CMU Campus
Center for                           Nonlinear Analysis
CNA Home People Seminars Publications Workshops and Conferences CNA Working Groups CNA Comments Form Summer Schools Summer Undergraduate Institute PIRE Cooperation Graduate Topics Courses SIAM Chapter Seminar Positions Contact
Publication 24-CNA-009

Interplay between Nucleation and Kinetics in Dynamic Twinning

Janel Chua
Los Alamos National Laboratory
janelchua@lanl.gov

Vaibhav Agrawal
Apple Inc.

Noel J. Walkington
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213
noelw@andrew.cmu.edu

George Gazonas
DEVCOM Army Research Laboratory
Aberdeen Proving Ground, 21005 MD, USA

Kaushik Dayal
Center for Nonlinear Analysis
Department of Civil and Environmental Engineering
Department of Mechanical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
Kaushik.Dayal@cmu.edu

Abstract: In this work, we apply a phase-field modeling framework to elucidate the interplay between nucleation and kinetics in the dynamic evolution of twinning interfaces. The key feature of this phase-field approach is the ability to transparently and explicitly specify nucleation and kinetic behavior in the model, in contrast to other regularized interface models. We use this to study 2 distinct problems where it is essential to explicitly specify the kinetic and nucleation behavior governing twin evolution.

First, we study twinning interfaces in 2-d. When these interfaces are driven to move, we find that significant levels of twin nucleation occur ahead of the moving interface. Essentially, the finite interface velocity and the relaxation time of the stresses ahead of the interface allows for nucleation to occur before the interface is able to propagate to that point. Second, we study the growth of needle twins in antiplane elasticity. We show that both nucleation and anisotropic kinetics are essential to obtain predictions of needle twins. While standard regularized interface approaches do not permit the transparent specification of anisotropic kinetics, this is readily possible with the phase-field approach that we have used here.

Get the paper in its entirety as  24-CNA-009.pdf


«   Back to CNA Publications