CMU Campus
Center for                           Nonlinear Analysis
CNA Home People Seminars Publications Workshops and Conferences CNA Working Groups CNA Comments Form Summer Schools Summer Undergraduate Institute PIRE Cooperation Graduate Topics Courses SIAM Chapter Seminar Positions Contact
Publication 25-CNA-006

Accretion and Ablation in Deformable Solids using an Eulerian Formulation: A Finite Deformation Numerical Method

Kiana Naghibzadeh
Department of Civil and Environmental Engineering
Massachusetts Institute of Technology
kiana@mit.edu

Anthony D. Rollett
Department of Materials Science and Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
rollett@andrew.cmu.edu

Noel J. Walkington
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213
noelw@andrew.cmu.edu

Kaushik Dayal
Department of Civil and Environmental Engineering
Center for Nonlinear Analysis
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
Kaushik.Dayal@cmu.edu

Abstract: Surface growth, i.e., the addition or removal of mass from the boundary of a solid body, occurs in a wide range of processes, including the growth of biological tissues, solidification and melting, and additive manufacturing. To understand nonlinear phenomena such as failure and morphological instabilities in these systems, accurate numerical models are required to study the interaction between mass addition and stress in complex geometrical and physical settings. Despite recent progress in the formulation of models of surface growth of deformable solids, current numerical approaches require several simplifying assumptions.

This work formulates a method that couples an Eulerian surface growth description to a phase-field approach. It further develops a finite element implementation to solve the model numerically using a fixed computational domain with a fixed discretization. This approach bypasses the challenges that arise in a Lagrangian approach, such as having to construct a four-dimensional reference configuration, remeshing, and/or changing the computational domain over the course of the numerical solution. It also enables the modeling of several settings — such as non-normal growth of biological tissues and stress-induced growth — which can be challenging for available methods.

The numerical approach is demonstrated on a model problem that shows non-normal growth, wherein growth occurs by the motion of the surface in a direction that is not parallel to the normal of the surface, that can occur in hard biological tissues such as nails, horns, etc. Next, a thermomechanical model is formulated and used to investigate the kinetics of freezing and melting in ice under complex stress states, particularly to capture regelation which is a key process in frost heave and basal slip in glaciers.

Get the paper in its entirety as  25-CNA-006.pdf


«   Back to CNA Publications