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Abstract

We consider a construction proposed in [Ach22] that builds on the notion
of weak solutions for incompressible fluids to provide a scheme that generates
variationally a certain type of dual solutions. If these dual solutions are regular
enough one can use them to recover standard solutions. The scheme provides
a generalisation of a construction of Y. Brenier for the Euler equations. We
rigorously analyze the scheme, extending the work of Y. Brenier for Euler,
and also provide an extension of it to the case of the Navier-Stokes equations.
Furthermore we obtain the inviscid limit of Navier-Stokes to Euler as a Γ-limit.

1 Introduction

The aim of this paper is to provide a rigorous study of a certain scheme proposed
by one of us in [Ach22], as applied to the incompressible Euler and Navier-Stokes
equations. The scheme starts from the notion of weak solutions and constructs a
certain type of “dual” functional in such a manner that its critical points, when
regular enough, will provide solutions of the initial equations.
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This approach allows to use variational methods in studying fluids equations, pro-
viding a new, non-standard, perspective on fundamental questions in mathematical
fluid mechanics.

The idea of using variational methods is not new and indeed, there have been a
number of other approaches such as [GM09, OSS18, GM12, Ped12]. The main driving
motivation for obtaining a variational framework for solution has been the hope that
this way one might be able to uncover additional structure of the equations. Indeed,
perhaps the best known setting in which additional structure of the weak solutions of
the equations provided useful information is the celebrated partial regularity work of
Caffarelli, Kohn and Nirenberg [CKN82] where the additional property of generalized
energy inequality turns out to be the crucial element for obtaining partial regularity
of (suitable) weak solutions.

In the calculus of variations it is well known that minimizers(maximizers) of energy
functionals have better properties than just critical points, and thus it seems natural
to explore how a variational structure might help in uncovering additional regularity
of weak solutions. In principle, the functionals do not need to be differentiable, but
still it is possible to infer regularity from the sole minimality assumption. Also, this
allows to define solutions with less regularity than weak solutions.

It will turn out that the scheme we look into extends a construction first proposed
by Y. Brenier in [Bre18] for Euler. As noted in [Bre18], one has a certain type of
hidden convexity of the nonlinearity, and this feature will be fundamental for our
extensions as well.

The organisation of the paper is as follows: in the next section we describe the
formal scheme as applied to Euler and Navier-Stokes, first using a divergence-free
test function formulation and afterwards a formulation with general test functions.
Moreover, we explain how the scheme provides an extension of Brenier’s work on the
Euler equation.

In Section 3 we provide a first rigorous interpretation of the scheme for evolution
problems (for statics, see [SGA24]), allowing to obtain extremizers of a certain energy
functional, which, if regular enough, would provide genuine solutions of Euler. We
show first the existence of solutions and then show that the classical weak solutions
can be regarded as variational dual solutions. In Section 4 we provide an extension of
the work for Euler to the case of the Navier-Stokes system, recovering the existence of
solutions and showing that strong solutions provide variational dual solutions. Finally
in Section 5 we show that the setting we constructed allows us to interpret the inviscid
limit of Navier-Stokes to Euler as a Γ-limit.
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2 Constructing the dual problem

2.1 The heuristics motivating the dual variational problem
for Euler equations

Next we explain our construction in the setting of the Euler equations and using
formal manipulations. To this end let us consider the incompressible Euler equations
in a periodic domain in space Td = Rd/Zd with d = 2 or d = 3. For the fixed time
interval [0, T ] the system, in classical formulation, reads as 1:

∂tV
i + ∂j(V

iV j) + ∂ip = F i on (0, T )× Td, i = 1, . . . , d

∂iV
i = 0 on (0, T )× Td

V i(x, 0) = V i
0 (x) ∀x ∈ Td, i = 1, . . . , d (2.1)

where the unknowns are the velocity field V = (V1, . . . , Vd) and the pressure p, a
scalar function. Here F = (F 1, . . . , F d) is a forcing term.

We take test functions λ = (λ1, . . . , λd), γ ∈ C∞(R1 × Td) and such that:

∂iλi(t, x) = 0,∀(t, x) ∈ [0, T ]× Td, λ(x, T ) = 0, ∀x ∈ Td (2.2)

Using these we consider an extended weak formulation functional

ŜH [V, λ, γ; V̄ ] :=

∫ T

0

∫
Td

(
V i∂tλi +

1

2
V iV j(∂jλi + ∂iλj)

)
dtdx+

∫
Td

λi(x, 0)V
i
0 (x), dx

+

∫ T

0

∫
Td

V i(t, x)∂iγ(t, x) dtdx+

∫ T

0

∫
Td

F i(t, x)λi(t, x) dtdx

+

∫ T

0

∫
Td

H

(
V (t, x), V̄ (t, x)

)
dtdx (2.3)

which coincides with the usual weak formulation functional but for the last term
defined in terms of the auxiliary function H(V, V̄ ), involving the unknown velocity
V and a new function V̄ that we will refer to as a base state. Both H and V̄ will
be clarified subsequently. For concreteness it can be convenient for now to think in
terms of a quadratic function, the one that we will be using, namely when H is given
by

H (V ) :=
1

2
aV (V

i − V̄ i)(V i − V̄ i) (2.4)

1throughout the paper we will use the Einstein summation convention of implicit assumed sum-
mation over repeated indices.
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for some aV > 0.
We distinguish two different types of variables (leaving aside for now the H and

V̄ ) :

• the unknowns of the original problem, namely the velocity (V 1, . . . , V d). We
will refer to these as the primal variables.

• the test functions λ, γ which we will refer to as the dual variables and we will de-
note them by D := (λ, γ). We will further denote by D = (λ,∇xλ, ∂tλ, γ,∇xγ)
the dual variables together with their derivatives.

It will be further convenient to denote:

LH(V,D; V̄ ) := V i∂tλi +
1

2
V iV j(∂jλi + ∂iλj) + V i∂iγ +H(V, V̄ ) (2.5)

Thus, the extended weak formulation functional ŜH can be more simply written
with this notation as:

ŜH [V, λ, γ; V̄ ] =

∫ T

0

∫
Td

LH(V,D, V̄ )(t, x) dtdx+

∫
Td

λi(0, x)V
i
0 (x) dx

+

∫ T

0

∫
Td

F i(t, x)λi(t, x) dtdx (2.6)

We will take the function H to be such that it allows to express the primal variable
V as a function of the dual variables, namely we want to have a function V H := V H(D)
such that it solves the equation:

∂LH

∂V
(V H(D),D, V̄ ) = 0 (2.7)

For concreteness, in the case of the quadratic H considered above in (2.4) the
equation (2.7) becomes:

aV (V
i,H − V̄ i) + ∂iγ + ∂tλi + (∂jλi + ∂iλj)V

j,H = 0 (2.8)

which we can rewrite as:

[aV δij + (∂jλi + ∂iλj)]V
j,H = −∂iγ − ∂tλi + aV V̄

i (2.9)

Thus, if we denote
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Nij(aV , B) := aV δij + ∂iλj + ∂jλi (2.10)

we have:

V i,H := (N−1)ij
(
−∂jγ − ∂tλj + aV V̄

j
)

(2.11)

so V H is now expressed just in terms of the dual variables .2

We can now define the “dual functional” just by replacing the primal variable V
by the one defined in terms of the dual variable, namely V H(D) specifically

SH [λ, γ; V̄ ] =

∫ T

0

∫
Td

LH(V
H(D),D, V̄ )(t, x) dtdx+

∫
Td

λi(0, x)V
i
0 (x) dx

+

∫ T

0

∫
Td

F i(t, x)λi(t, x) dtdx

(2.12)

What we have achieved so far through this procedure is to create a rather more
complicated functional, namely SH [·; V̄ ] but which however now depends only on the
dual variables and on some parameter function, V̄ which we will refer to as being the
base state. We will then be able to study this dual functional by means of variational
methods. It turns out that, because of our construction for any base state V̄ we
have that any sufficiently regular critical point D of SH , will provide, through the
transformation V H(D) and thanks to the property (2.7) a solution of the original
equation. Indeed, we have the first variation:

δSH [λ, γ; V̄ ](δλ, δγ) :=

∫ T

0

∫
Td

∂LH(V
H(D),D, V̄ )

∂V

∂V H(D),D, V̄ )

∂D
δD dtdx+

+

∫ T

0

∫
Td

∂LH(V
H(D),D, V̄ )

∂D
δD +

∫
Td

δλi(0, x)V
i
0 (x) dx

+

∫ T

0

∫
Td

F i(t, x)δλi(t, x) dtdx (2.13)

where δD = (δλ, δγ, δ∇xγ, δ∂tλ, δ∇λ). Let us note that the first integral vanishes
because of our requirement (2.7). Furthermore as LH is necessarily affine in its

2It should be noted that in here we assumed without comment that the matrix N is invertible
but in the rigorous construction we will need to carefully address this issue.
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second variable, D, then the second integral provides the weak formulation of the
system (2.1) with V replaced by V H(D).

Indeed, in the case of using the quadratic auxiliary functional H , we have:

∂LH (V H (D),D, V̄ )

∂D
δD = V i,H ∂iδγ + V i,H ∂tδλi + V i,H V j,H ∂jδλi (2.14)

and correspondingly:

δSH [λ, γ; V̄ ](δλ, δγ) :=−
∫ T

0

∫
Td

[
∂tV

i,H (D, V̄ ) + ∂j
(
V i,H (D, V̄ )V j,H (D, V̄ )

)]
δλi dxdt

−
∫ T

0

∫
Td

∂iV
i,H (D, V̄ )δγ dxdt+

∫
Td

δλi(0, x)
(
V i
0 − V i,H (D, V̄ )

)
dx

+

∫ T

0

∫
Td

F i(t, x)δλi(t, x) dtdx. (2.15)

It is also worth noting from (2.11) and the considerations immediately above that
for V̄ a weak solution to the Euler equations, V H = V̄ forD = 0, and thereforeD = 0
is a critical point of SH . This is a consistency check showing that each weak solution
of Euler can be recovered by mapping, via (2.11), a critical point of at least one dual
functional designed by our scheme. These ideas have been used in [KA23, KA24]
to compute approximate solutions to a variety of relatively simpler problems as a
preliminary test of the feasibility of the scheme.

2.2 Connection to Brenier’s construction

We show now how the previously considered construction extends the ideas of Y.
Brenier in his work [Bre18]. We consider the quadratic function H, as defined in
(2.4) and denote Ei = ∂iγ + ∂tλi and Bij := 1

2
(∂iλj + ∂jλi). We note that we can

write the term involving the initial data in terms of these variables as:

∫
Td

λi(x, 0)V
i
0 (x), dx = −

∫ T

0

∫
Td

∂tλi(s, x)V
i
0 (x) dsdx = −

∫ T

0

∫
Td

Ei·V i
0 dtdx (2.16)

where for the first equality we used the fundamental theorem of calculus in the time
variable and the fact that λ(x, T ) = 0 while for the second equality we used that
∇ · V 0 = 0.

In order to connect with the case studied by Brenier, let us consider V̄ = F = 0
and set aV = 1. Then functional (2.6) reduces to
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E [E,B] =

∫ T

0

∫
Ω

[
−(N−1)liElEi +

1

2
((N−1)liEl)((N

−1)mjEm)(Nij − δij)

]
dtdx

+ H (−(N−1)liEl, 0)−
∫ T

0

∫
Ω

EiV
i
0 dtdx

(2.17)

=

∫ T

0

∫
Ω

[
−(N−1)liElEi +

1

2
(N−1)liEl(N

−1)mjEmNij −
1

2
(N−1)liEl(N

−1)jiEj

]
dtdx

+ H (−(N−1)liEl, 0)−
∫ T

0

∫
Ω

EiV
i
0 dtdx

=

∫ T

0

∫
Ω

[
−1

2
(δli + 2Bli)

−1ElEi −
1

2
(N−1)liEl(N

−1)miEm

)
dtdx

+ H (−(N−1)liEl, 0)−
∫ T

0

∫
Ω

EiV
i
0 dtdx

= −1

2

∫ T

0

∫
Ω

(δli + 2Bli)
−1ElEi dtdx−

∫ T

0

∫
Ω

EiV
i
0 dtdx (2.18)

which is exactly the functional appearing in equation (2.11) in Theorem 2.2 in the
paper [Bre18] of Y. Brenier.

2.3 Heuristic construction of the dual problem for the Navier-
Stokes equations

We write the incompressible Navier-Stokes system in first order form as follows:

∂tV
i + ∂j(V

iV j) + ∂ip = ∂j(W
ij) + F i on (0, T )× Td, i = 1, . . . , d (2.19a)

ν

2
(∂jV

i + ∂iV
j) = W ij on (0, T )× Td, i, j = 1, . . . , d (2.19b)

∂iV
i = 0 on (0, T )× Td (2.19c)

V i(x, 0) = V i
0 (x) x ∈ Td, i = 1, . . . , d (2.19d)
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and corresponding to this we consider the extended weak functional

Ŝ[V,W, γ, λ, χ; V̄ , W̄ ] :=

∫ T

0

∫
Td

(
V i∂iγ + V i∂tλi +

1

2
V iV j(∂jλi + ∂iλj)−W ij∂jλi

)
dtdx

+

∫ T

0

∫
Td

(
νV i∂jχij +W ijχij

)
dtdx+

+

∫ T

0

∫
Td

F i(t, x)λi(t, x) dtdx+

∫
Td

λi(x, 0)V
i
0 (x), dx

+

∫ T

0

∫
Td

H(V,W ; V̄ , W̄ )) dtdx (2.20)

where for simplicity we will limit ourselves to a quadratic auxiliary function

H(V,W ; V̄ , W̄ ) :=
1

2
aV |V − V̄ |2 + 1

2
aW |W − W̄ |2. (2.21)

Analogously to the Euler case it will be convenient to consider the integrand:

LH(V,W,D; V̄ , W̄ ) :=V i∂tλi +
1

2
V iV j(∂jλi + ∂iλj) + V i∂iγ

+ νV i∂jχij +W ijχij −W ij∂jλi

+ H(V,W ; V̄ , W̄ ) (2.22)

where we will denote this time D = (λ,∇xλ, ∂tλ, γ,∇xγ, χ,∇xχ) the new dual vari-
ables together with their derivatives.

We have that the equation (2.7) becomes in this case:

∂LH

∂V i
= ∂tλi + ∂iγ + ν∂lχil + (∂iλj + ∂jλi)V

j + aV (V
j − V̄ j) = 0

∂LH

∂W ij
= χij −

1

2
(∂jλi + ∂iλj) + aW (W ij − W̄ ij) = 0 (2.23)

and thus we have:

V i,H : = −(N−1)ij(Ej − aV V̄j)

W ij,H : = W̄ ij +
1

aW
(Bij − χij) (2.24)

where, similarly as before, we denoted:

Bij :=
1

2
(∂iλj + ∂jλi);Nij(aV ) := aV [δij +

2

aV
Bij] (2.25)
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and furthermore

Ei := ∂tλi + ∂iγ + ν∂lχil

Thus, with these notations, the dual functional becomes:

SH[λ, γ, χ; V̄ , W̄ ] =

∫ T

0

∫
Td

LH(V
H(D),WH(D),D, V̄ , W̄ )(t, x) dtdx

+

∫
Td

λi(0, x)V
i
0 (x) dx+

∫ T

0

∫
Td

F i(t, x)λi(t, x) dtdx (2.26)

=

∫ T

0

∫
Td

V iEi +
1

2
V iV j(2Bij + aV δij) +

aV
2
V̄ i(V̄ i − 2V i) dtdx

+

∫ T

0

∫
Td

aW
2
W ijW ij +W ij(χij −Bij) dtdx

+

∫ T

0

∫
Td

aW
2
W̄ ij(W̄ ij − 2W ij) dtdx

−
∫ T

0

∫
Td

V i
0 (x)Ei(t, x) + ν∂lV

i
0χil dtdx

+

∫ T

0

∫
Td

F i(t, x)λi(t, x) dtdx (2.27)

where the penultimate integral, involving the initial data, is obtained by similar
arguments as in (2.16) in the previous section.

2.4 Dual functional with pressure as an independent field
(and quadratic auxiliary potential)

For dual variables (λ, χ, γ), λ : Td×(0, T ) → Rd (not necessarily solenoidal/incompress-
ible), χ : Td × (0, T ) → Rd×d

sym, γ : Td × (0, T ) → R consider the extended weak form
for (2.19) given by
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ŜH,p[V,W, p, λ, χ, γ; V̄ , W̄ , p̄] =

∫ T

0

∫
Td

V i∂iγ + V i∂tλi + V iV j∂jλi dtdx

+

∫ T

0

∫
Td

νV i∂jχij +W ijχij −W ij∂jλi dtdx

+

∫ T

0

∫
Td

p∂iλi + λiF
i dtdx+

∫
Td

V i
0 (x, 0)λi(x, 0) dx

+
1

2

∫ T

0

∫
Td

aV |V − V̄ |2 + aW |W − W̄ |2 + ap(p− p̄)2 dtdx

Then

ŜH,p =

∫ T

0

∫
Td

(
(V i − V̄ i) + V̄ i

)
(∂iγ + ν∂jχij + ∂tλi) dtdx

+

∫ T

0

∫
Td

(
(W ij − W̄ ij) + W̄ ij

)
χij dtdx

+

∫ T

0

∫
Td

(V i − V̄ i) ∂jλi (V
j − V̄ j) + (V iV̄ j + V̄ iV j − V̄ iV̄ j)∂jλi dtdx

−
∫ T

0

∫
Td

(
(W ij − W̄ ij) + W̄ ij

)
∂jλi dtdx+

∫ T

0

∫
Td

(
(p− p̄) + p̄

)
∂iλi dtdx

+
1

2

∫ T

0

∫
Td

aV |V − V̄ |2 + aW |W − W̄ |2 + ap(p− p̄)2 dtdx

+

∫
Td

V i
0 (x, 0)λi(x, 0) dx+

∫ T

0

∫
Td

λiF
i dtdx.

Noting that

(V iV̄ j + V̄ iV j − V̄ iV̄ j)∂jλi = V̄ j(V i − V̄ i)∂jλi + V̄ iV̄ j∂jλi + V̄ i(V j − V̄ j)∂jλi
(2.28)

and defining, for D := (λ,∇xλ, ∂tλ, γ,∇xγ, χ,∇xχ),

Pi(D; V̄ ) := ∂iγ + ν∂jχij + ∂tλi + 2V̄ jBij(D);

Bij(D) :=
1

2

(
∂jλi + ∂iλj

)
; Qij(D) := Bij(D)− χij; r(D) := ∂iλi

we have:

ŜH,p =

∫ T

0

∫
Td

(V i − V̄ i)Pi + (V i − V̄ i)Bij(V
j − V̄ j) +

1

2
aV (V

i − V̄ i)δij(V
j − V̄ j) dtdx
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+

∫ T

0

∫
Td

V̄ i(Pi − 2V̄ jBij) + V̄ iV̄ j∂jλi dtdx−
∫ T

0

∫
Td

λiF
i dtdx

+

∫ T

0

∫
Td

1

2
aW (W ij − W̄ ij)(W ij − W̄ ij)− (W ij − W̄ ij)Qij dtdx−

∫ T

0

∫
Td

W̄ ijQij dtdx

+

∫ T

0

∫
Td

(p− p̄)r +
1

2
ap(p− p̄)2 dtdx+

∫ T

0

∫
Td

p̄r dtdx+

∫
Td

V i
0 (x, 0)λi(x, 0) dx.

(2.29)

Let the integrand of ŜH,p be denoted as LH,p. Then the dual-to-primal mapping is
obtained from the equations

∂LH,p

∂V i
: aV

(
δij +

2

aV
Bij(D)

)(
V j,H − V̄ j

)
= −Pi(D; V̄ )

∂LH,p

∂W ij
: aW

(
WH,ij − W̄ ij

)
= Qij(D)

∂LH,p

∂p
: ap

(
pH − p̄

)
= −r(D).

Defining

Nij(D) := δij +
2

aV
Bij(D),

the dual functional, SH,p[λ, χ, γ], is obtained by substituting (V,W, p) by
(
V H,WH, pH

)
in ŜH,p. Thus,

SH,p[λ, χ, γ; V̄ , W̄ , p̄] =∫ T

0

∫
Td

(
−1 +

1

2

)
aV (V

i,H(D; V̄ )− V̄ i)Nij(D)(V j,H(D; V̄ )− V̄ j) dtdx

+

∫ T

0

∫
Td

(
−1 +

1

2

)
aW (WH,ij(D)− W̄ ij)(WH,ij(D)− W̄ ij) dtdx

+

∫ T

0

∫
Td

(
−1 +

1

2

)
ap(p

H(D)− p̄)2 dtdx

+

∫ T

0

∫
Td

V̄ i(Pi(D; V̄ )− 2V̄ jBij(D)) + V̄ iV̄ jBij(D)− W̄ ijQij(D) + p̄r(D) dtdx

+

∫
Td

V i
0 (x, 0)λi(x, 0) dx−

∫ T

0

∫
Td

λiF
i dtdx

=

− 1

2

∫ T

0

∫
Td

1

aV
Pi(D; V̄ )(N−1)ij(D)Pj(D; V̄ ) +

1

aW
Qij(D)Qij(D) +

1

ap
r2(D) dxdt
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+

∫ T

0

∫
Td

V̄ iPi(D; V̄ )− V̄ iV̄ jBij(D)− W̄ ijQij(D) + p̄r(D) dtdx

+

∫
Td

V i
0 (x, 0)λi(x, 0) dx−

∫ T

0

∫
Td

λiF
i dtdx.

It can be shown that the dual system of equations, corresponding to the primal
system (2.19) and a ‘shifted’ quadratic for the auxiliary function:

H(V,W, p; V̄ , W̄ , p̄) =
1

2

(
aV |V − V̄ |2 + aW |W − W̄ |2 + ap(p− p̄)2

)
including the pressure field, is locally degenerate elliptic in space-time (about an
appropriate base state). The system (2.19) may be posed in the form∑

α

∂α(FΓα(U)) +GΓ(U, x) = 0, Γ = 1, . . . , N∗; α = 0, . . . , d, (2.30)

where N∗ = d+ d2 + 1, x = (t, x1, . . . , xd), U = (V,W, p) and

FΓ0 = VΓ; FΓα = VΓVα + pδΓα −WΓα; GΓ = −FΓ;

for Γ = 1, . . . , d; α = 1, . . . , d.

FΓ0 = 0; FΓk =
1

2
Vi; FΓi =

1

2
Vk; FΓs = 0 for s ̸= i, s ̸= k; GΓ = −Wik;

for i = 1, . . . , d; k = 1, . . . , d; Γ := d+ (k − 1)d+ i.

FΓ0 = 0; FΓα = Vα; GΓ = 0

for Γ = d+ d2 + 1; α = 0, . . . , d.

This representation puts it in the form examined in [Ach23, Sec. 3] to assess the
ellipticity of the dual E-L equations corresponding to a primal system of the form
(2.30). Following that analysis, the dual PDE system corresponding to (2.19), with
the dual field D comprising N∗ components, can be shown to be locally degenerate
elliptic about the dual state D = 0.

3 Variational Dual Solutions for Euler

In order to make rigorous the previous heuristical constructions, let us begin by noting
that one of the main benefits of working with a variational formulation is related to
the possibility of obtaining solutions as extremal points. In calculus of variations
these typically are minimizers but it will turn out that thanks to the structure of
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the problem we consider it is convenient to work in fact with both minimizers and
maximizers.

The first natural thing to attempt is to solve the problem defining the relation-
ship between original and the dual problem, namely (2.7). We will do this as a
minimisation problem, namely we will look into

infV

∫ T

0

∫
Td

(
V i∂tλi +

1

2
V iV j(∂jλi + ∂iλj)

)
dtdx+

∫
Td

λi(x, 0)V
i
0 (x), dx

+

∫ T

0

∫
Td

V i(t, x)∂iγ(t, x) dtdx+

∫ T

0

∫
Td

F i(t, x)λi(t, x) dtdx

+

∫ T

0

∫
Td

H

(
V (t, x), V̄ (t, x)

)
dtdx (3.1)

where H is the quadratic function defined in (2.4).
It is clear that the integrals will play no role here and in fact the minimisation is

pointwise and the minimising V H will satisfy pointwise the equation (2.8). We will
then aim to solve the dual problem, by finding an extremal point of the dual energy
functional (in which V appears as a function of λ, γ). It turns out that in fact the
natural structure of the problem, of a concave functional type, requires to look into
a maximimisation problem in the dual variable.

Thus we are lead, by building on the ideas from [Bre18], to considering the fol-
lowing sup-inf problem:

sup
(λ,γ)

inf
V

∫ T

0

∫
Td

1

2
V iV j(∂jλi + ∂iλj + aV δij) + V i

(
∂tλi + ∂iγ − aV V̄i

)
dtdx+

+

∫ T

0

∫
Td

1

2
aV V̄

i(t, x)V̄i(t, x) +
1

T
λi(x, 0)V

i
0 (x) + F i(t, x)λi(t, x) dtdx (3.2)

Let us first observe that in order to have that the infimum in V exists, we need
to have pointwise the following positive semidefinitness restriction on the matrix
aV Id + 2B, where Bij :=

1
2
(∂iλj + ∂jλi):

aV Id + 2B ≥ 0 (3.3)

which implies in particular, denoting by fi, i = 1, . . . , d the eigenvalues of B, that

0 ≤ aV + 2fi

Using this positivity together with the fact that
∑d

j=1 fj = 0 (due to div λ = trB = 0)
gives us

13



aV + 2fi ≤
d∑

j=1

(av + 2fj) = daV

hence

−aV
2

≤ fi ≤
d− 1

2
aV ,∀i = 1, . . . , d (3.4)

which implies in particular

|∇symλ| ≤

√√√√ d∑
j=1

|fj|2 ≤
√
d
(d− 1)

2
aV ,∀i, j = 1, . . . , d (3.5)

where we denote ∇symλ := 1
2
(∇λ + (∇λ)T ) and in here |A| =

√∑d
i,j=1 a

2
ij denotes

the Frobenius norm of the symmetric matrix A = (aij)i,j=1,...,d.
Thus, it is natural to require that ∇symλ ∈ L∞(0, T ;L∞)(Td)). Furthermore, in

order to make sense of the term
∫ T

0

∫
Td Vi∂tλi for V ∈ L2(0, T ;L2(Td)) we need to

assume ∂tλ ∈ L2(0, T ;L2(Td)). Similarly because of the term
∫ T

0

∫
Td Vi∂iγ dtdx one

needs to take ∇γ ∈ L2(0, T, L2(Td)).
Thus it will be convenient to work with functions in the space:

R := {(λ, γ);∇symλ ∈ L∞
T (L∞), λ ∈ H1

T (H
1); divλ = 0;

λ(T, ·) = 0, a.e. x ∈ Td,∇γ ∈ L2
T(L

2)} (3.6)

Then we have the following analogue of Brenier’s Theorem 2.2 namely:

Theorem 3.1. Let V0 ∈ L2(Td,Rd) be a divergence-free vector field of zero spatial
mean. Furthermore let F, V̄ ∈ L2

T (L
2(Td)). Then the sup-inf problem

JE[V̄ ](V0) = sup
(λ,γ)∈R

inf
V

(∫ T

0

∫
Td

1

2
V iV j(∂jλi + ∂iλj + aV δij) dtdx

+

∫ T

0

∫
Td

V i
(
∂tλi + ∂iγ − aV V̄i

)
dtdx+

+

∫ T

0

∫
Td

1

2
aV (V̄

iV̄i + F iλi)(t, x) +
1

T
λi(x, 0)V

i
0 (x) dtdx

)
(3.7)

always admits a solution (λ, γ) ∈ R where R is defined in (3.6).
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Proof. We will follow closely the ideas of the proof of Theorem 2.2 in [Bre18], essen-
tially adapting it in terms of the variables λ, γ that allow to treat the presence of the
forcing term and also taking into account the presence of the base state V̄ . Let us
denote

Ei := ∂tλi + ∂iγ, Bij :=
1

2
(∂iλj + ∂jλi) (3.8)

with Ei similar as in [Bre18].
Then the fact that (λ, γ) ∈ R implies E ∈ L2

T (L
2) and B ∈ L∞

T (L∞).
Out of the discussion before the theorem we have:

−aV Id ≤ 2B ≤ aV (d− 1)Id, (3.9)

which provides an apriori L∞ bound for B (since B is valued in the set of symmetric
matrices).

Furthermore we note that we can rewrite a bit the term involving the initial
data V0 (noting that we have for a.e. x ∈ Td that λ(0, x) = −

∫ T

0
∂tλ(s, x)dx since

λ(T, x) = 0):

∫
Td

V i
0 (x)λi(0, x) dx = −

∫ T

0

∫
Td

V i
0 (x)∂tλi(s, x) dsdx

= −
∫ T

0

∫
Td

V 0
i (x)Ei(t, x) dtdx

(where for the last equality we used that ∂iV
i
0 = 0).

Moreover, we can deduce an L2 bound on λ. Indeed, using that λ(T, ·) ≡ 0 we
have out of the definition of E:

λi(x, t) = −
∫ T

t

(
Ei + ∂i(−∆)−1(∇ · E)

)
ds

hence

∥λ∥2L2
T (L2) =

3∑
i=1

∫
Td

∫ T

0

|
∫ T

t

(
Ei + ∂i(−∆)−1(∇ · E)

)
ds|2 dtdx

≤
3∑

i=1

∫
Td

∫ T

0

√
(T − t)

(∫ T

t

|Ei + ∂i(−∆)−1(∇ · E)|2ds

)
dtdx

(3.10)
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=
3∑

i=1

∫
Td

∫ T

0

−2

3

d

dt
(T − t)

3
2

(∫ T

t

|Ei + ∂i(−∆)−1(∇ · E)|2ds

)
dtdx

=
3∑

i=1

∫
Td

∫ T

0

2

3
(T

3
2 − (T − t)

3
2 )|Ei + ∂i(−∆)−1(∇ · E)|2 dtdx

≤ C(T )∥E∥2L2
T (L2)2 (3.11)

We also get, after minimization in V :

JE[V̄ ](V0) = sup
(λ,γ)∈R

(
−M[E,B] +

∫ T

0

∫
Td

1

2
aV V̄

iV̄ i + F iλi − V i
0Ei dtdx

+
1

2

∫ T

0

∫
Td

aV V̄ ·N(aV , B)−1 · E + aVE ·N(aV , B)−1 · V̄ dtdx

− 1

2

∫ T

0

∫
Td

aV V̄ ·N(aV , B)−1 · aV V̄ dtdx

)
(3.12)

where

M[E,B] :=
1

2

∫ T

0

∫
Td

E ·N(aV , B)−1 · E dtdx (3.13)

with N(aV , B) := aV Id + 2B.
This immediately implies JE[V̄ ](V0) ≥ 0 (just by taking λ = γ = 0, hence

E = B = 0).
Now, similarly as in [Bre18] we note that we have, pointwise in (t, x):

E · (aV Id + 2B)−1 · E = sup
M,Z

2EiZ
i − (aV δij + 2Bij)M

ij

where M and Z are respectively d× d symmetric matrices and vectors in Rd subject
to

Z ⊗ Z ≤M, (3.14)

in the sense of symmetric matrices. This allows us to give an alternative definition of
M, namely

M[E,B] = sup
M≥Z⊗Z

1

2

∫ T

0

∫
Ω

2EiZ
i − (aV δij + 2Bij)M

ij ∈ [−∞, 0], (3.15)

where the supremum is performed over all pairs (Z,M) of continuous functions on
[0, T ]×Td, respectively valued in Rd and in the set of symmetric matrices M . Notice
that definition (3.15) makes sense already as (E,B) belong to L2 × L∞. Thus M is
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a lower semi-continuous function of (E,B) valued in [0,+∞]. Next, because of the
lower bound N(aV , B)−1 = (aV Id + 2B)−1 ≥ (daV )

−1, we get an L2 a priori bound
for E. Indeed, by definition (3.13) of M, we have:

1

2daV

∫ T

0

∫
Td

|E − aV V̄ |2 ≤ M[E − aV V̄ , B]. (3.16)

So, for any ε−maximizer (E,B) ∈ L2 × L∞ of (3.12), we get

0 ≤ JE[V̄ ](V0) ≤ ε−M[E − aV V̄ , B] +

∫ T

0

∫
Td

1

2
aV V̄

iV̄i dtdx+

∫ T

0

∫
Td

(F iλi)(t, x) dtdx

−
∫ T

0

∫
Td

V i
0Ei dtdx ≤ ε− 1

4daV

∫ T

0

∫
Td

2|E − aV V̄ |2 + 4daV V0 · (E − aV V̄ )

+

∫ T

0

∫
Td

aV
2
|V̄ |2 − aV V̄ · V 0 + 2C(T )daV F

2 +
λ2

C(T )8daV
dtdx

≤ ε− 1

4daV

∫ T

0

∫
Td

|E − aV V̄ |2 dtdx+
∫ T

0

∫
Td

aV
2
|V̄ |2 − aV V̄ · V 0 + 2C(T )daV F

2 dtdx

+

∫ T

0

∫
Td

daV |V 0|2 dtdx+ 1

8daV

∫ T

0

∫
Td

|E − aV V̄ |2 + a2V |V̄ |2 dtdx (3.17)

(where C(T ) is the constant from (3.10))
which provides the a priori bound :

∥E − aV V̄ ∥2L2
T (L2) ≤ 8daV (ε+ (d+

1

2
)aV ∥V0∥2L2) + (a2V + 8da2V )∥V̄ ∥L2

T (L2) (3.18)

+ 16C(T )d2a2V ∥F 2∥2L2
T (L2) (3.19)

hence

∥E∥2L2
T (L2) ≤ 2∥E − aV V̄ ∥2L2

T (L2) + 2a2V ∥V̄ ∥2 (3.20)

≤ 16daV (ε+ (d+
1

2
)aV ∥V0∥2L2) + 2(2a2V + 8da2V )∥V̄ ∥L2

T (L2) (3.21)

+ 32C(T )d2a2V ∥F 2∥2L2
T (L2) (3.22)

We also deduce, out of (3.17), by passing ε→ 0 and dropping the negative terms
in the last term on the right hand side

0 ≤ JE[V̄ ](V0) ≤ (
aV
8d

+
aV
2
)∥V̄ ∥L2

T (L2)+daV ∥V 0∥L2+

∫ T

0

∫
Td

aV V̄ ·V 0+2C(T )d2a2V F
2 dtdx
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By definition (3.13), M is lower semi-continuous with respect to the weak-* topol-
ogy of L2 × L∞, while

(λ, γ) →
∫ T

0

∫
Td

1

2
aV V̄

iV̄i + F iλi − V i
0 (Ei + aV V̄i) dtdx

are continuous (since V0, F, V̄ are given in L2) Thus, we conclude that the maximiza-
tion problem (3.12) always has at least an optimal solution with (E,B) ∈ L2 × L∞

(since its ε−maximizers stay confined in a fixed ball (and therefore a weak-* compact
subset) of L2×L∞, as ε goes to zero). We note that (E,B) ∈ L2×L∞ ⇔ (λ, γ) ∈ R
hence the solution is well-defined in terms of our original variables λ, γ.

Remark 3.2. We will refer to a pair (γ, λ) ∈ R, solution of the sup-inf problem (3.7)
obtained in the previous Theorem, as being a variational dual solution of Euler.
A similar construct for nonlinear elastostatics is obtained in [SGA24].

Remark 3.3. We would like to emphasize that the base state V̄ needs only to be in
L2
T (L

2(Td)) and in particular it need not be divergence free.

Remark 3.4. One issue that remains unclear is what is the relationship of the vari-
ational dual solutions with the weak solutions of Euler. We will see below that weak
solutions define variational dual solutions, for a suitable base state. However it is not
clear if the reciprocal also holds.

Indeed, if (λ∗, γ∗) ∈ R provide a variational dual solution, then formally, according
to the scheme in Section 2.1, we have that V i,H := (N−1)ij(aV )

−1
(
−∂jγ − ∂tλj + aV V̄

j
)

is a weak solution. However out of (λ∗, γ∗) ∈ R we only know that ∂jγ + ∂tλj − aV V̄j
is in L2

T (L
2) but we do not know if N(aV , B)−1 is bounded in L∞ (nor in any Lp for

that matter). Obtaining such an upper bound on N(aV , B)−1 seems to be necessary
in order to understand in what space lie the solution of Euler obtained out of the
variational dual solutions.

Remark 3.5. Following Brenier, we could have attempted to do the theorem in terms
of the variables E,B which are natural for this setting, in which case these would
belong EB2,∞ a subspace of L2 × L∞ functions such that

∂tBij =
1

2
(∂jEi + ∂iEj)− ∂i∂j∆

−1∂lEl (3.23)

holds in a weak sense, see [Bre18] for details. However, this would have worked only
if the forcing term F were zero, since this generates a term in the dual formulation
that cannot be expressed in terms of E and B.

Let us now prove the consistency of our construction.
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Theorem 3.6. Let Ṽ ∈ L2
T (L

2(Td)) be a weak solution of the Euler with initial data
V 0 ∈ L2(Td) with ∇ · V 0 ≡ 0. Then the sup-inf problem (3.7) with base state V̄ = Ṽ
has (λ, γ) = (0, 0) as a solution, hence it is a variational dual solution to which
V H = Ṽ corresponds as a solution of Euler.

Proof. Let us denote

ĨE[V, Ṽ ](λ, γ) :=

∫ T

0

∫
Td

(
V i∂tλi +

1

2
V iV j(∂jλi + ∂iλj)

)
dtdx+

∫
Td

λi(x, 0)V
i
0 (x), dx

+

∫ T

0

∫
Td

V i(t, x)∂iγ(t, x) dtdx+

∫ T

0

∫
Td

aV
2
|V (t, x)− Ṽ (t, x)|2 dtdx

(3.24)

with (λ, γ) ∈ R and, furthermore define:

IE[Ṽ ](V0) := inf
V

sup
(λ,γ)∈R

ĨE[V, Ṽ ](λ, γ) (3.25)

Similarly as in the work of Brenier [Bre18] we note that since inf sup ≥ sup inf we
have:

IE[Ṽ ](V0) ≥ JE[Ṽ ](V0) (3.26)

.
On the other hand, out of the definition of IE[Ṽ ](V0) we have:

IE[Ṽ ](V0) ≤ sup
(λ,γ)∈R

Ĩ[Ṽ , Ṽ ](λ, γ) = 0 (3.27)

where the last equality holds because of our assumption that Ṽ is a weak solution of
Euler.

Out of the last two inequalities we have that:

0 ≥ JE[Ṽ ](V0) (3.28)

On the other hand, taking (λ, γ) = (0, 0) we have:

JE[Ṽ ](V0) ≥ inf
V

∫ T

0

∫
Td

aV
2
|V − Ṽ |2 dtdx ≥ 0 (3.29)

Thus the last two relations show that the value JE[Ṽ ](V0) = 0 is attained for
(λ, γ) = 0 and V = Ṽ .
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Remark 3.7. It should be noted that we are able to show that any weak solution
of Euler is obtained from a variational dual solution of Euler. This is in contrast
to [Bre18], Thm. 2.3, where the consistency of the maximization scheme is shown
only for strong solutions of Euler, local in time, and for which certain quantitative
assumptions are satisfied.

4 Variational Dual Solutions for Navier-Stokes

We proceed analogously to the case of Euler and aim to obtain solutions through an
sup-inf problem, that now becomes:

sup
(λ,γ,χ)

inf
V,W

∫ T

0

∫
Td

(
V i∂iγ + V i∂tλi +

1

2
V iV j(∂jλi + ∂iλj)−W ij∂jλi

)
dtdx

+

∫ T

0

∫
Td

(
νV i∂jχij +W ijχij

)
dtdx+

+

∫ T

0

∫
Td

F i(t, x)λi(t, x) dtdx+

∫
Td

λi(x, 0)V
i
0 (x), dx

+

∫ T

0

∫
Td

H(V,W ; V̄ , W̄ )) dtdx (4.1)

Similarly as in the case of Euler, we observe that in order to have the infimum
in V exists, we need to have pointwise aV Id + 2B ≥ 0 ( where the matrix Bij :=
1
2
(∂iλj+∂jλi)) which will lead, with the same arguments as in Section 3 to the bound

−aV Id ≤ 2B ≤ aV (d− 1)Id, (4.2)

which provides an apriori L∞ bound for B (since B is valued in the set of symmetric
matrices).

This time we will need the variable:

Ei := ∂tλi + ∂iγ + ν∂lχil

Similarly to the case of Euler, the variables E and B will be the natural variables in
which to obtain existence of the sup-inf problem. However, unlike in the case of Euler,
we will no longer be able to obtain separate regularity of λ, γ out of the regularity of
E and B, because of the presence of the term ∂lχil for which the sup-inf problem will
only provide H−1 regularity. Thus we have to adopt a functional framework similar
to the one used by Brenier for Euler in [Bre18]. Also, because of this issue, we will
need to take F ≡ 0.
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Note that we have the identities:

∂tBij =
1

2
(∂jEi + ∂iEj)− ∂i∂jγ − ν

2
(∂j∂lχli + ∂i∂lχlj) (4.3)

and

∂iEi = ∆γ + ν∂i∂lχli (4.4)

hence

γ := ∆−1(∂iEi − ν∂i∂jχij) (4.5)

which provides a compatibility relationship between the new unknowns E, B, χ namely:

∂tBij =
1

2
(∂jEi + ∂iEj)− ∂i∂j∆

−1(∂lEl − ν∂l∂kχlk)−
ν

2
(∂j∂lχli + ∂i∂lχlj) (4.6)

Let EBΨν
2,∞,2 be the class of all L2 × L∞ × L2 fields (E,B, χ) on [0, T ]× Ω with

E valued in Rd and B and χ taking values into the set of symmetric d × d matrices
satisfying weakly the constraint (4.6) with B(T, ·) ≡ 0.

We then have the following analogue of Brenier’s Theorem 2.2 namely:

Theorem 4.1. Let V0 ∈ L2(Ω,Rd) be a divergence-free vector field of zero spatial
mean with ∇V0 ∈ L2(Ω,Rd×d). Then the sup-inf problem

JNS[V̄ , W̄ ](V0) := sup
(E,B,χ)∈E BΨν

2,∞,2

inf
V,W

∫ T

0

∫
Td

V iEi +
1

2
V iV j(2Bij + aV δij)

+

∫ T

0

∫
Td

aV
2
V̄ i(V̄ i − 2V i) dtdx

+

∫ T

0

∫
Td

aW
2
W ijW ij +W ij(χij −Bij) dtdx

+

∫ T

0

∫
Td

aW
2
W̄ ijW̄ ij − aW W̄

ijW ij dtdx

−
∫ T

0

∫
Td

V i
0 (x)(Ei(t, x)−ν∂lV i

0χil) dtdx (4.7)

admits a solution (E,B, χ) ∈ E BΨν
2,∞,2. In addition B belongs to C1/2([0, T ], C2(D)′w∗).
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Proof. Minimization in V and W provides

JNS[V̄ , W̄ ](V0) = sup
(E,B,χ)∈EBΨν

2,∞,2

−M̃[E, B, χ]−
∫ T

0

∫
Td

V i
0Ei + ν∂lV

0
i χil dtdx

+
1

2

∫ T

0

∫
Td

aV V̄ ·N(aV , B)−1 · E+ E ·N(aV , B)−1 · aV V̄ dtdx

− 1

2

∫ T

0

∫
Td

aV V̄ ·N(aV , B)−1 · aV V̄ dtdx

+

∫ T

0

∫
Td

aV
2
V̄ iV̄ i +

aW
2
W̄ ijW̄ ij dtdx (4.8)

where

M̃[E, B, χ] : = M[E, B] +

∫ T

0

∫
Td

1

2aW
(χij −Bij − aW W̄

ij)(χij −Bij − aW W̄
ij) dtdx

(4.9)

with

M[E, B] =
1

2

∫ T

0

∫
Td

E ·N(aV , B)−1 · E dtdx (4.10)

and

N(aV , B) := aV Id + 2B (4.11)

This immediately implies JNS[V̄ , W̄ ](V0) ≥ 0 (just by taking E = B = χ = 0).
We note that we can write, point-wise in (t, x),

E · (Id + 2B)−1 · E = sup
M,Z

2EiZ
i − (δij + 2Bij)M

ij

where M and Z are respectively d× d symmetric matrices and vectors in Rd subject
to

Z ⊗ Z ≤M, (4.12)

in the sense of symmetric matrices. This allows us to give an alternative definition of
M, namely

M[E, B] = sup
M≥Z⊗Z

1

2

∫ T

0

∫
Td

2EiZ
i − (δij + 2Bij)M

ij ∈ [−∞, 0], (4.13)

where the supremum is performed over all pairs (Z,M) of continuous functions on
[0, T ]×D, respectively valued in Rd and in the set of symmetric matrices M . Notice

22



that definition (4.10) makes sense as (E, B) belong to L2 × L∞. Moreover, M is
a lower semi-continuous function of (E, B) valued in [0,+∞]. Next, because of the
lower bound (4.2), we get an L2 apriori bound for E − aV V̄ . Indeed, by definition
(4.13) of M, we have:

1

2aV d

∫ T

0

∫
Td

|E− aV V̄ |2 ≤ M[E− aV V̄ , B]

= M[E, B]− 1

2

∫ T

0

∫
Td

aV V̄ ·N(aV , B)−1 · E dtdx

− 1

2

∫ T

0

∫
Td

aVE ·N(aV , B)−1 · V̄ dtdx

+
1

2

∫ T

0

∫
Td

aV V̄ ·N(aV , B)−1 · aV V̄ dtdx

So, for any ε−maximizer (E, B, χ) ∈ EBΨν
2,∞,2 of (4.8), we get (where ∥ · ∥ denotes

the L2
T (L

2) norm, for simplicity)

0 ≤ JNS[V̄ , W̄ ](V0) ≤ ε−M[E− aV V̄ , B]−
∫ T

0

∫
Td

V0 · E−ν∂jV i
0χji dtdx,

− 1

2aW
∥χ−B − aW W̄∥2 + aV

2
∥V̄ ∥2 + aW

2
∥W̄∥2

≤ ε− 1

4daV

∫ T

0

∫
Td

(2|E− aV V̄ |2 + 4daV V0 · E)

− 1

2aW
∥χ−B − aW W̄∥2L2 +

aV
2
∥V̄ ∥2 + aW

2
∥W̄∥2 +

∫ T

0

∫
Td

ν∂jV
i
0χji dtdx,

= ε− 1

4daV

(
2∥E∥2 + 2∥E

2
− 2aV V̄ ∥2 − ∥E∥2

2
− 6a2V ∥V̄ ∥2 + ∥4daV V0 +

E
2
∥2 − ∥E∥2

4
− 16d2a2V ∥V0∥2

)

− 1

2aW

(
∥χ∥2 + ∥2(B + aW W̄ )− χ

2
∥2 − 3∥B + aW W̄∥2 − ∥χ∥2

4

)
+
aV
2
∥V̄ ∥2 + aW

2
∥W̄∥2

− ∥ν
√
2aW∇V0 +

χ

2
√
2aW

∥2 + 2aWν
2∥∇V 0∥2 + 1

2

∥χ∥2

4aW

≤ ε− 1

4daV

(
5

4
∥E∥2 − 6a2V ∥V̄ ∥2 − 16d2a2V ∥V0∥2

)
− 1

2aW

(∥χ∥2
2

− 3∥B + aW W̄∥2
)

+ 2aWν
2∥∇V 0∥2 + aV

2
∥V̄ ∥2 + aW

2
∥W̄∥2 (4.14)
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which provides the a priori bound, for every ε−maximizer (E, B, χ) ∈ EBΨν
2,∞,2

of (4.8), namely:

5∥E∥2

16daV
+

∥χ∥2

4aW
≤ε+ 6aV ∥V̄ ∥2

4d
+ 4daV ∥V0∥2 +

3

2aW
∥B + aW W̄∥2 + 2aWν

2∥∇V 0∥2

+
aV
2
∥V̄ ∥2 + aW

2
∥W̄∥2

≤ε+ aV (3 + d)

2d
∥V̄ ∥2 + 7aW

2
∥W̄∥2 + 4daV ∥V0∥2 + 2aWν

2∥∇V 0∥2 + 3

2aW
∥B∥2

≤ε+ aV (3 + d)

2d
∥V̄ ∥2 + 7aW

2
∥W̄∥2 + 4daV ∥V0∥2 + 2aWν

2∥∇V 0∥2

+
3a2V
4aW

(d− 1)2d|T|T (4.15)

where for the last inequality we used the estimate (4.2).
Out of relation (4.14) we get, by dropping the negative terms on the right hand

side of the last inequality and letting ε→ 0:

JNS[V̄ , W̄ ](V0) ≤
1

4daV

(
6a2V ∥V̄ ∥2 + 16d2a2V ∥V0∥2

)
+

3

2
∥B + aW W̄∥2

+ 2aWν
2∥∇V 0∥2 + aV

2
∥V̄ ∥2 + aW

2
∥W̄∥2

≤aV (3 + d)

2d
∥V̄ ∥2 + 7aW

2
∥W̄∥2 + 4daV ∥V0∥2 + 2aWν

2∥∇V 0∥2

+
3a2V
4aW

(d− 1)2d|T|T (4.16)

We notice that the upper bound is expressed in terms of the base states and the initial
datum.

By definition (4.13), (E + V̄ , B) → M[E + V̄ , B] is lower semi-continuous with
respect to the weak-* topology of L∞ × L2 × L2 and the quadratic term in χ,B in
M̃ is also lower semi-continuous with respect to the weak topology in L2. Also

E →
∫ T

0

∫
Ω

V0 · E,

and

χ→
∫ T

0

∫
Ω

ν∂jV
i
0χij dx
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are continuous (since V0,∇V0 is given in L2) and EBΨν
2,∞,2 is weak-* closed in L2 ×

L∞×L2. Thus, we conclude that the maximization problem (4.8) always has at least
an optimal solution (E, B, χ) in class EBΨν

2,∞,2, since its ε−maximizers stay confined
in a fixed ball (and therefore a weak-* compact subset) of L2 ×L∞ ×L2, as ε goes to
zero.

As for the regularity of B, we can argue similarly as in [Bre18]. Indeed, we can
write the righ-hand side of equation (4.6) as a sum of a first-order operator in E and
a reminder:

∂tBij = (LE)ij + ν∂i∂j∆
−1(∂l∂kχlk)−

ν

2
(∂j∂lχli + ∂i∂lχlj) (4.17)

where

(LE)ij =
1

2
(∂jEi + ∂iEj)− ∂i∂j∆

−1(∂lEl) (4.18)

Then, for any smooth function ψ on Td valued on symmetric d × d matrices, we
have∫
Td

(Bij(t1, ·)−Bij(t0, ·))ψij ≤
√
t1 − t0

[
∥E∥L2([0,T ]×D)∥L∗ψ∥L∞(D) + ∥D2ψ∥L∞(D)∥νχ∥L2

]
(4.19)

where the operator L∗ is defined as (L∗)kijψ
ij = ∂jψ

kj − ∂k(−△)−1∂i∂jψ
ij.

Finally, using the estimate (4.15), we can bound from above with terms depending
on the base states and the initial datum.

Remark 4.2. Let us note that with the current argument we are unable to specifiy
the functional space in which the V H ,WW are. If one would be able to provide an
L∞ bound of N(aV , B)−1 then we would have that the V H ,WW are in L2

T (L
2).

Similarly as for Euler, we can also prove the consistency of our construction for
Navier-Stokes, namely:

Theorem 4.3. Let Ṽ ∈ L2
T (H

1(Td)) be a strong solution of the Navier-Stokes with
initial data V 0 ∈ H1(Td) with ∇ · V 0 ≡ 0.Then W̃ ij := ν

2
(∂jṼ

i + ∂iṼ
j) belongs to

L2
T (L

2(Td)) and Then the sup-inf problem (4.7) with base state (V̄ , W̄ ) = (Ṽ , W̃ )
has (λ, γ, χ) = (0, 0, 0) as a solution, hence it is a variational dual solution to which
(V H,WH) = (Ṽ , W̃ ) corresponds as a solution of Navier-Stokes.

Proof. Let us denote
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ĨNS[V,W ; Ṽ , W̃ ](E, B, χ) :=
∫ T

0

∫
Td

V iEi +
1

2
V iV j(2Bij + aV δij)

+

∫ T

0

∫
Td

aV
2
V̄ i(V̄ i − 2V i) dtdx

+

∫ T

0

∫
Td

aW
2
W ijW ij +W ij(χij −Bij) dtdx

+

∫ T

0

∫
Td

aW
2
W̄ ij(W̄ ij − 2W ij) dtdx

−
∫ T

0

∫
Td

V i
0 (x)(Ei(t, x) + ν∂lV

i
0χil) dtdx (4.20)

with (E, B, χ) ∈ EBΨν
2,∞,2 and, furthermore define:

INS[Ṽ , W̃ ](V0) := inf
V,W

sup
(E,B,χ)∈EBΨν

2,∞,2

ĨNS[V,W ; Ṽ , W̃ ](E, B, χ) (4.21)

Similarly as in the work of Brenier [Bre18] we note that since inf sup ≥ sup inf we
have:

INS[Ṽ , W̃ ](V0) ≥ JNS[Ṽ , W̃ ](V0) (4.22)

.
On the other hand, out of the definition of INS[Ṽ , W̃ ](V0) we have:

INS[Ṽ , W̃ ](V0) ≤ sup
(E,B,χ)∈EBΨν

2,∞,2

ĨNS[Ṽ , W̃ ; Ṽ , W̃ ](E, B, χ) = 0 (4.23)

where the last equality holds because of our assumption that Ṽ is a weak solution of
Navier-Stokes and W̃ ij = ν

2
(∂jṼ

i + ∂iṼ
j).

Out of the last two inequalities we have that:

0 ≥ JNS[Ṽ , W̃ ](V0) (4.24)

On the other hand, taking (E, B, χ) = (0, 0, 0) we have:

JNS[Ṽ , W̃ ](V0) ≥ inf
V

∫ T

0

∫
Td

aV
2
|V − Ṽ |2 + aW

2
|W − W̃ |2 dtdx ≥ 0 (4.25)

Thus the last two relations show that the value JNS[Ṽ , W̃ ](V0) = 0 is attained
for (E, B, χ) = (0, 0, 0) and V i = Ṽ i, W ij = W̃ ij = ν

2
(∂jṼ

i + ∂iṼ
j).
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5 The inviscid limit of Navier-Stokes to Euler as

a Γ-convergence

In this section we will show that using the framework of variational dual solutions
as defined before we can obtain the convergence of solutions for Navier-Stokes to
solutions of Euler, when ν → 0.

To this end we will show the Γ convergence of a sequence of functionals intimately
involved in studying the mentioned limit. Thus let us consider the functionals (for
ν ≥ 0) :

Aν
NS(E, B, χ) :=M[E− (aV + να)V̄ , N(aV + να)] +

∫ T

0

∫
Td

V i
0Ei + ν∂lV

i
0χil dtdx

+

∫ T

0

∫
Td

1

2
(χij −Bij − aW W̄

ij)(χij −Bij − aW W̄
ij) dtdx

−
∫ T

0

∫
Td

aV + να

2
V̄ iV̄ i +

aW
2
W̄ ijW̄ ij dtdx (5.1)

where we denoted

M[E, N ] :=
1

2

∫ T

0

∫
Td

Ei(N
−1)ijEj dtdx (5.2)

with

Ei, Bij, Nij(a) := aδij + 2Bij; i, j = 1, . . . , d

as previously defined in the Section 4 on Navier-Stokes.
We also take the exponent α to be such that

α <
1

[d/2] + 4
. (5.3)

For any ν ≥ 0 we denote as before EBΨν
2,∞,2 be the class of all L

2×L∞×L2 fields
(E, B, χ) on [0, T ]×Ω with E valued in Rd and B and χ taking values into the set of
symmetric d× d matrices satisfying weakly the constraint (4.6) with B(T, ·) ≡ 0.

We consider the metric space

˜EBΨ2,∞,2 := ∪ν≥0EBΨν
2,∞,2

endowed with the metric induced by the ambient space L2 × L∞ × L2 namely

d((E1, B1, χ1), (E2, B2, χ2)) = ∥E1 −E2∥L2
T (L2) + ∥B1 −B2∥L∞

T (L∞)) + ∥χ1 − χ2∥L2
T (L2).
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For ν ≥ 0 we define:

Ãν
NS(E, B, χ) =

{
Aν

NS(E, B, χ) for (E, B, χ) ∈ EBΨν
2,∞,2

+∞ for (E, B, χ) ∈ ˜EBΨ2,∞,2 \ EBΨν
2,∞,2

(5.4)

Let us note that for ν = 0 we can naturally identify EBΨ0
2,∞,2 with EB2,∞×L2

T (L
2).

as χ is no longer constrained through relation (4.6) if ν = 0.
Moreover, if we denote:

AE(E,B) :=M[E− aV V̄ , N(aV , B)] +

∫ T

0

∫
Td

V i
0Ei dtdx

−
∫ T

0

∫
Td

aV
2
V̄ iV̄ i +

aW
2
W̄ ijW̄ ij dtdx (5.5)

we see that the minimizers of this provide precisely the variational dual solutions of
the Euler problem with initial data V0 (as the additive constant−

∫ T

0

∫
Td

aW
2
W̄iW̄i dtdx

does not affect the minimisation).
Furthermore, we have that for any (E, B, χ) ∈ EBΨ0

2,∞,2 we have:

A0
NS(E, B, χ) ≥ AE(E, B) (5.6)

so the minimizers of A0
NS are provided by minimizers (E∗, B∗) of AE and χ∗ :=

B∗ + aW W̄ .
We then have the following:

Proposition 5.1. Let V0 ∈ L2(Ω,Rd) be a divergence-free vector field of zero spatial
mean with ∇V0 ∈ L2(Ω,Rd×d). Then

Ãν
NS

Γ−→ Ã0
NS (5.7)

in ˜EBΨ2,∞,2.

Proof. We notice that we can omit the continuous linear terms. Similarly the quadratic
terms in (5.1) are weakly lower semicontinuous with respect to the weak convergence
in EBΨ2,∞,2. We focus only on the term M. We recall that we have:

M[E− (aV + να)V̄ , N(aV + να)] =

sup
M≥Z⊗Z

1

2

∫ T

0

∫
Td

2
(
Ei − (aV + να)V̄ i

)
Zi −Nij(aV + να)M ij ∈ [−∞, 0], (5.8)
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where the supremum is performed over all pairs (Z,M) of continuous functions on
[0, T ] ×D, respectively valued in Rd and in the set of symmetric matrices M . Thus
M being a pointwise supremum of affine functions is a convex function and lower
semicontinuous with respect to the weak convergence in EBΨ2,∞,2, so we get the
liminf inequality.

For the limsup, we take (Ē, B̄) ∈ L2
T (L

2) × L∞
T (L∞) hence, by denoting the first

order operator

(LE)ij :=
1

2
(∂jEi + ∂iEj)− ∂i∂j∆

−1∂lEl

we have:

∂tB̄ = LĒ (5.9)

The function χ̄ ∈ L2 is arbitrary in L2
T (L

2). For the limsup inequality we aim to
find (Eν , Bν , χν) ∈ EBΨν

2,∞,2 such that d((Eν , Bν , χν), (Ē, B̄, χ̄)) → 0 as ν → 0 and
also that

lim sup
ν

Ãν
NS(E

ν , Bν , χν) ≤ Ã0
NS(Ē, B̄, χ̄) (5.10)

To this end we take χν ∈ C∞
c (R× Rd) to be such that

χν → χ̄ in L2
T (L

2) (5.11)

and

ν∥χν∥L2
T (H[d/2]+3) ≤ Cν

1
[d/2]+4 → 0 (5.12)

hence in particular, by the Sobolev embeddings:

|ν∂i∂jχν
kl|L∞ ≤ C̃ν

1
[d/2]+4 → 0,∀i, j, k, l = 1, . . . , d (5.13)

where the constants C and C̃ in the last two relations do not depend on ν.
We define

Eν := Ē

and then take

Bν := B̄ − ν

∫ T

t

∂i∂j∆
−1(∂k∂lχ

ν
kl)−

1

2
(∂j∂lχ

ν
li + ∂i∂lχ

ν
lj) ds (5.14)

Then we have
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∂tB
ν
ij = (LEν)ij + ν∂i∂j∆

−1(∂i∂jχ
ν
ij)−

ν

2
(∂j∂lχ

ν
li + ∂i∂lχ

ν
lj)

hence Eν , Bν , χν satisfies the compatibility relation to be in the space EBΨν
2,∞,2.

In order to obtain the relation (5.10) we note that we can pass to the limit in the
second integral in (5.1) and also in the integral containing V 0 thanks to the strong
convergence of χν and Bν in L2 and (5.12). Moreover, for ν small enough we have
(thanks to the definition (5.14) of Bν , the bound (5.13) and the assumption (5.3) on
α):

(aV + να)Id+ 2Bν ≥ aV Id+ 2B̄ ≥ 0 (5.15)

Furthermore, for ν small enough, we also have:

(aV + να)Id+ 2Bν ≥ (aV +
να

2
)Id+ 2B̄ ≥ να

2
Id (5.16)

We take now R : [0, T ]×Td → O(d) (where O(d) denotes the group of orthogonal
matrices) to be such that at almost all (t, x) ∈ [0, T ]× Td we have

R((aV + να)Id+ 2Bν)−1Rt = D (5.17)

where we denoted:

D := diag(f ν
1 , . . . , f

ν
d ) (5.18)

with f ν
i ≥ 0, i = 1, . . . , d the eigenvalues of

(
(aV + να)Id+ 2Bν

)−1

.

We then have, for small enough ν:

(
Eν − (aV + να)V̄

)(
(aV + να)Id+ 2Bν

)−1(
Eν − (aV + να)V̄

)
= R(Eν − (aV + να)V̄ )DR(Eν − (aV + να)V̄ )

=

(
R(Eν − (aV + να)V̄ )

)2

i

f ν
i ≤ 2

(
R(Eν − aV V̄ )

)2

i

f ν
i + 2ν2α

(
RV̄

)2

i

fi
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= 2

(
Eν − aV V̄

)(
(aV + να)Id+ 2Bν

)−1(
Eν − aV V̄

)
+ 2ν2αV̄

(
(aV + να)Id+ 2Bν

)−1

V̄

≤ 2

(
Ē− aV V̄

)(
aV Id+ 2B̄

)−1(
Ē− aV V̄

)
+ 4να|V̄ |2

≤ 2

(
Ē− aV V̄

)(
aV Id+ 2B̄

)−1(
Ē− aV V̄

)
+ 4|V̄ |2 (5.19)

where for the penultimate inequality we used (5.15) and (5.16).
Thus, since the last two terms in the inequality above are integrable we can use

the dominating convergence theorem and the suitable pointwise convergence to get

lim
ν→0

M[Eν − (aV + να)V̄ , N(aV + να, Bν)] ≤ M[Ē− aV V̄ , N(aV , B̄)] (5.20)

We further consider the issue of Γ-convergence in a weaker topology, in which we
can also obtain equi-coerciveness will allow us in particular to prove the convergence
of the minimizers.

To this end we note that out of estimate (4.15) in Theorem 4.1 we have that
minimizers (E, B, χ) of the functional Aν

NS(E, B, χ) will satisfy the bound (with ∥ · ∥
denoting the L2

T (L
2(Td)) norm):

∥E∥2 ≤8

5
(aV + να)2(3 + d)∥V̄ ∥2 + 56

5
daW (aV + να)∥W̄∥2 + 64

5
d2(aV + να)25∥V0∥2+

+
32

5
d(aV + να)aWν

2∥∇V 0∥2 + 12(aV + να)3

5aW
(d− 1)2d2|T|T (5.21)

∥χ∥2 ≤2(3 + d)

d
(aV + να)aW∥V̄ ∥2 + 14a2W∥W̄∥2 + 16d(aV + να)aW∥V0∥2

+ 8a2Wν
2∥∇V 0∥2 + 3(aV + να)2(d− 1)2d|T|T (5.22)

while for B we have the uniform estimate (see beginning of Section 3)

|B| ≤
√
d
(d− 1)

2
(aV + να) (5.23)
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where |B| denotes the Frobenius norm of the symmetric matrix B.
We denote by bE(ν, aV , aW , V̄ , W̄ , V0,∇V0, T, d) the expression on the right-hand

side of (5.21), by bχ(ν, aV , aW , V̄ , W̄ , V0,∇V0, T, d) the expression on the right-side
of (5.22), respectively by bB(ν, aV , d) the expression on the right-hand side of (5.23).
Let us note that since aV , aW > 0 the functions bE, bχ and bB are increasing as
functions in ν. Thus denoting the balls:

B(ν0, aV , aW , V̄ , W̄ , V0,∇V0, T, d) := {(E, χ, B) ∈ L2 × L2 × L∞);

∥E∥L2 ≤ bE(ν0, aV , aW , V̄ , W̄ , V0,∇V0, T, d),
∥χ∥L2 ≤ bχ(ν0, aV , aW , V̄ , W̄ , V0,∇V0, T, d),
|B|L∞ ≤ bB(ν0, aV , d)} (5.24)

(where the spaces L2, respectively L∞ are taken to be both in space and time) we
have that B(ν, aV , aW , V̄ , W̄ , V0,∇V0, T, d) ⊂ B(ν0, aV , aW , V̄ , W̄ , V0,∇V0, T, d) for
all ν ≤ ν0.

We consider the metric space 3

˜EBΨ2,∞,2

w

(ν0) := ∪ν≥0EBΨν
2,∞,2 ∩B(ν0, aV , aW , V̄ , W̄ , V0,∇V0, T, d)

which is now endowed with the weak topology of L2
T (L

2) for the E and χ components
and with the weak-* topology of L∞

T (L∞) for the B component. It is known that
since we are on a bounded set this topology is metrizable so we will consider without
further comment the space as being a metric space. This is useful as it allows us to
use the sequential characterisation of the Γ-limit. We have:

Proposition 5.2. Let V0 ∈ L2(Ω,Rd) be a divergence-free vector field of zero spatial
mean with ∇V0 ∈ L2(Ω,Rd×d) and ν0 > 0 some arbitrary positive number. Then

Ãν
NS

Γ−→ Ã0
NS (5.25)

in ˜EBΨ2,∞,2

w

(ν0).

We omit the proof as it follows closely the one of (5.1), namely the liminf part is
the same, because we worked with weak convergence. Also the recovery sequence in
the limsup part can be chosen exactly the same.

Then, we have:

3The space also depends on several other variables, as indicated in the definition of B, but, for
the sake of readability, we omit explicitly indicating notationally this dependence.
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Theorem 5.3. Let (Eν , χν , Bν) be minimisers of Ãν
NS. Then, there exists a sequence

{(Eνk , χνk , Bνk)}k∈N and a minimiser (E0, χ0, B0) of Ã0
NS such that as k → ∞ we

have (Eνk , χνk , Bνk) → (E0, χ0, B0) in ˜EBΨ2,∞,2

w

(ν0).

The proof is standard, as we can apply the Hahn Banach Theorem and extract
a subsequence converging in the corresponding weak topology. Using the liminf and
limsup properties of the Γ-limit one can check that the limit of the sequence is a

minimiser for Ã0
NS.
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