h = curl ’YP

parallel to e. Microstructural planes perpendicular to e are therefore distorted at any point at which
curl4? #£0.

1.5 Dynamics

Kinematics alone yields a balance law for the transport of GNDs. Consider a preseribed microstructural
plane II with unit normal £ and a prescribed unit vector b, which need bear no relation to £. We consider
p(€,b)=£ . Gb — which is the component in the direction b of the Burgers vector, per unit area, on IT — as
a “signed density”.!® We show that p=p(£, b) evolves in accord with the balance law

p= —~Div dr + oR,
with dislocation flux gy and dislocation supply or defined by
gr = FF7 (¢x)LP™s, op=£-L*Gb+b-LPGL

"This ‘balance is one of our main results; one of its more interesting consequences is that plastic flow, as
characterized by nonvanishing values of L?, is always associated with a flux of dislocations, whether or not
G vanishes.!! )

Finally, we derive expressions for single crystals showing the explicit relationship of G to the slips (mi-
croshear rates) and their gradients.

1.6 The invariant nature of G as a descriptor of GNDs

To underline the intrinsic nature of G as an intrinsic measure of GNDs, we consider functions of the form
& =@(FF VF?).

If & — with values associated solely with the lattice configuration — is to provide an intrinsic characterization
of GNDs, then & should be invariant under arbitrary compatible changes in reference configuration, since
such changes should not induce additional GNDs. A central result of ours is that, for ® to display this
invariance, it is both necessary and sufficient that ® reduce to a function of the form!2

3 = ().

Thus — in contrast to the standard prejudice that constitutive dependences on F? are unsound — gradient
theories meant to characterize GNDs should allow for a dependence on F? through its presence in the
geometric dislocation tensor G.

18 An alternative approach to the modeling of dislocations has been suggested by Nye (1953). Noting that the Burgers vectors
of a singie dislocation in a crystal must belong to a well-defined crystallographically determined set, dislocations are accounted
for by assigning independent densities of screw and edge type, each corresponding to dislocations with a given Burgers vector
in this set. These elementary dislocations may be combined to form the tensor &, but G does not uniquely characterize the
elementary densities. For instance, in the “fcc-deconstruction” (Sun et al. 1998, 2000) there are 36 elementary densities, but
only 9 independent components of G, a difficulty overcome by a minimization technique that furnishes a lower bound for the
total density.

117 accounts only only for GNDs, as it measures the net dislocation density associated with macroscopic incompatibility.

12This theorem was in some ways motivated by a result of Davini (1986), who showed that a function G(Fe Ll curl Fe—1) js
invariant under superposed elastic deformations if and only if & reduces to a function of (det Fe)Fe~learl Fe—1,
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2 Preliminaries

2.1 Mappings of surfaces

Let h be a smooth one-to-one mapping of a region D; of R® onto another such region I, with

H =Vh, det H > 0. (2.1)
Further, let 5; C D; (i = 1,2) be smooth surfaces with
Sy = h‘(Sl)'l

and with 5; oriented by a smooth unit-normal field n;. Then, modulo a change in the sign of n,,

H—Tn]_

nz = ml—l, (2.2}
where H™"=(H")~!. The surface jacobian of h as a mapping of S; onto Ss is given by
7= (det H}H ™n,|, (2.3)
5o that, for f a scalar field and 7T & tensor field,13
fdA; = / f2dA,, f TnydA; = /(det H)YTH "n;dA;, (2.4)
82 5 52 5y

with dA; the area measure on S;. (The identity (2.4)2 follows from (2.2), (2.3), and (2.4),.) We refer to the
vector measures n; dA; (i = 1,2) as surface elements with unit normal n; and area dA;.

REMARK. We view (2.4), formally, as asserting that the surface element n; dA; on S; is mapped by h into
the surface element

nadA; = (det HYH ™ "ny dA; (2.5)
on Sy (with area element dA; mapped into dA;=3dA; and n; mapped into ny via (2.2)).

2.2 The curl operator. Stokes theorem
2.2.1 Definitions. Basic results
The curl of a tensor field T is the tensor field defined by
(curlT)c = curl (Tc) for all constant vectors c.

Let I' be the boundary curve of a smooth surface S oriented by a continuous unit normal field n, with
the boundary curve I oriented in a manner consistent with Stokes’ theorem for smooth vector fields F:

/ fdx = f {curl f}-ndA. (2.6)
T )
We then have Stokes’ theorem for a tensor field T
dea: = f(curlT)TndA. (2.7)
T s

The verification of (2.7) is immediate: simply apply (2.6) with f = T"¢ and ¢ constant.

When convenient we use the standard notation of cartesian tensor analysis — including summation
convention — with respect to the basis e; =(1,0,0), e3=(0, 1,0), e3=(0,0,1). In particular, the component
form of curl T is given by
97T,

(curl Tij = €4 B2,

with €;-5 the alternating symbol.'

13More precisely, if the domain of T is D1, then the integral over Da should involve the composition Toh; similarly for f.
1A cautonary note: for some authors the curl of T is the transpose of our curlT".
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2.2.2 Transformation law for curl

In terms of the notation introduced in Subsection 2.1, let curl; denote the curl operator with respect to an
arbitrary point x; in D; (i = 1,2). Let S; C D; (i = 1,2) be smooth surfaces with Sy = h(S1); let S; be
oriented by a smooth unit-normal field n; with (2.2) tacit; let T'; be the boundary curve of §; with orientation
consistent with Stokes’ theorem. Then for f, a smooth vector field on Dy,

fz-da:2=/ (curlz fo) -1 dAs. (2.8)
I's Sa

On the other hand, since day = Hdx,, if we define f,{x;)=H(x,) f5(h{x1}), then

f f2-d332=f fl-daslzf (curl; f;}-n, d4,
VTg I 5
1 _ 1 '
= [gz(curllfl) : a—et—EH nydAdy = _/gz(detHchrll‘fl) o dAs.

Thus, since Sz may be arbitrarily chosen, we have the transformation law

1 _
curla fp = mH curly f, fo=HTTf,. (2.9)
A consequence of (2.9) is that, for T a smooth tensor field on Do,
1
CUI12T2 = mH curllTl, T = TlH_l. (210)
Indeed, for ¢ constant,
1 1
{ewrlyTa}e = curla (T3 ¢) = MH curly (H™T;¢) = M{H curl, T e

2.3 General identities. The skew tensor wx
For e a unit vector, the tensor
Pley=1-e®e {2.11)

is the projection onto the plane perpendicular to e, while e' denotes the plane perpendicular to e.
Given any vector w, wx is the skew tensor defined by

(wx)e=w x ¢ for all vectors c;
in components (wXx);; = e;rjw,. Then
(wx}(ux)=u@w— {(u-w)l, (2.12)
so that, for |w|=1, (wx){wx)=—P(w). Given any skew tensor W, there is a unique vector w such that
W =wx;
w is called the axial vector of W,

IDENTITIES. Let v be a scalar field, let f and w be vector fields, let § and T be tensor fields with T constant,
and let a be a constant vector. Then

curl VF =0, A
curl (T'S) = (curl §)T7,
curl (#T) = (Vex)T7,
a-curl f = {ax)-Vf,
curl(2® f) = (cwrl F®@u — (Fx)(Vu)",
curl (f x) = (div f)1 = Vf. J

> (2.13)
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Moreover, if rather than being a constant, T (V) is a function of v, then
curl (T'S) = (curl YT + (va)(%i:S)T. (2.14)
Proof. For ¢ a constant vector,
(curlVF)e = curl {{(VF) e} = curtl V(f-¢} = 0,
{curl (TS }e = curl {S(T")c}} = (curl §)T e,
{curl (¢TY}e = curl (v T7e) = (Vux)T e,

which verifies (2.13);_3. The identity (2.13)4 follows from the definitions of curl and ax. The identity
(2.13); follows from the computation

{eurl (u® f)}e = curl {{e-u) f} = (c-u)(curl ) — FxV(c-u) = {{curl f)@u — (Fx)(Vu) }e,

while (2.13) is a consequence of the relation {curl (fx)}e=curl{cx f) and standard vector identities.
Assume next that T = T(v). The curl of T'S is the curl holding T fixed plus the curl holding § fixed.
Denoting the latter by curly, we may use (2.13), to conclude that

curl(T'S) = (curl §)T™ + curly (T'S).
Further, for ¢ a constant vector,
{curlp(TS)}e = curlp {(T'S) e} = (Vux)(%S)Tc,
so that curlr(T8)= (va)_(‘;—f 8)7, which yields (2.14). This completes the proof.
A tensor T that satisfies

Te=0 and T'e=0,

so that T'=P(e)T P(e), is said to be essentially from et to el. An example of such a tensor is ex, and
since ex is skew and P(e) symmetric, we have the identity

(ex)-S = (ex)- { P(e)SP(e)} = (ex) - skw{ P(e)SP(e)} (2.15)
for any tensor S. Here and in what we follows we define the symmetric and skew parts of a tensor A by
symA=1(A+ A7), skwd=31(A-A4").

Finally, since
(det T)ese = €pgrTipTyqThors
it follows that, for T invertible,

T(bx)T™ = (detT) (T~ 7b) x . (2.16)

3 Basic kinematics

3.1 Macroscopic kinematics

Consider a body By identified with the open region of space it occupies in a fixed reference configuration,
and assume that, in this configuration, Bg is homogeneous, although possibly defective.

Let X denote an arbitrary material point of Bg. Assume that the body is evolving, but fix the time and
suppress it in what follows. A motion of Br (at that time) is then a smooth one-to-one mapping

z=y(X)

with deformation gradient

consistent with
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3.2 Plastic strain. Structural deformation tensor

The conceptual hypothesis underlying the theory is that there is a “microscopic structure” — a lattice in
the case of a single crystal — with respect to which microscopic kinematical hypotheses can be framed.
Specifically, the theory is based on the decomposition

F = FeF?, : (3.2)

where F?, the plastic strain, represents the evolution of material through this microscopic structure due
to the flow of defects, while F*, the structural deformation tensor, represents stretching end rotation of
the microscopic structure. Unlike F, the tensors F? and F* do not generally correspond to deformations
(i.e., are not gradients of vector fields), but because F* and F* are invertible, we may view these tensors
as deformations of infinitesimal neighborhoods. We use the term microstructural configuration — or
lattice configuration in the case of a single crystal — for the collection of infinitesimal configurations
obtained by applying F? locally to reference increments dX or, equivalently, by applying F*~! locally to
increments dz. By (3.2),

J=JeJe, J¢ = detF®, JP = detF?®, (3.3)
and we assume, without loss in generality, that
Jé >0, JP > 0.

For specificity, we consider the microstructural fields F¢, F?, J¢, and J? as functions of X on Bg.
The tensor field L¥ defined by the relation

FP = LPFP (3.4)

represents the plastic strain-rate, measured in the microstructural configuration. A standard identity then
yields an analogous relation for J7:

J?P = JPtrLP. (3.5)

Particular microscopic structures are often characterized by restrictions on the form of the tensor L”.
The polar decompositions

(3.6)

FP = RPU? = VPRP,
FE — ReUe = VSRB }

define the plastic and elastic rotations R” and R®, the plastic and elastic right-stretch tensors U” and U?®,
‘and the plastic and elastic left-stretch tensors V? and V©. A case of special interest corresponds to situations
in which the microscopic structure may be treated as rigid, so that the sole source of local deformation is
due to the flow of defects. Such materials — referred to as rigid-plastic — are defined by the restriction

U°=V*=1, (sothat F*=R°, J°=1). (3.7)

3.3 Convection of geometric quantities

We use the term convect to indicate the manner in which geometrical objects “deform” during the motion.
Thus the reference body By convects to the deformed body

= def
B = y(Bg);
an oriented surface Sr with unit normal ng convects to the oriented surface S =y(Sr) with unit normal

_ F 'y
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(cf.(2.2)); the surface element ng dAR on Sg convects to the surface element 72 dA on S defined by
fndd = JF "ng dAg (3.9)

(ef. the Remark in Subsection 2.1).
Consistent with this, we use the following notation for a geometrical object {...} (such as a unit normal
field) that may be described relative to some or all of the underlying configurations:

(a) {...}r denotes its representation in the reference configuration;

(b) {...} (no embellishments) denotes its representation in the microstructural configuration;

(c) {...} denotes its representation in the deformed configuration.

We use this scheme even when the quantity has no representation in the microstructural configuration (e.g.,
By is the reference body and B is the deformed body), but in each case the quantities will be consistent
with our use of the term “convect” in the sense that {...} convects from {...}r and convects to {...},
and so forth. :

The ambient space of the microstructural configuration consists of a collection of copies of R?, one copy
L(X) for each material point X. £{X) should be viewed the ambient space into which an infinitesimal neigh-
borhood of X is carried by the linear transformation F¥(X) — or from which an infinitesimal neighborhood
of z=y(X) is carried backwards by F¢~(x).15 The operation of integration is physically meaningless on
L(X), as integration is not local, but the notion of a surface element ndA (with unit normal n and area
dA) does have meaning, as ndA4 is local. Thus, bearing in mind the Remark in Subsection 2.1, we formally
stipulate that a unit normal ng and surface element ny d4gr at X convect to the unit normal

D,
n= I%‘—%E_I (3.10)
and surface element
ndA =JPFP "ngdAr (3.11)
in £{X), and that n and ndA convect to the unit normal and surface element
e,
A= H (3.12)
and
fidA = J°F* "ndA (3.13)

" at z in the deformed configuration. Since F=F°F?, (3.11) and (3.13) are consistent with (3.9).16

3.4 Single crystals. Slip

A microscopic structure of particular importance is a single crystal. In this case we restrict attention to
plastic flow induced by the motion of dislocations on prescribed slip systems =1, 2, ..., A, with each system
a defined by a slip direction s® and a slip-plane normal m®, where

8% m® =0, 18%], Im®| = 1, 8%, m® = constant. (3.14)

The plane with normal m® and the line on this plane defined by s® then represent the slip plane and the
slip line for «, and the tensor

S* = s*@ m® _ (3.15)

15 Throughout, we use abbreviations such as F~1=(F¢)~1 and FP~T= (FP}-T.
161t suffices to consider the relations (3.11) and (3.13) as formal, as we shall use them only to make meaningful the notion of
a tensorial density measured per unit area in the lattice configuration.
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is referred to as the Schmid tensor for o.
The presumption that flow take place through slip manifests itself in the requirement that the evolution
of F? be governed by slips (microshear-rates) v on the individual slip systems via the flow rule

A A
P = Z v*(s*@m®) = Z vESe, (3.16)
a=1

a=1

By (3.14); and (3.16),
trLF =0

and a consequence of the differential equation (3.5) is that JP=1 for all time if J? =1 initially.

3.5 Isochoric F?. Decomposition for F* non-isochoric

To characterize internal damage due solely to the formation of voids one might restrict the plastic strain to
a dilatation:!?

FP =11, JP = )\"2 (3.17)
In this case, (3.4) yields the flow rule
LP=vl, v=-Inn (3.18)
An arbitrary plastic strain FF¥ may be decomposed into the product
FP=X"1Fg JP =278, (3.19)
of a dilatation A~'1 and a plastic strain FJ that is isochoric in the sense that
detF% = 1. (3.20)
Then, by (3.4), the plastic flow, as represented by L?, admits the additive decomposition
LP =vl + L,
into dilatational and isochoric flows as represented by v1, v= —m, and
LE=Frpe-l wIf=o,
This decomposition with L in the form (3.16) would represent the interaction of slkip with void-formation
in single crystals.
3.6 Plane strain. Strict plane strain
Under plane strain the deformation @ =y{(X) has the component form
z; = yi(X1, Xo) (1=1,2), T3 = Xa.
Writing
e = e,

plane strain results in a deformation gradient F' and a velocity gradient L that are independent of X3 and
consistent with

F=Pe)FPe)+eRe, }
(3.21)

L =P(e)LP(e),

1TThe use of A~! simplifies subsequent relations; A represents the stretch from the microstructural configuration to the
reference.
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so that their component matrices have the respective forms

0
-0, -
0 01 00

co o

Tensor fields that are independent of X3 and of the form {3.21); are termed planar. Note that this definition
excludes L, which annihilates vectors parallel to e.

The constraint of plane strain does not generally render F” and F° planar tensors. Indeed, for a rigid-
plastic material, the polar decomposition (3.6) yields F = (R* R?)U? with U” the square root of F'F; hence
U? and R°R* must be planar, but individually R® and RP need not be planar.

A direct consequence of (3.4) is that, if ¥ is planar at some time, then F® and (hence) F*° are planar
if and only if

LPe = LFe =0 (3.22)

(so that LP has the form (3.21)2). We use the term strict plane strain to describe plane strain with F?
and F*° planar tensor fields. Under strict plane strain, FPe=¢ and F* e =e, and similarly for F* (and F);
hence referential planes perpendicular to e convect to planes perpendicular to e in the microstructural and
deformed configurations.

For single crystals one can be assured of strict plane strain provided one restricts attention to planar
slip systems;'® that is, slip systems o that satisfy

e =0, m®.e =0, 8% xm® =e, {3.23)

with slips #* independent of X3. (The requirement (3.23); involves no loss in generality.)

4 Burgers vector. The geometric dislocation tensor G

By (2.13);, Curl F” = 0 when the plastic strain is compatible (the gradient of a vector field); Curl F?
therefore provides a measure of the incompatibility of the plastic strain. By Stokes’ theorem, for O5g the
boundary curve of a smooth surface Sg in the reference body,

br(5Sk) = f FPdX = [ (Curl F*Jng dAg. (4.1)
&5g Sr

For a single crystal the microscopic structure is a lattice and, since the vector (Curl FP)'ng lies in the lattice
configuration, one might associate

(Curl FP)TTLR dAR

with the Burgers vector corresponding to the boundary curve of a surface-element with normal ng, but
that would be incorrect, as the surface element ng dAg lies in the reference configuration rather than in the
lattice configuration. This is easily rectified. By (3.11), ndA=JPFP~Tng dAg is the surface element in the
lattice configuration from which ng dAg convects; thus, formally,

(Curl FPY'ng dAg = %(Curl FPYFPndA, (4.2)
with 1 dA the surface element in the lattice configuration, so that

% (F? Curl FPYndA

18 ALl other slip systems are ignored. There is a large literature based on this hypothesis. The resulting fully two-dimensional
kinematics is important in constructing simple mathematical models, often based on two slip systems. Cf., e.g., Asaro (1983,
Pp. 45-46, 84-97) and the references therein, and Prantil, Jenkins and Dawson (1993). Cf. also Kalidindi and Anand (1993),
who discuss plane strain allowing for a full three-dimensional collection of slip systems.
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is the local Burgers vector corresponding to the “boundary curve” of the surface element n dA in the lattice
configuration. Thus, for

GP = 31;14"“’ Curl F?, (4.3)

G®'n provides a measure — based on the plastic strain — of the (local) Burgers vector in the lattice
configuration — per unit area in that configuration ~— for the plane IT with unit normal n.
On the other hand, let S be a smooth surface in the deformed body and consider the line integral

b(d5) = / Felde = f (curl F*~ YR dA (4.4)
a5 5 :

(Fe~1 = (F®)~1). As before, curl F*~1=0 when F*® is compatible; curl F*~ 7 therefore provides a measure
of the local incompatibility of the structural deformation. Arguing as in the steps leading to (4.3), we may
use (3.13), again formally, to conclude that

(curl F*~ Y dA = J(curl F*~ 1Y F*~"n dA.
Thus, by (4.5), for
G® = JF lcurl Fe Y,

G*™n provides a measure — based on the elastic deformation — of the Burgers vector, per unit area in the
lattice configuration, for the plane I with unit normal n.

GP'n and G*™n purportedly characterize the same Burgers vector. To reconcile this, note that, if §
convects from Sg, then

f FPdX = FPFIFdX = [ F*l4g,
95r S 88

so that
B(85) = br(BSR). (4.5)
Therefore, by (3.9),

(Curl F?Y'ng dAg = j: (curl Fe~ VR dA = f (J(curl F*~ 1Y F~"ng) dAg,
Sa 3 Sr

and, as S is arbitrary,
(Curl FP)" = J(curl FE-1YF T,
Thus, since F=F°FP and J=J¢J?, we have the

EQUIVALENCE THEOREM. The tensor fields GP and G* coincide. We refer to
1 - -
G = LFPCurlF? = JoF*lcurl Fe~! (4.6)
as the geometric dislocation tensor.

Reiterating, G 'n represents the (local) Burgers vector in the microstructural configuration — per unit
area in that configuration — for the plane II with unit normal n.1® Here and what follows, we refer to G™n
as the Burgers vector even when the microstructural configuration does not represent a single crystal.

REMARK. An important consequence of the equivalence theorem is that arguments regarding & are invariant
under the replacement of the field F* by the field F¢~! provided operations in the reference configuration
are replaced by analogous operations in the deformed configuration.

190r in more physical terms, the local Burgers vectar, per unit area, for those dislocation lines piercing H.
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5 Canonical decompositions of the geometric dislocation tensor

5.1 Decompositions into tensors of simple structure

Because of its tensorial nature, G bears some comparison to the tensors of strain and stress. An infinites-
imal strain tensor may be written as a sum of simple extensions in mutually perpendicular directions, or
equivalently as a purely volumetric strain plus simple shears on three mutually perpendicular planes. De-
compositions of this type apply also to G, but with different physical interpretation. The building blocks of
such decompositions form the content of the following definitions; in these definitions attention is focused
on a given material point, and £ is a unit vector.

(¢) G is a pure edge-tensor if

G =£®g with g perpendicular to £, (5.1)

so that g, the Burgers vector for £1, is parallel to the plane £+. In this case g is termed the principal
Burgers vector and £ is the line direction.

(b) G is a pure screw-tensor if

G =£®h with h parallel to £, {5.2)

so that G"£=h, the Burgers vector for the plane £, is perpendicular to £1. In this case h is termed
the principal Burgers vector and £ is the line direction.

{¢) G is an axial edge-tensor if
G=§x,
so that, given any n, the Burgers vector G ™n is always parallel to the plane nt.
(d) G is an isotropic screw-tensor if
G =pl,
so that, given any n, the Burgers vector G'n is always is always perpendicular to the plane nt.

As we shall see, G is a pure edge-tensor for plane strain and a pure screw-tensor for anti-plane shear,
and in each case the line direction is normal to the cross-sectional plane of the body.

Given an axial edge-tensor G=£x and any orthogonal unit vectors n and m each orthogonal to £ and
such that n xm points in the direction of £, we have the decomposition

G=m® (|§in} —n@(&m)

of G into pure edge-tensors with orthogonal line directions. Similarly given an isotropic screw-tensor G =1
and an orthonormal basis {£1, £, €3}, we have the decomposition

3
G =" t:a(pt:).

i=1

of G into pure screws with mutually orthogonal line directions and Burgers vectors of equal magnitude.
Decompositions of this type are special cases of the ’

FIRST DECOMPOSITION THEOREM.?® Given eny material point, the geometric dislocation tensor G may be
decomposed:

() into an isotropic screw-tensor plus a sum of three pure edge-tensors with respect to mutuelly orthogonal
planes; specifically, there are a scalar ¢, an orthonormal basis {£1, £2,£3}, and vectors {g, g». g3} with
g, perpendicular o £; such that

3
G=01+)Y Log; (5.3)

i=1

0The orthonormal basis {£1, £z, £3} in (i) is generally different from that in (i).
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(i) into an arial edge-tensor plus o sum of three pure screw-tensors with mutually orthogonal Burgers
vectors; specifically, there are a vector €, an orthonormal basis {£1,£2,€3}, and vectors {hy, ha, h3}
with h; parallel to £; such that

G = (€x) +i£i®hi. (5.4)
=1
Proof. (i) Consequences of standard results are that G may be written in the form
G =l + Gy, trGg = 0.
Further, there are scalars {x1, 42,53} and an orthonormal basis {61,;62,33} such that?!
sym Gy = sym(r3Niz + #2N3; + £, Np3), N =4 ®¥;,
and, given this decomposition, there are scalars {¢1, (2, (s} .such that
skw Gg = —2skw((aNya + (pNay + (1Nas).

Thus, letting

g1=(ks— Q@)+ (ke + (s, ga=..., g3=...
{with g, and g5 obtained by cyclic permutation of the indices), we find that
3
Go=) £:®g,
i=1

which implies (5.3), since Gg=sym Gy + skw Go.
(%) There are an orthortormal basis {£1,£2,£3}, scalars {A;, A2, A3}, and a vector &, the axial vector of
skw G, such that .

3
symG =Y M\l @48, skwG =£x,
i=1
which yields (5.4) and completes the proof of the theorem.
A consequence of this proof are the following identities:

] 3
trG=3p, [Gof=> lg>, IskwG]>=2¢[% lsym G2 =" |hi 2 (5.5)
i=1 i=1
9.2 Decomposition into isochoric and dilatational parts
By (38.17), for the special case of a dilatation, G is an axial edge-tensor:
G = ~(Vix). (5.6)
More generally, we have the following consequence of (4.6):

SECOND DECOMPOSITION THEOREM. Consider the decomposition FP = A\~1F}, detFf =1, of F? into
isochoric and dilatational parts (cf. (3.19)). Then

G = Gy — FE (VA x) F2" (5.7)
with
Gy = FiCurl F}

the geometric dislocation tensor for the isochoric part of FP,

21This is simply the decomposition of a deviatoric “strain tensor” into simple shears on mutually orthogoné.l planes. Cf, e.g.,
Gurtin (1972, p. 36).
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6 G described relative to the reference and deformed configura-
tions

6.1 The tensors Gg and G

G has a referential counterpart that may be obtained by transforming the vector G™dA to the reference
configuration by premultiplication by FP~! and then converting ndA to the referential surface element
ngr dAg using (3.11}); the result is

GRr = JPFPIQFP" = (Curl FP)FP-T; (6.1)
GLnr gives the Burgers vector transported back to — and measured per unit area in — the reference
configuration, nr dAg being the relevant surface element. Similarly, transforming G ™ndA to the deformed

configuration by premultiplication by F° and then converting ndA to the deformed surface element 7 dA
using (3.13) results in the tensor field

G= -};FGGF” = (curl F*~ 1) F*T; (6.2)

C_JTﬁL gives the Burgers vector convected to — and measured per unit area in — the deformed configuration,
7t dA being the relevant surface element. Gg and G represent the geometric dislocation tensor G referred,
respectively, to the reference and deformed configurations.

6.2 Transformation of the microstructural configuration

A homogeneous transformation of the microstructural configuration is defined by a constant in-
vertible tensor M together with the transformations:

FP* = MF?P,  F* = M (6.3)
(so that F* = F). Under such 2 transformation

1
G* = J*(F) leurl ((F**)™1) = — FP* Curl FP*,
(F7) = 7 (6.4)

Gl = (Cul FP)YFP)™, & = curl (F™)~1)(F**)".
By (2.13)2,
Curtl (MF?) = (Cutl FP)M",  curd (FeM ™)) = (cwrl F*~ )M,
and this yields the

TRANSFORMATION THEOREM. Under o homogeneous transformation of the microstructural configuration
the geometric dislocation tensor transforms according to

G* = (detM) 'MGM". (6.5)
On the other hand, G =GRr and G =@, so that the geometric dislocation tensor — when referred to the
reference or deformed configuration — is inveriant.

For a rigid-plastic material the local relation between the lattice and the deformed configuration is
a rotation R®, and the lattice as it would appear to an observer is simply the lattice as framed in the
microstructural configuration rotated via R*. The tensor

G = R°GR"™ = (curl R®R®™ (6.6}

therefore represents the true Burgers vector; that is, the Burgers vector as seen by an observer. Measure-
ments of lattice rotations are generally made with respect to the orientation of the lattice at a particular
_point g in the deformed configuration. With this in mind, let R§ denote the lattice rotation at xg, so that

Qe — ReRgT
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represents the rotation from g to 2. Further, choose M = R§ in the transformation (6.3) and write Go=G".
Then G represents the true Burgers vector as reckoned by an ezperimenter who measures lattice rotations
with respect to xg, and, by (6.3)2,

Gy = (curl @*NQ"".
Thus, when convenient, we may, at any given time, identify the lattice configuration with the lattice at a
particular point @ in the deformed configuration. Consistent with this one replaces R® by Q°=R*R§" and
F? by R{F?,

7 Rigid-plastic materials. Euler-angle representation of G

In situations for which elastic strains are negligible, geometrically necessary dislocations are amenable to
experimental study through the measurement of lattice rotations. Further, since lattice orientation is often
characterized through the use of Euler angles, it would seem important to have at hand a simple relation for
& in terms of gradients of Euler angles. This is the central objective of this section.

7.1 Representation of rotations

The discussion of rotations is greatly simplified using the exponential of a tensor A as defined by the power
series

==}
1
exp(A) = Z FAk’ (7.1
k=0

a definition that renders
Z(09) = exp(JA)

the unique solution of the initial-value problem

dZ
- =AZ,  zZ0)=1 (7.2)
If W is a skew tensor, then R=exp(W) is a rotation, and any such rotation B may be written in this

form. In particular, given a unit vector e and a scalar ¢,
Q9. €)  exp(9ex) (7.3)

represents the rotation about e whose counterclockwise angle of rotation is 9. Fix e and consider (7.3) as a
function {I)=Q(J, e). Then
aQ Q"
29 = (ex)Q, 15 = (ex)Q". (7.4}
The first identity follows from (7.2). To establish the second, note that, since € is a rotation about e,
(ex)Q"= Q"(ex). Thus, since ex is skew, (7.4); implies (7.4)s.
A representation of a rotation R in terms of Euler-angles® is a decomposition of R into the product
of three rotations

R= Q(ﬁ& C3) Q(T??a (:2) Q('i?]_, cl) (75)

of angles 9; about unit vectors ¢;. The standard Euler-angle representation is obtained by choosing ¢; =cz=k
and ¢z =4, with (4, 7, k) an orthogonal basis; in this case the angles are generally denoted by 93 = w1, O =1,
¥ =3, so that

R= Q(‘Pl: k) Q(d’s 2) Q(‘P% k), p1,p2 € [O’ 271-)! P e [0? Tl']. (76)

Any rotation may be represented in the standard form (7.6).

22Ci, e.g., Synge (1960) and Kocks, Tomé and Wenk (1998) for discussions of this and other rotation-representations common
in mechanics and materials science.
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7.2 Euler-angle representation of G
It is most convenient to work with the geometric dislocation tensor
G = R°GR*" = (curl R°)R*”

(¢f.(6.6)) referred to the deformed configuration.
Consider the Euler-angle decomposition??

R =Q3Q,Q, Q(x) = Q(¥i(x), ;)

where the ¢; are constant unit vectors (with e; microstructural). Before proceding with the calculation of
G, note that since ¢; is the axis of the initial rotation Q1, Q:Q:Q c1=0Q3Q,¢; represents ¢; convected to
the deformed configuration; and, since the rotation @, follows Q;, @;Q,¢2 =@;c3 represents the convected
value of ¢;. The unit vectors

¢ = Q3Qscy, €2 = Qsca, ts=c3

therefore represent the vectors ¢; convected to the deformed configuration.
To calculate &, note that, by (2.14), (2.16), and (7.4), for B a rotation,

curl (Q7B™) (curl BN)Q, + (grad ¥;x)B(e; x)Q,;,
= (curl B")Q; + (grad ¢;x){(Be;)x } BQ,;. (7.7)
Applying (7.7) with i=1 and B = Q,Q, vields
curl B*" = {eurl (Q3Q3)}@; + (grad 81 x){(Q3Q2¢1)x } @3 Q2Q;.
Two more applications of (7.7), first to curl (Q7Q3) and then to curl (@}), leads to the expression
curl R*7 = {{grad ¥3x)(€sx) + (grad ¥ x)(2%) + (grad v; x )(& x ) } R®.

Thus, using (2.12), we are led to the following:

THEOREM. When represented in terms of Euler angles, the geometric dislocation tensor — referred to the
deformed configuration — has the form

3
G =Y {e: ®gradd; — (& -grad ¥;)1}. (7.8)
i=1

7.3 Infinitesimal rotations. Formal derivation of Nye’s relation
The power series expansion (7.1} of
R* = exp(0x), 8 = de,
yields the formal approximation
R ~14+WE We =@x (7.9)

for small rotation-angles . The tensor field W* represents the infinitesimal rotation and its axial vector
0 gives the infinitesimal vector-angle of rotation. Consistent with (7.9), we approximate the geometric
dislocation tensor G=R*"curl R®" by the tensor field

Gins = —curl We = —curl (8x).
Since curl (px)=(divp)1 — grad p, we are led to the following relation of Nye (1953):
Gine =N — (tr N1, N =grad@. (7.10)

2In using the standard Euler-angle decomposition for R® to compute G, one should bear in mind that for ¥=0, R® does

not uniquely determine the angles ) and @, a deficiency that could result in unbounded values of grad ; and grad g near
points at which ¥ =0.
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'8 When are microstructural planes undistorted?

A given microstructural plane IT — which in the case of a single crystal may or may not correspond to a
crystalline plane — is represented by its unit vector n. By (3.10) and (3.12), n, which is constant, convects
from a field nr (X) of unit normals in the reference configuration and to a field fi(x) of unit normals in the
deformed configuration, where

dang = FP'n, Ar = |FP™n,
- - (8.1)
Mo=F*"n, A= |F*n|;

and an interesting question is whether the field 7, say, represents a unit normal-field for a family of smooth
surfaces in the deformed configuration, either globally or locally. When this is so, the microstructural plane
I may be termed undistorted. It is the purpose of this section to show that — in sense to be made precise
— the scalar field n-Gn measures the distortion of the microstructural plane I1.

Let II denote a fized plane in the microstructural configuration, with n its unit normal. We say that IT
is globally undistorted® if the unit-normal field fi(z) to which n convects is a normal field for a family
F of smooth surfaces in the deformed body B; that is, if, given any « in B:

(¢) « is contained in a single surface S of the family; and
(1) 7(x) is normal to S at 2.

Granted this, we say that II convects to the family F.
Our next theorem is a central result of the paper.

GLOBAL DISTORTION THEOREM FOR MICROSTBUCTiJRAL PLANES. Choose an oriented plane II in the
microstructural configuration and let v denote its unit normal. Then a necessary and sufficient condition
that I1 be globally undistorted is that n-Gm vanish ot each point of the body.

Proof. By (4.6} and (8.1},
n-Gn = -};(Fan)'Curi (FP™n)

A
= T]%nn- [ArCurlng + (VAR) x 1R

P

5 ng-Curlng. (8.2)

Similarly,
n-Gn = JS(F* n)-curl (F*" "n)
= J*)%q-curl fi. {8.3)
We therefore have the following result, of interest in its own right.

" IDENTITIES FOR n-Gn. Choose a (constant) unit normal n in the microstructural eonfiguration. Then

- 2
n-Gn=JX f-curlfi = %nR-Curl NR. (8.4)

Thus a necessary and sufficient condition that n-Gn vanish at a given point is that fi-curl =0 ( or equiv-
alently, ny-Curlng =0).

24This notion could equally well have been phrased with respect to the reference configuration. Indeed, there is a family of
smooth surfaces in B for which fi is a normal field if and only if there is a family of smooth surfaces in BR for which ng is a
normal field. .
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Roughly speaking, #-curlfi represents the twist of the vector field # about itself, and similarly for
ng Curlng. Note that for a rigid-plastic material,

n-Gn = fi-curl ft.

The proof of the Global Distortion Theorem follows from these identities and a classical theorem of
Frobenius,? which asserts that a necessary and sufficient condition that fi(zx) be a normal field for a family
of smooth surfaces in B is that #-curl fi=0 everywhere in B.

By (5.6), n-Gn vanishes identically in dilatational flows; hence in such flows microstructural planes are
globally undistorted.

One would generally not expect n-Gn to vanish everywhere, and we therefore ask whether there is a local
analog of the Global Distortion Theorem appropriate to behavior in an infinitesimal neighborhood of a given
point. With this in mind, choose a point zg in the deformed configuration and consider the underlying fields
as functions of the position #=y(X) in B. Let IT denote a fixed plane in the microstructural configuration,
with n its unit normal. We say that II is locally undistorted?$ at @y if there is a smooth, oriented surface
M in B through z such that # and the unit normal field 7 for M coincide to first-order near Ty: given
any curve z(o) on M through zp with 2(0) ==,

d d
T = 77 0 y I:—" ] = I:-—-— T ] . 8.5
7(z(0)) = R(2(0)) —a(z(0))] = [Zmie)] (85)
LocAL DISTORTION THEOREM FOR MICROSTRUCTURAL PLANES. Choose an oriented plane II in the mi-
crostructural configuration and let n denote its unit normal. Then a necessary and sufficient condition that
IT be locally undistorted at a given point is that m -Gn vanish at that point.

The proof of this theorem in given in the Appendix.

We say that II is distorted at @ if IT is not locally undistorted at ; trivially, II is distorted at = if and
only if n-Gn #0 at x. For this reason, we henceforth refer to the scalar field n-Gn as the distortion
modulus. Finally, we list the undistorted planes for the simple forms of G' discussed in Subsection 5; the
results are local or global according as G has these forms at a point or at all points.

Undistorted Planes for Simple Forms of &

type | G undistorted planes

pure edge n ® g | planes parallel to g, planes parallel to n
pure screw n ® h | planes parallel to n

axial edge £x all

isotropic screw pl none

9 Strict plane strain

In this section we discuss the form of the geometric dislocation tensor for strict plane strain as defined in
Subsection 3.6.
9.1 Identities for planar tensors

We refer to a vector field u as planar if u is independent of X3 (or equivalently, £3) and satisfies u-e = 0,
so that Curlu is parallel to e.

IDENTITIES. Let T be a planar tensor field. Then

CurlT=e®gq, g = (CurlT)7e, (9.1)

25Cf. e.g., Choquet-Bruhat and DeWitte-Morette (1977), p. 235.
26This notion could equally well have been phrased relative to the reference configuration using the field ng.
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with q a planar vector field. Moreover,
T(ex) =detT (ex)T . 9.2)

Proof. To verify (9.1), note that, for ¢ a constant vector, T"e=p + cze with p planar; thus, since Curlp is
parallel to e,
P(e){Curl T)c = P(e)Curl (T"¢) = P(e)Curlp = 0.

But c is arbitrary, thus P(e)Curl T'=0 and, since Ple)=1—e@e,
CulT=e® (CurlT)e=e®q. (9.3}

Further,
' ge=e (CurlT)e = e-Curl(T7e) = e-Curle = 0

and q is planar. This proves the first assertion. Since T is planar, the second, (9.2), follows from (2.16):

T(ex) = detT {(T "e})x }T~7 = detT (ex)T .

9.2 Principal Burgers vector g

Under strict plane strain the tensor G simplifies considerably. By (9.1),

1 1 1
G= ﬁFP Curl F? = 'jF(Fpe) @(CulFPYe=€e® (-j-;Curl FPYe,

or equivalently,
G =JFleurl F*7! = e @ (Jocurl P He.

We therefore have the following:
THEOREM. Under strict plane strain the geometric dislocation tensor is o pure edge-tensor
G=€e®g {9.4)

with principal Burgers vector g planer and of the form
1
g = J(curl F¢~ e = <5 (Curl Frye, (9.5)

Thus g represents the local Burgers vector in the microstructural configuration — per unit area in that
configuration — for cross-sectional surface elements.
The distortion modulus now has the simple form

n-Gn = (g-n)(e-n); {9.6)
thus, in view of the results of Section 8, we have the following:

THEOREM. Under strict plane strain the distortion modulus n-Gn vanishes on any microstructral plane IT
parallel to e; all such planes I are therefore globally undistorted. Thus for a single crystal any stip system
with slip plane parallel to e is globally undistorted. Finally, a microstructural plane I1 not parallel to e is
locally undistorted at o point if and only if g is parallel to II.

In view of (6.1) and (6.2), the geometric dislocation tensor is given by
Gr=e®gp, gp=J'F"'g (9.7)

when referred to the reference configuration, and by
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when referred to the deformed configuration.
The rotation and stretch tensors defined by the polar decomposition (3.6) of F° are planar tensor fields;
the lattice rotation R® may therefore be expressed in the form

Re — RE(&C), (9-9)

with #° an angle that measures the lattice rotation in a counterclockwise direction about e. Applying the
identities (2.14) and (7.4)s to Curl F*~! with F*=V*°R¢,

curl F* ! = (curl VS H R + (gradﬁex)(%%;ve“l)T = (curl V* 1) R? — (grad 9°x)[(ex )} Fe 1T,

so that,
g=J{R(curl V*™1)e - (ex)F* (e x grad ¥°) },

Thus, by (9.2) with T=F*"!,
g=JR(curl V= !)7e — (ex)(ex)F* 'grad 9°,
Further, F* !gradd® is planar and, for % planar, (ex)(ex )u=—u; thus
g=J* R (curl Ve 1)Te + F* grad 9°. (9.10)

If we define the elastic left-strain B®
Be — FeFeT= (Ve)2’

then, by (9.7) and (9.8), we have the following relations for.the principal Burger vector referred to the
deformed configuration:

g=Ve(curl Ve e + —};Be grad ¢%,

9.3 Rigid-plastic materials
9.3.1 (General resulits
By (9.8),
| g=Rg (9.11)

represents the true Burgers vector; that is, the Burgers vector for cross-sectional planes as would be
observed by an experimenter {cf. the Remark containing (6.6)).

THEOREM. The principal Burgers vector corresponding to a rigid-plastic material undergoing strict plane
strain s giwen by

g = R*"grad v¢,
JRE—— (9.12)
Moreover, the true Burgers vector has the simple form
g = grad 9° (9.13)

and ts hence normal to surfaces®” 9¢=constant in the deformed configuration.

Proof. For a rigid-plastic material, F°= R®, curlV* !=0, and J°=1; thus {9.10) reduces to (9.12); and
(9.13) follows. Further, R®'grad9® = FP~ V9, since F = R°F? and F'grad9® = V¢¢, and this yields

27 Actually curves in the {1,2)-plane. Experiments on the uniaxial compression of single crystals (cf., e.g., Schwartz et. al.
(1999)) exhibit regions of nearly constant lattice orientation separated by thin layers. The relation (9.13) shows that — granted
strict plane strain — such layers are necessarily accompanied by geometrically necesssary dislocations and, when sufficiently
thin, should have Burgers vector approximately normat to the layer.
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(9.12),.
By (9.7), for C?=FP F? the plastic right-strain,
gr = JPCPlve, (9.14)
In many situations of interest the structural strains are small in the sense that V° =1, so that, formally,
velag, curl Vel x 0. (9.15)

In this case the foregoing relations hold to within the same approximation.

9.3.2 Single-crystals with planar slip systems

Such single crystals have all slip systems o consistent with (3.23). Since the material is rigid-plastic, the
deformed slip directions and the deformed slip-plane normals are given by

3" = R%s%, ™m® = R°m?>, (9.16)
and satisfy

a%

3 — O

e=10, m*-e =0, MY xe=§ (9.17)

THEOREM. Let II denote the a-th slip plane and TI* the plane perpendicular to the a-th slip direction, so
that both I and NI+ are undistorted. Let F and FL denote the families of smooth surfaces to which I and
It convect. Then the surfaces of F are orthogonal to the surfaces of FL, and

K = (3% grad9®) (3°® %) (9.18)
is the curvature field for the surfaces of F, while
K+ = —(m® gredd®) (7a®® m°) (9.19)
is the curvature field for the surfaces of F-.

Since the slip system « is fixed, we suppress the superscript . The first sentence in the theorem is a
consequence of the theorem following (9.5). By (9.16), i and 3 are unit-normal fields for the families F
and F.; thus, since 3-m=0, these families are orthogonal. Next, by (7.4); and (9.9),

_  ,dR? . ,dR?
grad 3 = (21—9?8)®grad19 = (EF

Moreover, the same identity holds with s and 3 replaced by m and /. Thus, in view of (9.17)3,

R*78)® grad 9° = (e x ) ® grad ¥*.

grad & = Mm@ grad ¥°, grad /. = —3® grad ¥°. (9.20)
The curvature field K for the family F is given by
K = —(grad) P(1h) = (3® grad ¥°) P(mn).
Further (9.17) yields P(n) 8= &, and, since ¥ is independent of z3,
P(rn) grad ¥9° = (3- grad ¥) 5.
Thus (9.18) is satisfied; (9.19) follows similarly using (9.20);. This completes the proof.

REMARK. Under strict plane strain the underlying fields may be considered as functions of their position
(x1,72) in the cross-sectional plane P. Moreover, for the special system under discussion, 3¢ and m® lie in
P and the family F of deformed slip planes for & may be identified with the family of smooth curves in P
tangent to the field 8. By (9.13) and (9.18), 3= grad ¥° = 3°-g represents a curvature field for this family of
curves. Similarly, m®- grad 9° =+ g represents a curvature field for the family of smooth curves tangent
to m<.
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10 Strict anti-plane shear
Under anti-plane shear the deformation z=y(X) is given by
v1=X1., z2=Xz  33=Xz+u(r,z2), {10.1)
with u the displacement in the direction e=es, and results in a deformation gradient F of the form
F=1+e®7v, v-e=0,

with v independent of X3, and with 4= Vu. We require, in addition, that the anti-plane shear be strict in
the sense that :
FP=14e@+? Fi=1+e®~",

with 47 and ~° planar vectors.?8 Then
Je=1, JP=1,

and, in addition, the decomposition F=F¢F® yields
Y=Y
Since v =Vu, curl v=0; thus
curl 4% = —curl ¢,

(By (10.1) and the fact that the underlying fields are independent of X3, the operators “curl” and “Curl®
are here interchangeable.)
Next, by (2.13)s,
curl F? = (curlv*) @ e.

Moreover, since +* is planar, :
curly? and curl4® are parallel to e;

thus
curl F? = e @ curl4?

with 4. curl 4? =0. Thus, since G'= FPcurl F?, we have the following:
THEOREM. Under strict anti-plane shear the geometric dislocation tensor is a pure screw-tensor
G=egh (10.2)
with (planar) principal Burgers vector
h = curly? = —curl~®. ' (10.3)

Microstructural planes perpendicular to e are therefore distorted at any point af which curl 4P #£0,

11 Transport of geometrically necessary dislocations

11.1 Dislocation densities. Balance law for dislocations

We show here that kinematics alone yields a balance law for the transport of geometrically necessary dislo-
cations.

Within a continuum theory edge and screw dislocations are characterized by the pure edge and screw
tensors (5.1) and (5.2) and hence by dyads of the form

£1b edge
£®b = (11.1)
£=b screw

2 The notion of strict anti-plane shear is not relevant to rigid-plastic materials, as it renders Fe=1.
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with £ and b microstructural unit vectors.?® We refer to each such pair d = (£,b) as a dislocation dyad
with Burgers direction b and line direction £. The scalar field

p=plt,b) = 2.-Gb=(£3b)- G (11.2)

then represents the tensor G resolved on the dislocation system d. We refer to p(£,£) as a screw density,
to p(¢,b) — with b perpendicular to £ — as an edge density. Note that these densities are in units of
length per unit area and are signed.

The vector fields

b = FP7g, br = F?b
represent £ and b transported back to the reference as normals, although not as unit normals. Since
(Curl F?)b = Curl by, (Curl FP)£ = Curl €5, (11.3)
if J?=1, then (4.6) leads to the simple expression p=~£g- Curl br; hence
o= £g - Curlbg + #r - Curlbg = £y - Curl by + bg - Curl £ — Div (R % BR).
By (3.4), &g =FP"LP"¢ and bg = FP"LP"b, so that, in view of (11.3),
£r - Curlbg + by - Curlép = £. LPGb + b- LPGE.
Further, we may use (2.16) to conclude that (FP7€)x = FP~1(£x)FP~7, and hence that
fn x br = {(FP")x}FPTLP™b = FP~1(£x)L*"b.
We therefore have the®°
BALANCE Law FOR DISLOCATIONS. Granted JP=1, the dislocation density p=p(L,b) has the simple form
p = £y - Curl by (11.4)
and evolves according to
p=-Divgg +og {11.5)
with g =qg (£, b) the dislocation flux and og =cr(£,b) the dislocation supply defined by
gr = FP7H (€ x (L*h)),
(11.6)
or = 2(sym€®b) - (LG).
As is clear from the proof, the flux and supply may be written alternatively as
. gy, = €p x bg, or = £ - Curlbg + by - Curl £g.
Further, for a single erystal, we may use (3.16) and (4.6) to conclude that

A A
gr= > v(b-s*) FF (€ xm®),  og=2(sym£Qb) (806,

a=1 " a=1

Thus slip systems o with 8*- £=0 do not contribute to temporal changes in the screw density p(£, £); in
particular, there is no contribution to changes in p(m?, m#) from slip on 8.

29For crystalline materials there are natural families of such dyads associated with the underlying slip systems (Sun et. al.
1998, 2000). For example, for the {111}< 110> slip systems in fec crystals a canonical set of dyads consists of twelve pure
screw directions with line directions in the <1102 directions and 24 pure edge directions whose line directions lie in <112>
directions and whose Burgers vectors lie along <110>. But it would also seem that the screw dyads corresponding to the slip
plane normals are important, as the corresponding screw densities are the distortion moduli for the slip planes.

30Far a non-isochoric plastic strain F? = ATLFE, detFf =1, the relation (5.7) yields p = Agg — &g (VA X b ) with pg =£. Gob
and Go= Fj Curl F§.
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11.2 Properties of the dislocation flux

The dislocation flux has several interesting properties. Firstly, the microstructural flux
g(£,b) = FPg(£,b) = (€x)L7b,

which is gg convected to the microstructural configuration, lies in the plane £*. Moreover, plastic flow is
always asociated with a flux of dislocations -— that is, L? #0 if and only if gg (£, b) # 0 for some choice of £
and & — and this is true even when G'=40, but in this case s=0, or =0, and the flow is equilibrated:

Div qp = 0.

Further, the dislocation fluxes determine LP: for {e;, ez, e3} an arbitrarily chosen orthonormal basis and
any choice of 7 and 7, 13,

e;- LPe; = (e;xe;) - q{e;, €;), e;- LPe; = (e;xe;) - qlej, e;);

the off-diagonal components of L” are therefore determined by the screw-density fluxes g{e;, e;), the diagonal
components by the edge-density fluxes g(e;, ;).

Consider strict plane strain and strict anti-plane shear, and for each let e denote the out-of-plane normal.
In both cases the supply vanishes identically. For strict plane strain with b planar, o(b,b) vanishes and
gr(b,b) is equilibrated and parallel to e, while both p(e,e) and gg(e,e) vanish. The edge densities of
interest, namely g{e,b) with b planar, are associated with a planar lattice flux g given by LP'b rotated
about e through Z. For strict anti-plane shear L? has the form e®v with v planar and the density of
interest, g(e, e}, is associated with the lattice flux g=ex v, which is planar.

The microstructural flux ¢ corresponding to G resolved on the dislocation system d=(£, b) was deduced
simply by calculation without regard to physical relevance. We now show that this flux may be derived from
physical considerations alone, at least for a single crystal and d of edge type. Consider first a single active
slip system, so that

LF = v*(s"®@ m®).

Our computation of Burgers vectors uses a right-hand screw-rule, and therefore the natural line direction £%
for edge dislocations moving on this slip system is

£ =m"*x g%, (11.7)

because the Burgers vector associated with this line direction gives slip corresponding to material above the
slip plane (i.e., in the region into which m® points) moving in the direction s® relative to material below
the plane. The flux g of dislocations — as resolved on the system d — due to slip on ¢ should have the
following properties: (i) g should be orthogonal to the dislocation line and hence to £, since the tangential
motion of a dislocation line is irrelevant; (ii) ¢ should lie in the slip plane and should hence be orthogonal
to m?; (iii) the magnitude of q should be (v*s*)- b; (iv) for £ the natural line direction for slip on «, the
flux should be (s- b)s*. These conditions determine g. Indeed, (i) and (i) imply that g should lie on the
line spanned by the unit vector £ x m* and hence, by (iii), should have the form +*(s*- b)£ x me. By
(11.7), condition (iv) requires that we take the positive sign:

g =v*(s% b) £ x m® = (£x)(v*S*")b.

If we allow for the possibility of all slip systems being active, then we arrive at the following formula for the
dislocation flux as measured in the microstructural configuration:

q(&, by = (£x)LPb. (11.8)

11.3 Relations for G

In discussing geometrically necessary dislocations in single crystals it would seem useful to have available
identities relating G to the slips v® and their gradients.
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By (4.6),

N 1 p 1 P P
G = (ﬁFP) Curl F? + — F” Curl F, (11.9)

while (2.13); and (3.4) yield
Curl F? = (Curl FP)L*" 4 Curly»(LPF?), (11.10)

where Curlz=(LPF®) is the Curl of LPF? holding FP fixed. Thus appealing to (3.4) and (3.5),
G = —(ttL)G + LG + GL*" + %FpCﬁrle (LPF?). (11.11)

Because the time-derivative in (11.11) is material, a much simpler formula ensues when the geometric
dislocation tensor is referred to the reference configuration. By (6.1),

Gr = (Curl F?)FP~7 + (Curl FP)FP-7, (11.12)
In view of (3.4} and the identity T~1=—7"177"1,

FPT = _LPTEPT, (11.13)
and therefore, by (11.10),
GR = Curlz. (LPFP)FP~T, (11.14)

GR therefore vanishes when V.L? =0, Thus, for a single crystal, Gr convects with the motion of the body
whenever the slip-gradientsqvanish.

- The term Curlge(LPF7®) is, in general, complicated, but it does reduce when attention is restricted to
single crystals. In that case L” has the explicit form (3.16) and Curlzs(L? F?) comes from computing

A
Curl (LPF?) =~ Curl {v*$*F7} (11.15)

a=1

holding F* fixed, or equivalently holding S®F* fixed for each «. Thus (2.13)s, (2.16), and the fact that
JP=1 yield

A A
FPCurlz»(LPF?) = 3 FP(Vvx)FPT8* = Y {(F*"Vu®)x } §°7.
a=1 a=1
Further, since Vv*=FTgrad v* and F=F°F?,
FP~"Uu® = Fegrad v & ¢ 2 (11.16)

where V4, v*, which is intrinsic to the lattice, represents the gradient of v™ transported to the lattice. The
evolution equation (11.11) therefore takes the form

A
&= [*{s°6 + 65"} ~ {m*x v} e 5. (11.17)

a=1

Thus G is linear in the slips v* and the slip-gradients Vv, with coefficients dependent on F? and Curl FP.
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11.4 Strict plane strain. Relations for g
Under strict plane strain L’e=0 and G=e @ g with e constant; the analog of (11.11) is therefore

g = (L7 - (ttLP)1) g + jly[cmm (LPFP)e. (11.18)

For a rigid-plastic material an equivalent expression in terms of the elastic rotation-angle follows upon
differentiation of (9.12); and use of {11.13):

g=-Lg+é. (11.19)
The specialization to single-crystals may be obtained by direct substitution of G=e ® g into (11.17):
' A
a=3 [(g-m"‘)v"‘ + (8% W u“)] 5% (11.20)
a=1

For a rigid-plastic material, g =V, %#° and this expressions reduces to

A
g= Z[(m“-VL 9 + (5°-W, U“)] 5. (11.21)
a=1
12 The invariant description of geometrically necessary disloca-
tions

The invariant characterization of geometrically necessary dislocations requires invariance under arbitrary
compatible changes in reference configuration, since such changes should not induce additional dislocations
of that type. The chief purpose of this section is to determine what functional dependences on F? and VF?
display this invariance.

12.1 Compatible changes in reference configuration

Let X denote an arbitrarily prescribed material point. By a compatible change in local reference (at
X o) we mean a smooth one-to-one mapping Z = Z(X) of a neighborhood of X onto an open set in R®; the
points Z then represent new labels for material points. We write V for the gradient with respect to points
Z, leaving V to denote the gradient with respect to X. Writing

X =X(2)
for the inverse of the mapping Z=Z(X), let
H=VX (12.1)

and assume that detH >0.
A motion &=y(X) has the form
© = §(Z) = y(X(Z))

relative to the new reference, and its deformation gradient F:ﬁ@ is given by
F=FH. (12.2)

The structural transformation F° is a linear transformation from the microstructural configuration to the
deformed configuration and as such is unrelated to the reference configuration. We therefore stipulate that
F* be invariant under local changes in reference. On the other hand, by {12.2) and the decomposition
F=F¢°F?, the plastic strain P relative to the new reference must, for cousistency, satisfy

FP=FPH,  J?=(detH)J?. (12.3)
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A discussion of the geometric dislocation tensor & requires a transformation law for Curl FP. With this
in mind, we apply (2.10) with the subscript 1 associated with the new reference and hence with the variable
Z, with the subscript 2 associated with X, and with Curl the curl with respect to Z. The result is the
transformation law

Curl F* = (det H)H ~'Curl F. (12.4)
12.2 G as an invariant descriptor
Consider a change in local reference. Then the geometric dislocation tensor
1 .
— —FP P
G= JPF Curi F (12.5)
expressed relative to the new reference is given by
& = L kv cant B,
JP
an immediate consequence of (12.3) and (12.4) is therefore the following:3!
THEOREM. The geometric dislocation tensor is invariant under compatible changes in local reference:
G=G. (12.6)

This theorem begs the question: Are there other fields — expressible in terms of F? and VFP — that
are tnvariant under compatible changes in local reference? To answer this question, consider a relation

& = F(F?,VFP) (12.7)

giving the value of a field ® at Xy when F* and VF? are known at X . We say that F is invariant under
compatible changes in local reference if, given any such change,

F(FP VEP) = F(F?, VF?). (12.8)

INVARIANCE THEOREM. A necessary and sufficient condition that F be invariant under compatible changes
in local reference is that it reduce to e function K of the geometric dislocation tensor G:

F(F?,VF?) = K(G). (12.9)
The proof of this theorem in given in the Appendix.

REMARK. In view of the Remark at the end of Section 4, a relation @ = F(F*®,gradF®) (or equivalently
& =7(F*', gradF°')) is invariant under local superposed compatible deformations of the deformed con-
figuration if and only if it has the form &=X(G).

13 Appendix. Technical proofs

13.1 Proof of the Local Distortion Theorem
Let H=gradn P(72). Our first step will be to show that, at a given point,
skwH=0 <> nGn=0. (13.1)

Since 7 is a unit vector, (gradfi)@ = 0; thus H = P(71) gradfi P(R). By (2.13)4 and (2.15), the identity
(8.4) may be rewritten as n-Gn = JEA2(Ax)-(skwH). Let W = skwH. Then W = WP(n). Moreover,

31 A similar argument yields the invariance of G under superposed compatible elastic deformations (Davini 1986).
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W =wx for some vector w, so that wxfi=0 and w =k for some scalar k. Assume that 12-Gn=0. Then
0=(fix)-{wx)=2xk and skwH = 0. Trivially, skwH =0 = n-Gn=0.

Assume that II is locally undistorted at o. Let M be as specified in the definition containing (8.5).
Choose an arbitrary curve z(o) on M through zg. Then, letting u=dz/do|,—g,

0= [ (i) - ala(0)]_ = ~{K(wo) + gadn(zo)}o, 152)

with K the curvature tensor on M. Since z(o) is an arbitrary curve, 4 may be considered to be an arbitrary
vector tangent to M at xq, so that

K(zq) = —grad fi{xo) P(fi{zo)) = —H(wg). {13.3)

By a well known theorem of Gauss, K is symmetric; thus H is symmetric and (13.1) yields n-Gn=0 at xo.
Conversely, assume that n-Gn=0 at Zg, so that H is symmetric at #y. To complete the proof we must
establish the existence of a smooth surface M through o such that (8.5) is satisfied. Let

fig =7(zo), Po=P(Ro),  Ho= H(zo) = Po(grada)(wo) Po,

and define
M={z:2)=0}, &@)=mno(x—z0)+ iz — zo)-Ho(z — z0),

so that M is a (quadratic) surface through @ with 71 = grad ®/|grad ®| e unit-normal field for A consistent
with A(@o) = (o). Computing K = —gradm P(+n) using the symmetry of Hy yields (13.3) and hence
(13.2). Thus (8.5) is satisfied. I1 is therefore locally undistorted at xo.

13.2 Proof of the Invariance Theorem

Sufficiency is a corollary of the theorem containing (12.6). To establish necessity, assume that F is invariant
under compatible changes in local reference. Without loss in generality, take X =0 and restrict attention
to local reference changes that map X =0to Z=0.

Our first step is to show that F must reduce to a function F* of F* and Curl F?:

F(F?,VF?) = F*(F?,Curl F?). (13.4)
Let {e1,e2,e3} denote an orthonormal basis. Then F? may be written in the form
FP = E-,;®fi, f‘i = FpTe,-. (135)

(Recall our use of summation convention.) On the space of all smooth vector fields g there is is a one-to-one
correspondence between skw Vg and Curlg. Thus, since

VFP=e; @VF,, (Curl FP)" = e; @ Curl f,
{cf. (2.13)5), to establish (13.4), it suffices to show that _
F(F?, e; @ Vf,)=F(F" e ®skwVf,). (13.6)
To this end, let
S, = symV £, {0), g; = Frle;, (13.7)
and consider the mapping defined by
X =Z - 4{Z 5:Z)g(0). (13.8)

Since the gradient
H(Z)=1-g,(0)8(5xZ)
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of (13.8) satisfies H(0)=1, (13.8) defines a compatible change in local reference (in some neighborhood of
Z = 0). Next, from (12.3) it follows that under such a change in reference f,=H"f,. Thus, since H(0)=1,

V£i(0) = VF,(0) + V(H(2)£(0)){ 7o

By (13.5)2 and (13.7), f;-g;="0;;; thus
H(Z)f(0)=F£,0)-8:Z, VF;(0)=Vf,(0)-S;=skwV,0).

Thus, since F7(0)=F7(0), (12.8) implies (13.6). Therefore (13.4) is satisfied.
To establish (12.9), note that, by (12.8) and (13.4), F* must satisfy

F*(F?,Curl FP) = F*(F?, Curl k7). (13.9)

Consider the homogeneous change in reference with gradient H =F?~1(0). In this case (12.2), (12.4), and
(12.5) yield F?(0) = 1 and Curl #7(0) = G(0), so that (13.9) reduces to F*(1,G}. Thus (13.4) reduces to
(12.9).
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