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Abstract

Structured deformations provide a model to non-classical deformations of continua suitable
for the description of deformations of materials whose kinematics requires analysis at both the
macroscopic and microscopic levels. In this work we apply dimension reduction techniques in order
to derive models for thin structures in the framework of structured deformations of continua.

1 Introduction

Structured deformations were first introduced by Del Piero and Owen [15] and later generalized by
Owen and Paroni [19]. The model introduced in [15] (first order structured deformations) provides
a class of deformations which is appropriate to describe complicated processes of fracture at the
macroscopic level and also permits to identify processes of microfracture that describe a continuum
with structure. Choksi and Fonseca [8] extended the notion of first order structured deformation to the
setting of special functions of bounded variation. Precisely, the authors defined a first order structured
deformation as a pair (g, G) where the macroscopic deformation g is an element of SBV (2;R?) ( the
space of special functions of bounded variation, cf. section 2) and G is an integrable tensor field in Q,
and have proved that given such a pair there exist deformations u,, in SBV (£; R?) such that

U L—1>g and Vu, MQ)G.

Then the energy of (g, G) was defined as

Z(g,G) := inf {hminf E(up), un L—l>g, Vuy, M) G} ,
{un }CTSBV (;R4) | n—o0



where

E(u)= | W(Vu) dx—i—/ P([u], v(u)) dHN 1
Q S(u)

for any u € SBV(Q; R?), and an integral representation of Z(g, G) was derived. Note that the energy of
(g, G) corresponds to the most economical way to build up deformations using SBV - approximations.

In this work we consider a model for first order structured deformations departing from a different
initial energy F which includes second order derivatives (see (1.1) below; see Carriero Leaci and
Tomarelli [9] and [10] for other second order variational problems). Our goal is to derive a model for
thin structures through dimensional reduction techniques. The need for second derivatives relies on
the fact that, in order to avoid the formation of holes in the target lower dimensional domain, all the
jumps in the approximating sequences must be properly aligned (see Remark 1.3 below).

Precisely, we consider the energy of three dimensional structures with vanishing thickness € > 0 as
follows

E.(v) := W(VU,Vzv)dy—i-/ \Ill([v],y(v))dH2+/ Uy ([Vo], (Vo)) dH? (1.1)
Qe Su Svv

for v € SBV?(Q;R3), where Q. = w x (0,¢) and w C R? is an open bounded set. We assume the
following hypothesis in the energy densities

1) : there exists C' > 0 such that
H h ists C' > 0 such th
1
5|B| - C<W(A,B)<C(1+|B])
for all A € R3*3 and B € R3x3x3;
(Hs) : there exists C' > 0 such that
|W (A1, B1) — W(A2, B)| < C(|A1 — As| + |B1 — Ba)
for all A; € R3*3 and B; € R3%3%3 § =1,2;
(Hs) : there exists 0 < @ < 1 and L > 0 such that

A, tB
=,y - WELB)| €

t

forallt > L, A € R®*3, B € R®*3*3 B with |B| = 1, where W denotes, as usual, the recession
function of W in the variable B, i.e.,

W (A, B) = limsup WiAtB).

)
t—+oo t

(Hy) : there exist ¢; > 0, C1 > 0 such that
ca|Al S (Av) < ChlA,
for all A € R? and v € S?;

(Hp): there exist ¢c3 > 0, Cy > 0 such that

col Al < Wa(A,v) < CafA],

for all A € R3*3 and v € S%;



(Hg): (homogeneity of degree one)

\Ifl(t)\, I/) = t\Ifl()\, V), \Ifz(tA, I/) = t‘I’g(A, I/)
forallv € S2, A\ € R3, A € R**3 and t > 0;

(H7): (sub-additivity)

Ui (A + A2, v) S U (A, v) + Ti(Ae,v),
Uo(A1 + Ao, v) < Us(Aq,v) + Ua(Ag,v)

forall v € §2, \; € R3, A; e R3>3, 4 =1,2;

(Hs):
\IIQ(Av Va, V3) = \IJQ(A; Va, _V3)7

for all v € S? (written as v = (Vq,v3)), A € R3*3.

Remark 1.1 The hypotheses (Hy) — (H7) were considered in the relazation result [7] which is used
in order to derive the lower bound inequality in this work. They generalize to this setting the ones
considered by Choksi and Fonseca in [8]. Hypothesis (Hs) is only used in order to derive the upper
bound inequality and is a property of invariance under the particular reflection associated with the plane
in the reference configuration occupied by the two-dimensional "reduced” continuum. Most lattices and
submacroscopic geometries indeed have such a plane of symmetry.

As usual in dimensional reduction problems we change variables in order to have a fixed domain.
— Y3

Precisely, let y = (ya,¥3) € Qc and define z = (24, 23) € Q:= wx (0,1) through x4 = y, and 3 = £
Then
w(xo, x3) = v(Tq, €x3)

is clearly a function in SBV?(Q;R3) and the integral in (1.1) becomes

1 1 1 1
E.(u) = e[/QW(vau,Zv3u,v§ﬁu,gv§3u,gv§ﬁu,E—Qvggu) dx

+/S Wl([u],ya(u),éug(u)) dH?

u

# [ Vil (P, LoV ]
Svu

where a, 8 € {1,2}.

We introduce now the e-scaled 3D energies J, := ET and our aim is to derive the asymptotic
behaviour as € — 0% in the sense of I-convergence (see [12], [13], [3] and [14]). More precisely we
consider

1 1 1 1
1(g,b,G) := inf liminf Je, (un), un L—)g, —Vsu, L—>b, Vatn La ,
un, ESBV2(R3) | €n—0 " €n



where (g, G) € BV?(w;R3) x BV (w;R**?) and b € BV (w; R?). The remark 1.3 gives the motivation
for the definition of I, in particular the convergence and the appearance of fields independent of the
transversal variable x3 in the limit space.

The main result of this paper is the following representation result for I (see section 2.1 for
notation).

Theorem 1.2 The functional I does not depend on the sequence {€,} and admits an integral repre-
sentation of the form

I=1+1
where
1 ch c
Ii(g,G)=| W1i(G—Vg)dzs + ([ l,v(g)) dH W1 d|DC d|D¢%g|,
and
bbG) = / Wa(b, G, Vb, VG) dx +/ To((b, GY* (b, G)~ (b, G))) A
wnS((b,G))

5 (e 8w

The energy densities of Iy are obtained as follows

— ; T 1 _ _ .y
Wh(A) = ueSBll;l(fQ/;RS) {/SuﬂQtIfl([u], v(u)) dH ,ulag = 0,Vu= A a.e.in Q } )
r Av = f E ) dHlv /= l/av :O )
1A = opiBh, o) {/Q’msu 1), v(w) uloay = Tow, Vu }
with
A if 2o >0
T(\v) (:Eoz) =
0 if z,.v<0
and

1

The energy densities for Is are as follows

W\ vg) i= inf{ U1(\, Vg, t) :tGR}.

Wa(A, By) = inf{/Ql W (A, Vu) dy+/cg’ms Wy ([u], v(u)) dH" :

u € SBV(Q,;RB),ubQI = Bay} ,

I'y(A, 0,v) :=inf / W (u, Vu) dy —i—/ Uy ([u], v(u))dH*
Q. QNS (w)
u € SBV(Q:NRB)vuL?Q; = UA,H,U} 5

4



where
A ify-v>0,
ux0,0(y) =
60 otherwise

and with W and Uy as follows: decomposing the pair (A, B) € R3*3 x R3*3%3 ynto (A, B,, B3) €
R3%3 x R3¥3X2 5 R3IX3XT gofine

W(A,Bo):= inf W(A, Ba,Bs),

BSGRSXSXI
and for A € R¥*3, v, € S1, let

Wy(\,v,) := inf {;\I}Q()\, Va,t) 1t € R} .

Remark 1.3 Suppose we have a sequence of deformations clamped in the boundary and with finite
total energy. Thus, for a given sequence {e,}, we have a sequence {v,} C SBV?(Q, ;R3) such
that v, = x in a neighborhood of dw x (0,€,). After rescaling we obtain a new sequence {u,} C
SBV?2(Q;R3) such that u, = (T4, €nx3) and

sup Je, (up) < 0.
n

From the growth conditions (H1), (H4) and (H5), we obtain

s?(mw%mm+é mm><w

which, together with the boundary condition, implies the boundedness of u,, and Vu,, in the BV-norm.

L' Lt . .
Thus, up to a subsequence, we have u, — g and Vu, — G. Now, defining b,, := v3:" , and using

(H1) and (H5) we get that

sup |D(b,)|(€2) < oo,

which, together with the boundary condition b, = (0,0,1) implies the boundedness of b, in BV-norm
and consequently the existence of a subsequence such that b, — b in L'. The field g represents the
deformation of the mid-surface and the field b represents the rotation and compression of the normal
sections. On the other hand, using the same growth conditions, we have

S%Q%mem+/ mwﬂ+wwmm0<c%

Un

which, together with boundary conditions, implies that the limit fields g, G and b do not depend on x3.

The overall plan of this work in the ensuing sections will be as follows. In section 2 we collect the
main notations and results used troughout. In section 3 we prove theorem 1.2.

2 Preliminaries

The purpose of this section is to give a brief overview of the concepts and results that are used in
the sequel. Almost all these results are stated without proofs as they can be readily found in the
references given below.



2.1 Notation

Throughout the text w C R? will denote an open bonded set and for € > 0, Q. = w x (0,¢). We
denote simply by € the subset of R® corresponding to ; = w x (0,1) = w x I. If z € R? then
T := (21, 22) € R? is the vector of the first two components of z.

We wil use the following notations:

- A(Q) (resp. A(w) ) is the family of all open subsets of Q (resp. w),
- M(Q) (resp. M(w) ) is the set of finite Radon measures on € (resp. w),

- £V and HN ! stand, respectively, for the N-dimensional Lebesgue measure and the (N — 1)-
dimensional Hausdorff measure in R¥.

- ||u|| stands for the total variation of a measure u € M(Q) (resp. M(w) ),
- SN~ stands for the unit sphere in R,
- @ denotes the unit cube of R3 centered at the origin with one side orthogonal to e,

- Q(z,8) denotes a cube in R? centered at x €  with side length § and with one side orthogonal
to es,

- Q. (,6) is the cube centered at x € § with side length § and with one side orthogonal to v € 52,

- when related to R? and w we use the previous notations with the obvious adaptations with @’
in place of @,

- C represents a generic constant,

- lim := lim lim while lim := lim lim .
n,m—)oo n—o0 M—r0o0 m,n—)oo m—00 N—00

2.2 BV-functions

We start by recalling some facts on functions of bounded variation which will be used afterwards. We
refer to Ambrosio, Fusco and Pallara [1], Evans and Gariepy [16], Federer [17], Giusti [18] and Ziemer
[20] for a detailed theory on this subject.

A function u € L'(Q;R?) is said to be of bounded variation, and we write u € BV (Q;R9), if all
its first distributional derivatives Dju; € M(Q) for i = 1,...,d and j = 1,..., N. The matrix-valued
measure whose entries are Dju; is denoted by Du. The space BV (;RY) is a Banach space when
endowed with the norm

lully = llull o + 11 Dul[(©).

By the Lebesgue Decomposition theorem Dwu can be split into the sum of two mutually singular
measures D% and D*®u (the absolutely continous part and singular part, respectively, of Du with
respect to the Lebesgue measure £V). By Vu we denote the Radon-Nikodym derivative of D% with
respect to LY so that we can write

Du = Vul™ |Q + D*u.

Let Q, be the set of points where the approximate limits of w exists and S,, the jump set of this
function, i.e., the set of points = € Q\ Q, for which there exists a, b € RY and a unit vector v € SN 1,
normal to S, at x, such that a # b and

u(y) —aldy =0 (2.2)
e—0+ EN /{yer(x75):(yI)~l/>0}



and
. 1
lim —

lu(y) — bl dy = 0. (2:3)
e—0+ EN AyGQV(m75):(yI)'U<O}

The triple (a,b,v) uniquely determined by (2.2) and (2.3) up to permutation of (a,b), and a change
of sign of v and is denoted by (u™(x),u™ (z), vy (x)).

If uw € BV(9) it is well known that .S, is countably N — 1 rectifiable, i.e.
Su=|J KnUE,
n=1

where HV~1(E) = 0 and K, are compact subsets of C'! hypersurfaces. Furthermore, H¥ ~1((Q\ Q,)\
Su) = 0 and the following decomposition holds

Du = Vul™|Q+ [u] @ v, HN 71| S, + D¢u,

where [u] :=ut —u~ and D°u is the Cantor part of the measure Du, i.e., DU = D%u| ().
We next recall some properties of BV functions used in the sequel. We start with the following
Lemma whose proof can be found in [8]:

Lemma 2.1 Let u € BV(Q;R?). Then there exist piecewise constant functions u,, such that w, — u
in L'(Q;RY) and

[[Dul|(©2) = lim || Du,||(2) = lim / |[wn] ()] dHY
n—oo n—oo Sun

The space of special functions of bounded variation, SBV (£2;R?), introduced by De Giorgi and
Ambrosio in [11] to study free discontinuity problems, is the space of functions u € BV (£; R?) such
that C,, = 0, i.e. for which

Du = VulY + [u] @ v, HN | S,.

The next result is a Lusin type theorem for gradients due to Alberti [2] and is essential to our
arguments.

Theorem 2.2 Let f € LY(Q;RN). There erists u € SBV(Q;R?) and a Borel function g : Q —
RN such that
DU = fEN + gHN_l \_Suu

/S 9] dHN 1 < O] .

u

Remark 2.3 From the proof of Theorem 2.2 it also follows that

[[ull i@y < 2C||fll L1 (@raxny-

Following Carriero, Leaci and Tomarelli (see [9] and [10]) we define

SBV?(Q;RY) = {v € SBV(Q;R?), Vo € SBV (; RN,

If u € SBV?2(;RY) we use the notation V?u = V(Vu), that is, V2u is the absolutely continuous part
of D(Vu) with respect to Lebesgue measure.
We will also denote by

BV?(Q;RY) = {v € BV(Q;R?Y), Vv € BV (Q; RN},



2.3 Integral representation results
In this section we recall Theorem 3.12 in [5] and apply it to an auxiliary functional which will be used

in order to derive the upper bound inequality. Let:
F: BV(Q;RY) x A(Q) — [0, +00)

satisfying:
i) F(u;.) is the restriction to A(f2) of a Radon measure,
ii) F(.; A) is L'(A;R?)- lower semicontinuous,

&|Du|(A) < F(u, A) < C (LN (A) + |Du|(A)) for some C > 0,

11

v

)
)
i)
) There exists a modulus of continuity ¢(¢) satisfying

\Fu(. = 2) + b;2 + A) = Flu, A)| < o(|] + |2]) (LY (A) + [Dul(4)) .

Define the set function:
m(u; A) := inf {F(v; A),v]pa = ulga, v € BV(Q;Rd)} ,

and let
. m(a+ (. —xg); Q(x0, €
f(zo,a,Q) := 11€H_1>Sol+lp (a+¢( ENO) Qo )), (2.4)
. m(uxg.(. —x0); Qu(xo, €
g(zo, N\, 0,v) == heriilip (2,00 GN_OB (20,) (2.5)

for all 9 € Q,a,0,\ € R%, ¢ € RN where
A ify-v>0,

ux0.0(y) =
0 otherwise.

Then the following full representation result of F on BV (Q; R?) holds:

Theorem 2.4 Under hypotheses 1), i1), i) and iv),
flz,u, Vu) dx + / gz, ut,u™,v,) dHN 1
Q SunA

dDu
oo - = d DC

where f and g are defined by (2.4) and (2.5) respectively and f°° denotes the recession function of f

Flu; A) =

in the last variable, defined by
f(x()v Uo, té.)

fOO(IOa U‘Ové.) = hmsup
t—o0 t



Next we apply the Theorem above to the functional

7(G.0) _ .
157 = gt fumges [

1
+ v, ([gn1,ua<gn>,—u3<gn>) I
Sy, N(AXI) €n

L 1 L
i £, 2920, E50 [Vag, — Gl < Cer?},
n

(Vagn| ngnﬂ de (2.6)

n

defined in A(w) where G, b are fixed piecewise constant L> functions. We prove that

~(GLb

Proposition 2.5 The functional I, )(g,A) admits an integral representation of the form:

15004 = [ 100 g)dr+ [ W 1g)v) an
A SyNA
where A € A(w).

Proof. In order to comply with the conditions in Theorem 2.4 we first prove that I(G 2 (g,.) is the

restriction of a Radon measure in M(R?) to A(w). For each point a € w with rational coordinates
consider balls B(a,r;) with radius r; (defined for ¢ € N large enough, depending on a) such that

1 < 1

i — ;| =52

, B(a,r;) Cw and ||D%¢||(0B(a,r;)) = 0.

We denote by B(w) the set of all such balls and their finite unions (it consists of a numerable number of
sets). The set of all closed balls B(a,r;) is a fine cover to w. We can take an appropriate subsequence
of {ey}, which we denote by €,, , such that for each element in B (which we denote by B) there exists

a sequence gi Yo SBV(Q; R?) (which we denote by gy, for simplicity) such that

Lt 1 Lt 9
g =9, —Vage 0, IVagk — Gl < Cen,~,

Nk

\V4 1
(Vagk,s—gkﬂ dw—i—/ Uy ([Qk]al/a(gk)a_VS(gk)> dH?.
Eng Sg,, N(BxI) €ny

(2.7)
In order to prove that I 1(0 b)( .) is a Radon measure we need first the following subadditivity Lemma:

and

fl(f;’b)(g;B) = lim 6

k— o0 BxI

Lemma 2.6 Let A, B,C be open sets in A(w) such that A CC B C C. Then we have that
L5"(9.0) < 157(9.B) + 5" (9. C\A).
Proof. We first derive an upper bound for I] (G Y. Let
gk =g+ h — hy + €n, T3b, (2.8)

where h € SBVa(w;R?) is such that Vh = G — Vg (see Theorem 2.2) and hy, is piecewise constant
function such that hj, — h in L' (see Lemma 2.1). Using the sequence above we get the upper bound
as follows

G (g,A) < 5 /A (G.b)|dz+ C /A G — Vg|dz +||D]|(A). (2.9)



for every open set A € A(w).
For each Borel set B define the bounded Radon measure

A(B) ::5/B|(G,b)|dx+O/B|G—Vg|da:+||Dsg||(B).

For each p > 0 consider an open set B, in B(w) such that B, C B. Using Besicovitch’s Covering
Theorem we can find a set A, € B such that A, C C'\ A and

A((C\A\4,) <p

Note that we can choose the sets above in such a way that there exist an open set with Lipschitz
boundary fl, with A cc A cc B,, with A C Ap.
Now we can find sequences g;. C SBV2(4,;R?) and gi C SBV2(B,;R?) verifying (2.7). We can
define a new sequence
gjin A, \ A,
gr =14 g7 in A, (2.10)

g otherwisein C

where gy, is defined in (2.8). We then have that

~ V ~
§5"(g,C) < lim s (Vaﬁk,g—gkﬂ d (2.11)

' k—oo CxI €ny,
+/ vy ([A ], Va(gr), —V3 (k) ) (2.12)

Sgkﬂ(CxI)

< [69(g, B,) + 15 (g, 4,) + A(C\ D)\ 4,) (2.13)
< 45"(9.B, )+I(G (9, 4,) + p, (2.14)
and the result follows from letting p — 0. ]

We may suppose, without loss of generality, that the equality (2.7) also holds for the set w, with
an appropriate sequence gy (which we again denote by g). Define the sequence of bounded Radon
measures as follows

Ag(B):=4§

Vv 1
(Vagk, 3gk)’ dfC-i-/ Uy ([Qk]aya(gk)a_l/3(gk)) dH?
€ny, Sg,, N(BxI) €ny,

where B C R? is an arbitrary Borel set. We may extract a subsequence such that Ay — A. Then the
following holds

BxI

Lemma 2.7 For every open set A € A(w) we have that
5" (g:4) = A(A).
Proof. First note that for any open set A € A(w) we have that

15" (g: 4) < A(A). (2.15)

10



Given V € A(w), let p > 0 and take W CC V such that A(V\W) < p. It follows that
AV) < AGW) 49

IN I
x =
s &
!
=
€
—
=
_|_
)

IN
Ep3
=
)
<
S~—
_|_
°

where we have used the equality A(w) = A(@), (2.15) and Lemma 2.6. Thus, letting p — 0, we get
AV) < L5 (V). (2.16)

Let us see now the reverse inequality. Let K CC V be a compact set such that A(V\K) < p (see
2.9), and choose an open set W such that K CC W CC V. Using again Lemma 2.6 we have

L5 V) < LG g W) + I{G7 (: VAK)
<AW) +A(V\K)
<A(V) +Cp,

which, together with (2.16), yields the statement after letting p — 0. ]

From Lemma 2.7 we have that fl(f;’b) (g, A) satisfies the point i) of Theorem 2.4. The points i) and

iv) are easy to verify. The bounds in point i) follow from the upper bound given by A in (2.9) (note
that we are assuming G to be a fixed L* function) and the lower semicontinuity of the total variation
with respect to weak™ convergence (for the lower bound). Thus, applying Theorem 2.4, we get the

existence of Borel functions f éG’b) (only dependent of Vu in this case) and h((;G’b) (only dependent on
([u], 1)) such that
~(G,b G,b G,b
1) = [ 500 @gde+ [ 1O (gl an (27)
A ANS,
|
2.4 Relaxation results for structured deformations
In [7] we studied the relaxation
1 1
I(g,G) _{unesggg(md”{1inxgi£fE(un): un € SBVAQURY), up, L g, Vuy L—>G}, (2.18)

under hypotheses (Hy) — (H7), of the energy

E(u) z/QW(Vu,VQU)dx—i—/S Wl([u],u(u))d’HN_l—i—/ Uy ([Vu], v(Vu))dHN 1,

w S(Vu)

where Q@ C RN, u € SBV?(;R?).

Remark 2.8 We extend V;,i = 1,2 as homogeneous functions of degree one in the second variable
to all of RN (respectively R¥*N ).

11



Under the hypotheses (H;) — (H7), an integral representation of the energy I(g, G) was derived for
g € BV2(Q;R?) and G € BV (Q; R>YN). Namely, given A4, B € R*Y and C € R>*N*N and defining

1241 (A):ueSBi\r/lfQ;Rd) {/SUQQ\IH([U], v(u)) dHN "1 ulsg = 0,Vu = A ae. in Q} ,

Wy(B,C) = inf /W(B,VU(:C)) dx
vESBV (Q;RIXN) Q

+/QﬂSv Uy ([v], v(v)) d’HN_l,vbQ = C:v} ,

ANV) = inf Uy ([u], v(uw) dHN L u = V,VuzO},
i ) ueSBV(Qu;Rd){/QmSu 1l v(u)) loa. Tow)
where
A if zv >0
’7()\,1/)(:[:) =
0 if z.v <O,
AT, v)= inf W (v, Vv) d Uy ([0], dHN
e L= e e e [ () ve)
v|oQ, = YT}
where
A if zv>0
V(A,F,v)(x) =
I if z.v<0,
and
W (A,B) = inf W>(A,V d
2 ( ) ueSBvl?Q;Rde){/Q ( v(z)) da

# [ sl vl) 1 vl = B
QNSy
the following result was proved:

Theorem 2.9 Under hypotheses (Hy) — (Hz), for all (g,G) € BV(Q;R?) x BV (Q; R>*N) | we have
that

I(gaG) = Il(va) +12(gaG)

where

1 1
hlo. G znesé%m;m){%gf [ Wl v an s w, Esg v, LG},

Un

and

12



. o - L L'
I(9,G) = Sé‘r}fz(ﬂ;w){hmmf/ﬂW(Vun,v2un) dx—l—/s Vo ([Vun), v(Vu,))dHN ™ u, == g, Vu, — G

n—oo
Un € Vun

and the functionals above admit an integral representation as follows

dD¢
10.6) = [W(G-Vodo+ [ Wi (~22L) apol+ [ il viehan
0 Q d|Deg| g
dDcG + N-1
Q Q d| DG Sc
3 Proofs

In this section we prove Theorem 1.2.

We start by noting that for any (g,b,G) € BV?(w;R?) x BV (w;R3) x BV (w; R3*?) and for any
fixed sequence €, — 0 there exists u, € SBV?(Q;R3) such that u, L—1>g, éVgun L—1>b, and
Vuy, L—1>(G,O). In fact, given (g9,G) € BV (w;R3) x BV (w;R3*2) and b € BV (w;R?), by Theorem
2.2 there exists h € SBV (w;R3) such that Vh(z,) = G(z,) a.e. 4 € w and

ID*Al[(w) < C1l|Gl|Lr (wirs) (3.19)
for some C7 = C1(N) > 0. By Lemma 2.1, there exist {v,} piecewise constant such that

L' (w;R?) s
vn = "g—h and |[|Duv||(w) = [|D*vnl|(w) = [|Dg — Dh||(w).

Define now u,, € SBV (;R?) by un(za,23) := va(2a) + h(2a) + €,b(74)x3. Clearly we have that

LY(Q R3 Vsu, LY(R3

.p3X3 1
Vatin () ’—R> )G(:va), Uy, L(—> g, )b.

€n

3.1 Decomposition

In order to get an integral representation for I(g, b, G) we bound it by two first order functionals and
then use integral representation results from Bouchitté, Fonseca and Mascarenhas (see Theorem 2.4).
In this section we derive appropriate first order lower (see 3.20) and upper bounds (see 3.21).

For (g,b,G) € BV?(w;R?) x BV (w;R3) x BV (w; R3*2) write

1 1
I(g,b,G) = lim inf [ QW(Vaun, b, V2 gtin, Vab, e—vgﬁun, E—V3bn)dx

inf
Un €ESBV2(4R3) | €n—0

+/S U1 ([un], Vo (un), i1/3(un)) dH?

Up, n

€n

1
+/ \112([vaun]u[bn]aya(vun)u_y3(vun)) d,H2‘|
SV un
U L—1>g, bn, L—1>b, Vatn L—1>G},

13
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where
b — v3un

€n

Then the functional I(g,b, G) has the lower bound

with
. .. 1 9
L{g:b,G) = unesér&fz(ﬂ;n@s) {her?—%f Su,, W1 ([un], o (un), ;V?’(U")) i
Lt 1 Lt L'
Uy —> g, —Vsu, —b, Vyu, ? Gy,
€n n—00
and
1
I(b,G) = inf {hminf [/ W (hn, Vahn, —Vshy,) d
h, €SBV ({;R3%3) €n—0 Q €n

€n

+/ Ua (], v (), =5 () dHﬂ
Shy,

ha L—1>(G,b)}.

n—o0
Indeed if we put v, = Vau, and h, = (v,, by,) it is immediate to see that

I(gvbu G) 2 Il(gvbu G) + IQ(bv G)

Next we prove and upper bound for I

where
- . e 1 9
hob6) = | ol o {%Ti%f ,, il valun)l s ) A
! 1 Lt 9
up — g, —Vsu, —b, ||[Vau, =G|l <Ce&” ¢,
€n
and
) o 1
I,(b,G) = inf {hmlnf {/ W (hp, Vahn|—Vshy,) dz
hn, €SBV (£;R3%3) en—0 Q €n

hn n

[ allhalva ()] vath) dﬂrﬂ]
S
L_lgo(G,b), m — G| < ce,ﬁ} .

n—

b

14



Fix a sequence {e,} with ¢, — 0. From the definition of I; we can find a sequence u,, € SBV?(Q; R?)
with

1
(un, Valin, —Vgun) L—1>(g, G,b)
and
[Vaun — Gl < Ce? (3.22)
such that
- ) 1
Ii(g,b,G) = lim U1 ([un], Va(un)|—vs(un)) dH?(z).
n—oo Jgo €n

Un

Moreover, from the definition of I, we can find sequences v, € SBV (;R**2), b, € SBV(Q;R3)
with

(tm, ba) L5(G,b),

and
lon = G| 1 < Cen® (3.23)

in such a way that (setting h,, = (vn, by,)) the equality bellow holds

n—r oo

A 1
Ib,G) = lim LZW(hn,vahn|€—v3hn) da

1 2
+ /Shn Va([hnl, valhn), —v3(hy)) dH™| .

€n

Remark 3.1 In fact the equalities above for I and I only hold if we pass to a subsequence of {en}
(for which we still use the same notation). In the next sections we will prove that I; and Iz are
independent of the sequence €,.

Now we can construct a sequence w,, as follows

W, ::un+pn_ﬁn

where Vp,, = (v, — Vaun, €50, — Vauy,) is obtained from Theorem 2.2 and p,, is a piecewise constant

1
function such that p, — gy, L50and [|1Dpn]|(2) = [|Dpn|](€2) — O (see Lemma 2.1). Note that

V?,Un

€n

bn, —

1Dpall(Q) < c/ lon — Vo] dar + Cen/ de. (3.24)
Q Q

It is easy to check that w, is an admissible sequence for I. Indeed we have
1
VaWwn = vn, —V3w, = by
€n
1
and thus (wn, Van, %ngn) L—)(g, G,b). Then, setting hy, = (vn, b,) and using Hy, (3.22), (3.23)

15



and (3.24), we have that

I(g,b,G) < liminf/

W (hn,vahn,ihn) da:+/ 0, ([hn],ua(hn),iyg(hn)> dH?
Q €n Shn,

n

# [ (et ) ) o

€n

. - 1
< 10.6)+ hi00.6) + € [l | (vl valon) )| an?
Spn n

o [ 1| (). st )|

n

R A C

. . C Viunp
<IL(b,G)+I(g9,b,G)+ — |vn—Vaun|dx+C'/ by, — sUn | g
€n JQ Q €n
7 7 v3un
<Iy(b,G)+ 1i(g9,b,G)+ Cep, +C | |by, — dx.
Q €n

Letting n — oo, (3.21) follows.

3.2 Lower bounds

We first derive a lower bound for I*. Fix {¢,} and denote by

lim inf U1 ([un], Vo (un), iV3(“n)) dH?

L) (g,0,G) = inf
! (9,0, @) unesérx}z(sz;Ra){ en—0 Jg €n

Up,

Lt 1 Lt Lt
Uy —>g, —Vsu, —b, Vauy, —)G}.
€n

1 1 1
Given an arbitrary sequence u,, L—)g with V,u, L. G and }Vgun L, b, define
. 1 9
Ly :=liminf Uy | [un], va(un), —vs(uy) | dH.
n=o0 S Sy, N0 €n

Then clearly
Ly > lim inf/ U1 ([tn), Vo (un)) dH2
Supy N

n—00
Up,

For x3 fixed set now uZ3(24) := up (T, z3). Then, by Theorem 3.1.1 in [6](Slicing Theorem),

Ly > liminf Uy ([tn], valun)) dH?

n—=oe Js,, N0

1
> 1iminf/ / Uy ([ufs], ve (u2s)) dH  (24) dus.
0 Suz;; Nw

n—oo

16



Note that

L' L'
uy? =g, Vur? —G.

n

Hence, by Fatou’s Lemma and the integral representation in Theorem 2.9 (see also Remark 3.2 and
3.3 below), and using the arbitrariness of the sequence u,, we arrive at the inequality below

I#”@awz/

w

dD¢°
vm@—vmmh+/Ime@»ME+/qu- f)ﬂDm
Sy w d|D g|

where
Wi(A) = inf 7 ) dHl, :O,VZA,,' ,,
1(4) ueSBl‘ﬁl(Q/;Rg){/SmQ/ 1([u], v(u)) ulag u a.e mQ}
and
— : - 1 o B
v} = ueSB%/n(g;;Rﬁ {/Q;msu Vi ([u], v(w)) dH, uloq, = T(aw), Vu = 0} ;
with

A if 2z, >0

T(>\7,j)(xa) =
0 if z,.v<O.

Remark 3.2 We note that Wy is continuous. In fact, if (An,vn) — (A, v) in R3 x St and if we assume
that limy, 00 U1 (An, vpn) = liminf, o0 U1 (A, vp) we get that

lim @l(AnaVn) = lim \Ifl()\n,Tn) = \111()\,7')

n—oo n—00

R . . . .
where T, = % is a sequence in S% which we assume to be convergent to a point T € S%. On
Vn 2

(v,tn)

VIvPP+t2

Uy (A, v, b
V(A7) = lim 22l

which together with the previous equality gives the lower semicontinuity of V1. For the upper semi-
continuity of W1 we consider again a sequence (\n,vn) — (A\v) in R3 x S and t, such that
Wi\, v) = limy, 00 Y1Qnstnstn) o0 d thys

Vv |Vn|2+t%

the other hand if we write 7 = lim,, o and use the definition of ¥, we get that

2 Wl ()\7 V)7

\Ill(Avya tn) =

T, W ns n?tn .
limsup U1 (A, vp) < lim 1(An, v ) = lim =T (\v).

n—00 T n—oo /|Vn|2 T t% n—oo /|V|2 T t%

Remark 3.3 We do not know if Uy inherits the subadditivity from Uy but it keeps the Lipschitz
continuity and the growth conditions from V1 which are also sufficient to apply Theorem 2.9.
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Now we derive the lower bound for I. Again, for a given sequence {¢,} and (b, G) € BV (w; R?) x
BV (w; R3*?), we define

L b,G) = inf {hmmf [/ W (hn,Va hm V?»h ) da
hn €SBV (QR3x3) | en—

hn €n

+ / U ([on] v (on), 15 () cmz(a:)]
S

Ll
hn, —(G,b) ¢ .
Let h, L—1>(G, b) be an arbitrary sequence and for fixed {e,} define

Ly: = liminf [/ W (hpn, Vahn, iv?;hn) dx
€n

n—00

+ /S allhal v, L)) d#]

€n

Clearly we have that

n—r oo

|

Let now x5 be fixed and set h%3(z,) = hy (24, x3). Then, by Theorem 3.1.1 of [6],

Ly > liminf {/ W (hn, Vahy) do
Q

Uy ([hn], Ve (hn)) dHQ] .

hn

Ly > liminf[ W (hp,Vahy) dx
Q

n—00

+/ 62([}%], Va(hn)) dHQ(@]
Shn
1 —_
> lim inf [/ / W (hy, Vohi?) day drs
n— o0 O w

/ / ., el va ) dHluca)dxg].

Noting that h¥s L—l>(b, @), by Fatou’s Lemma a lower bound for I, 1"} (b, G) will be given by Theorem
4.2.2 in [5).
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3.3 Upper bounds

We first derive an upper bound for I (g,b,G). We recall the family of functionals (depending on a
parameter § > 0) defined in (2.6) for G and b fixed piecewise constant functions:

(Vagn| V§9n> } dzr

n

2(G.b) . .
157 = gt fumges [

1
+/ Uy ([Qn]aya(gn)a_y3(gn)) le?
Sy, N(AXT) n

L 1 L
i £, L9, 240, Vags — Gl < Ce? |
n

Using Proposition 2.5 we get that for A € A(w)

1= [ 5000 an. +/S W gl )
gM

Given g € SBV?(w;R?) with Vg an L* piecewise constant function we fix G = Vg and construct

an admissible sequence for | fgg ) as follows

gn = g + €px3b.

Using the sequence above we get

/ £5790 (V) + / BT (], vg)dH! < 6 / (Vg.5)] + / Wy ([g), vy)dH,
A SyNA A s

sNA

and the by taking the Radon-Nikodym derivative with respect to the Lebesgue measure it follows that
157" (Vg) < 8/(Vg,b)|

for a.e. x € w.
Now we construct a sequence in order to get an estimate for h((;vg Y| Pix win R? and v, € St, and

let 7 € R be such that )

(s va) = ——e=V1 (s Ve, 7)
VIval® + 7

o ifva(za —x0) + €3 >0
P = 0 if vg.(Ta — x0) + €nx3T <0

Consider the sequence

and let
gn ‘=9 — hy, + Pn + €nx3b,

where h,, is a piecewise constant function such that h, — g in L', and [|Dh,|[(2) — ||Dg||(£2) (see
Lemma 2.1). We then have that

L_1> o if v (Tq — 30) > 0,
In 0 if vg.(xo —x0) <O.
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Note that Vg, = Vg and év3gn =b. Thus

15064 = [ #70d | BT (1, v) !

N{va.(xa—z0)=0}
< 5/ [(Vg,0)] + Wi (1, Vo, T) LY (AN {Va (20 — w0) = 0}) + C||Dygl|(A).
A

If we choose A = Q) (wo;s) and let s — 0 we get

Vg,b -
WY (1, v0) < W1 (1, va).-

Using the bounds above we get the estimates

157(0.4) <5 [ ((o0)lde+ [ Tllghy) ar’

Sg
and letting 6 — 0 we have that

f(9.Vg.b) < /S T ([g], v) dH". (3.25)

Next we extend the upper bound above to a general g € SBV?(w;R3). Let h,, be a L> piecewise
constant function such that h, — Vg in L' (see Lemma 2.1), H,, € SBVa(w;R?) such that VH, =
h,—Vgand [, Sn |[Hp]|dH! — 0 (see Theorem 2.2) and H,, a sequence of piecewise constant functions

such that H,, — H,, — 0 and |DH,|(w) — |DH,|(w) — 0. Using the sequence
gn =9+ Hp — ﬁnu

the bounds of ¥y and the lower semicontinuity of I; we get (3.25). Note that the estimate (3.25) is
independent of b, so by using again the lower-semicontinuity of I; if follows that holds for general b.
Using now Theorem 2.9 it follows that
T 1 chg c
Il(guGub) S WI(G_VQ) d(E—f— Fl([g]uyq)dH + Wl _d|ch| d|D g|
w S, w

g9

Finally we derive the upper bound for I. By a straightforward application of Theorem 2.4 we
obtain that I3 is independent of the sequence {¢,} and has an integral representation of the form (see
section 2.3 where we have used similar arguments for I;)

R dD¢h
Iy(h; A) = / Wo(h, Vh) dx +/ Uo([h], v(h)) dH? +/ W5 (h, ———=)d| D°h|.
A ANS(h) A d|Deh|
We next prove that
Wo(a, Fy) < Wi(a, Fy), Ya € R3*3, VF, € R3*3%2, (3.26)
and that
To(\, va) < Ua(\, ), VA € R*? vy, € ST (3.27)

In order to prove (3.26) consider

hn =a+ Fa(xa - .’IIQ) + EnFana
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where F3 € R3 is such that

W(a, Fy) = W(a, Fy, F3).

Notice that, by (H;) the infimum in the definition fo W is attained. Since
Ll
hn —h=a+ Fy(za — x0),

by the definition of I, we have that

Iy(a+ Fo(zq — 20); Q(0,6)) < lim i%f W(a+ Fo(xq — o) + €nF3x3, Fo| F3) da
€En—> Q(w(hé)

< / W(a, Fy, F3) dx + C/ Fo(xo — x0) dx,
Q(z0,9) Q(z0,9)

where we used (Hz) in the last inequality. Dividing both terms in the previous inequality by §%V and
letting 6 — 0", we end up with (3.26).

We proceed similarly to prove (3.27). Define h,, (see figure 1 below) by:
A if vy (Ta — o) + en(T3 —i€n)p >0, T3 € [i€n, (1 + 1)€,] (ieven)
hn =< A if v (2o —x0) —€n(z3 — (1 + 1)en)pt > 0, x3 € [i€y,, (I + 1)en] (10dd)
0 otherwise,

where 7 € N.

Figure 1:

1 LS) .3
Clearly hy, LR ® )ui‘;)”a (x) given by

A if vy (0 — x0) > 0,
Uy (2) =

0 if vy (xq —x0) <O0.
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and ||y — ud* || L1(Q(xo:6)r?) < C€2. Thus hy, is admissible for I and we have that

IQ(U

3@ Q) < lmint [ W(hy0) do
Q(x0,0)

n—oo

+%\I!2()\, Voo WL ({Ve - (T — 20) = 0N (Q(20,6)})

+%\I!2()\, Vo, =)L ({Ve - (2o — 20) = 0N (Q(0,0)})

— lim inf/ W (s 0) dit + Ua (A, vrs f) L2 ({1 - (20 — 0) = 001 (Q(0,0)})
Q(x0,0)

n—oo

where we used (Hg) in the last equality. Here p € R is such that Wa(\, v) i= ————=Ws(\, Ve, ).

VIvel?+u?

The existence of such p results from the coercivity condition (Hs). Dividing both terms by §V~!
letting § — 0 (and for zo a point in Sy) we get (3.27). The upper bound results now of relaxing
from SBV to BV, together with an application of Theorem 4.2.2 in [5].
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