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Instituto Superior Técnico
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Av. Rovisco Pais, 1

1049-001 Lisboa, Portugal

e-mail: pmsantos@math.ist.utl.pt

Abstract

Structured deformations provide a model to non-classical deformations of continua suitable

for the description of deformations of materials whose kinematics requires analysis at both the

macroscopic and microscopic levels. In this work we apply dimension reduction techniques in order

to derive models for thin structures in the framework of structured deformations of continua.

1 Introduction

Structured deformations were first introduced by Del Piero and Owen [15] and later generalized by
Owen and Paroni [19]. The model introduced in [15] (first order structured deformations) provides
a class of deformations which is appropriate to describe complicated processes of fracture at the
macroscopic level and also permits to identify processes of microfracture that describe a continuum
with structure. Choksi and Fonseca [8] extended the notion of first order structured deformation to the
setting of special functions of bounded variation. Precisely, the authors defined a first order structured
deformation as a pair (g,G) where the macroscopic deformation g is an element of SBV (Ω;Rd) ( the
space of special functions of bounded variation, cf. section 2) and G is an integrable tensor field in Ω,
and have proved that given such a pair there exist deformations un in SBV (Ω;Rd) such that

un
L1

−→ g and ∇un
M(Ω)
⇀ G.

Then the energy of (g,G) was defined as

I(g,G) := inf
{un}⊂SBV (Ω;Rd)

{

lim inf
n→∞

E(un), un
L1

−→ g, ∇un
M(Ω)
⇀ G

}

,
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where

E(u) =

∫

Ω

W (∇u) dx+

∫

S(u)

ψ([u], ν(u)) dHN−1

for any u ∈ SBV (Ω;Rd), and an integral representation of I(g,G) was derived. Note that the energy of
(g,G) corresponds to the most economical way to build up deformations using SBV - approximations.

In this work we consider a model for first order structured deformations departing from a different
initial energy E which includes second order derivatives (see (1.1) below; see Carriero Leaci and
Tomarelli [9] and [10] for other second order variational problems). Our goal is to derive a model for
thin structures through dimensional reduction techniques. The need for second derivatives relies on
the fact that, in order to avoid the formation of holes in the target lower dimensional domain, all the
jumps in the approximating sequences must be properly aligned (see Remark 1.3 below).

Precisely, we consider the energy of three dimensional structures with vanishing thickness ǫ > 0 as
follows

Eǫ(v) :=

∫

Ωǫ

W (∇v,∇2v)dy +

∫

Sv

Ψ1([v], ν(v))dH2 +

∫

S∇v

Ψ2([∇v], ν(∇v))dH2 (1.1)

for v ∈ SBV 2(Ωǫ;R
3), where Ωǫ = w × (0, ǫ) and ω ⊂ R

2 is an open bounded set. We assume the
following hypothesis in the energy densities

(H1) : there exists C > 0 such that

1

C
|B| − C ≤W (A,B) ≤ C

(

1 + |B|
)

for all A ∈ R
3×3 and B ∈ R

3×3×3;

(H2) : there exists C > 0 such that

|W (A1, B1)−W (A2, B2)| ≤ C
(

|A1 − A2|+ |B1 −B2|
)

for all Ai ∈ R
3×3 and Bi ∈ R

3×3×3, i = 1, 2;

(H3) : there exists 0 < α < 1 and L > 0 such that

∣

∣

∣
W∞(A,B) − W (A, tB)

t

∣

∣

∣
≤ C

tα

for all t > L, A ∈ R
3×3, B ∈ R

3×3×3 B with |B| = 1, whereW∞ denotes, as usual, the recession
function of W in the variable B, i.e.,

W∞(A,B) = lim sup
t→+∞

W (A, tB)

t
;

(H4) : there exist c1 > 0, C1 > 0 such that

c1|λ| ≤ Ψ1(λ, ν) ≤ C1|λ|,

for all λ ∈ R
3 and ν ∈ S2;

(H5): there exist c2 > 0, C2 > 0 such that

c2|Λ| ≤ Ψ2(Λ, ν) ≤ C2|Λ|,

for all Λ ∈ R
3×3 and ν ∈ S2;
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(H6): (homogeneity of degree one)

Ψ1(tλ, ν) = tΨ1(λ, ν), Ψ2(tΛ, ν) = tΨ2(Λ, ν)

for all ν ∈ S2, λ ∈ R
3, Λ ∈ R

3×3 and t > 0;

(H7): (sub-additivity)

Ψ1(λ1 + λ2, ν) ≤ Ψ1(λ1, ν) + Ψ1(λ2, ν),

Ψ2(Λ1 + Λ2, ν) ≤ Ψ2(Λ1, ν) + Ψ2(Λ2, ν)

for all ν ∈ S2, λi ∈ R
3, Λi ∈ R

3×3, i = 1, 2;

(H8):

Ψ2(Λ, να, ν3) = Ψ2(Λ, να,−ν3),

for all ν ∈ S2 (written as ν = (να, ν3)), Λ ∈ R
3×3.

Remark 1.1 The hypotheses (H1) − (H7) were considered in the relaxation result [7] which is used
in order to derive the lower bound inequality in this work. They generalize to this setting the ones
considered by Choksi and Fonseca in [8]. Hypothesis (H8) is only used in order to derive the upper
bound inequality and is a property of invariance under the particular reflection associated with the plane
in the reference configuration occupied by the two-dimensional ”reduced” continuum. Most lattices and
submacroscopic geometries indeed have such a plane of symmetry.

As usual in dimensional reduction problems we change variables in order to have a fixed domain.
Precisely, let y = (yα, y3) ∈ Ωǫ and define x = (xα, x3) ∈ Ω := ω×(0, 1) through xα = yα and x3 = y3

ǫ
.

Then

u(xα, x3) := v(xα, ǫx3)

is clearly a function in SBV 2(Ω;R3) and the integral in (1.1) becomes

Eǫ(u) = ǫ

[
∫

Ω

W (∇αu,
1

ǫ
∇3u,∇2

α,βu,
1

ǫ
∇2

α3u,
1

ǫ
∇2

3βu,
1

ǫ2
∇2

33u) dx

+

∫

Su

Ψ1([u], να(u),
1

ǫ
ν3(u)) dH2

+

∫

S∇u

Ψ2([∇αu],
1

ǫ
[∇3u], να(∇u),

1

ǫ
ν3(∇u)) dH2

]

where α, β ∈ {1, 2}.
We introduce now the ǫ-scaled 3D energies Jǫ := Eǫ

ǫ
and our aim is to derive the asymptotic

behaviour as ǫ → 0+ in the sense of Γ-convergence (see [12], [13], [3] and [14]). More precisely we
consider

I(g, b,G) := inf
un∈SBV 2(Ω;R3)

{

lim inf
ǫn→0

Jǫn(un), un
L1

−→ g,
1

ǫn
∇3un

L1

−→ b, ∇αun
L1

−→G

}

,
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where (g,G) ∈ BV 2(ω;R3) ×BV (ω;R3×2) and b ∈ BV (w;R3). The remark 1.3 gives the motivation
for the definition of I, in particular the convergence and the appearance of fields independent of the
transversal variable x3 in the limit space.

The main result of this paper is the following representation result for I (see section 2.1 for
notation).

Theorem 1.2 The functional I does not depend on the sequence {ǫn} and admits an integral repre-
sentation of the form

I = I1 + I2

where

I1(g,G)=

∫

w

W1(G−∇g) dxα +

∫

Sg

Γ1([g], ν(g)) dH1 +

∫

ω

W1

(

− dDcg

d|Dcg|

)

d|Dcg|,

and

I2(b,G) =

∫

ω

W2(b,G,∇b,∇G) dx+

∫

ω∩S((b,G))

Γ2((b,G)
+, (b,G)−, ν((b,G))) dH1

+

∫

ω

W∞
2

(

b,G,
dDc(b,G)

d|Dc(b,G)|

)

d|Dc(b,G)|.

The energy densities of I1 are obtained as follows

W1(A) = inf
u∈SBV (Q′;R3)

{
∫

Su∩Q′

Ψ1([u], ν(u)) dH1, u|∂Q = 0,∇u = A a.e. in Q′

}

,

Γ1(λ, ν) = inf
u∈SBV (Q′

ν ;R
3)

{

∫

Q′
ν∩Su

Ψ1([u], ν(u)) dH1, u|∂Q′
ν
= τ(λ,ν),∇u = 0

}

,

with

τ(λ,ν)(xα) :=







λ if xα.ν > 0

0 if xα.ν < 0

and

Ψ1(λ, να) := inf

{

1
√

|να|2 + t2
Ψ1(λ, να, t) : t ∈ R

}

.

The energy densities for I2 are as follows

W2(A,Bα) := inf

{
∫

Q
′

W (A,∇u) dy +
∫

Q
′∩Su

Ψ2([u], ν(u)) dH1 :

u ∈ SBV (Q
′

;R3), u|∂Q′ = Bαy
}

,

Γ2(λ, θ, ν) := inf

{

∫

Q
′

ν

W
∞
(u,∇u) dy +

∫

Q
′

ν∩S(u)

Ψ2([u], ν(u))dH1 :

u ∈ SBV (Q
′

ν ;R
3), u|∂Q′

ν
= uλ,θ,ν

}

,
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where

uλ,θ,ν(y) :=







λ if y · ν > 0,

θ otherwise

and with W and Ψ2 as follows: decomposing the pair (A,B) ∈ R
3×3 × R

3×3×3 into (A,Bα, B3) ∈
R

3×3 × R
3×3×2 × R

3×3×1 define

W (A,Bα) := inf
B3∈R3×3×1

W (A,Bα, B3),

and for λ ∈ R
3×3, να ∈ S1, let

Ψ2(λ, να) := inf

{

1
√

|να|2 + t2
Ψ2(λ, να, t) : t ∈ R

}

.

Remark 1.3 Suppose we have a sequence of deformations clamped in the boundary and with finite
total energy. Thus, for a given sequence {ǫn}, we have a sequence {vn} ⊂ SBV 2(Ωǫn ;R

3) such
that vn = x in a neighborhood of ∂ω × (0, ǫn). After rescaling we obtain a new sequence {un} ⊂
SBV 2(Ω;R3) such that un = (xα, ǫnx3) and

sup
n
Jǫn(un) <∞.

From the growth conditions (H1), (H4) and (H5), we obtain

sup
n

(

|D(∇un)|(Ω) +
∫

Sun

|[un]|
)

<∞,

which, together with the boundary condition, implies the boundedness of un and ∇un in the BV-norm.

Thus, up to a subsequence, we have un
L1

−→ g and ∇un L1

−→G. Now, defining bn := ∇3un

ǫn
, and using

(H1) and (H5) we get that
sup
n

|D(bn)|(Ω) <∞,

which, together with the boundary condition bn = (0, 0, 1) implies the boundedness of bn in BV-norm
and consequently the existence of a subsequence such that bn → b in L1. The field g represents the
deformation of the mid-surface and the field b represents the rotation and compression of the normal
sections. On the other hand, using the same growth conditions, we have

sup
n

(

|D3(∇un)|(Ω) +
∫

Sun

|[un]ν3|+ |D3(bn)|(Ω)
)

< Cǫn,

which, together with boundary conditions, implies that the limit fields g, G and b do not depend on x3.

The overall plan of this work in the ensuing sections will be as follows. In section 2 we collect the
main notations and results used troughout. In section 3 we prove theorem 1.2.

2 Preliminaries

The purpose of this section is to give a brief overview of the concepts and results that are used in
the sequel. Almost all these results are stated without proofs as they can be readily found in the
references given below.
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2.1 Notation

Throughout the text w ⊂ R
2 will denote an open bonded set and for ǫ > 0, Ωǫ = w × (0, ǫ). We

denote simply by Ω the subset of R3 corresponding to Ω1 = w × (0, 1) = w × I. If x ∈ R
3 then

xα := (x1, x2) ∈ R
2 is the vector of the first two components of x.

We wil use the following notations:

- A(Ω) (resp. A(w) ) is the family of all open subsets of Ω (resp. w),

- M(Ω) (resp. M(w) ) is the set of finite Radon measures on Ω (resp. w),

- LN and HN−1 stand, respectively, for the N -dimensional Lebesgue measure and the (N − 1)-
dimensional Hausdorff measure in R

N .

- ||µ|| stands for the total variation of a measure µ ∈ M(Ω) (resp. M(w) ),

- SN−1 stands for the unit sphere in R
N ,

- Q denotes the unit cube of R3 centered at the origin with one side orthogonal to e3,

- Q(x, δ) denotes a cube in R
3 centered at x ∈ Ω with side length δ and with one side orthogonal

to e3,

- Qν(x, δ) is the cube centered at x ∈ Ω with side length δ and with one side orthogonal to ν ∈ S2,

- when related to R
2 and w we use the previous notations with the obvious adaptations with Q′

in place of Q,

- C represents a generic constant,

- lim
n,m→∞

:= lim
n→∞

lim
m→∞

while lim
m,n→∞

:= lim
m→∞

lim
n→∞

.

2.2 BV-functions

We start by recalling some facts on functions of bounded variation which will be used afterwards. We
refer to Ambrosio, Fusco and Pallara [1], Evans and Gariepy [16], Federer [17], Giusti [18] and Ziemer
[20] for a detailed theory on this subject.

A function u ∈ L1(Ω;Rd) is said to be of bounded variation, and we write u ∈ BV (Ω;Rd), if all
its first distributional derivatives Djui ∈ M(Ω) for i = 1, ..., d and j = 1, ..., N. The matrix-valued
measure whose entries are Djui is denoted by Du. The space BV (Ω;Rd) is a Banach space when
endowed with the norm

‖u‖BV = ‖u‖L1 + ||Du||(Ω).
By the Lebesgue Decomposition theorem Du can be split into the sum of two mutually singular
measures Dau and Dsu (the absolutely continous part and singular part, respectively, of Du with
respect to the Lebesgue measure LN ). By ∇u we denote the Radon-Nikodým derivative of Dau with
respect to LN , so that we can write

Du = ∇uLN⌊Ω +Dsu.

Let Ωu be the set of points where the approximate limits of u exists and Su the jump set of this
function, i.e., the set of points x ∈ Ω\Ωu for which there exists a, b ∈ R

N and a unit vector ν ∈ SN−1,
normal to Su at x, such that a 6= b and

lim
ε→0+

1

εN

∫

{y∈Qν(x,ε):(y−x)·ν>0}

|u(y)− a| dy = 0 (2.2)
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and

lim
ε→0+

1

εN

∫

{y∈Qν(x,ε):(y−x)·ν<0}

|u(y)− b| dy = 0. (2.3)

The triple (a, b, ν) uniquely determined by (2.2) and (2.3) up to permutation of (a, b), and a change
of sign of ν and is denoted by (u+(x), u−(x), νu(x)).

If u ∈ BV (Ω) it is well known that Su is countably N − 1 rectifiable, i.e.

Su =

∞
⋃

n=1

Kn ∪ E,

where HN−1(E) = 0 and Kn are compact subsets of C1 hypersurfaces. Furthermore, HN−1((Ω\Ωu)\
Su) = 0 and the following decomposition holds

Du = ∇uLN⌊Ω + [u]⊗ νuHN−1⌊Su +Dcu,

where [u] := u+ − u− and Dcu is the Cantor part of the measure Du, i.e., Dcu = Dsu⌊(Ωu).
We next recall some properties of BV functions used in the sequel. We start with the following

Lemma whose proof can be found in [8]:

Lemma 2.1 Let u ∈ BV (Ω;Rd). Then there exist piecewise constant functions un such that un → u

in L1(Ω;Rd) and

||Du||(Ω) = lim
n→∞

||Dun||(Ω) = lim
n→∞

∫

Sun

|[un](x)| dHN−1.

The space of special functions of bounded variation, SBV (Ω;Rd), introduced by De Giorgi and
Ambrosio in [11] to study free discontinuity problems, is the space of functions u ∈ BV (Ω;Rd) such
that Cu = 0, i.e. for which

Du = ∇uLN + [u]⊗ νuHN−1⌊Su.

The next result is a Lusin type theorem for gradients due to Alberti [2] and is essential to our
arguments.

Theorem 2.2 Let f ∈ L1(Ω;Rd×N). There exists u ∈ SBV (Ω;Rd) and a Borel function g : Ω →
R

d×N such that
Du = fLN + gHN−1⌊Su,

∫

Su

|g| dHN−1 ≤ C||f ||L1(Ω;Rd×N ).

Remark 2.3 From the proof of Theorem 2.2 it also follows that

||u||L1(Ω) ≤ 2C||f ||L1(Ω;Rd×N ).

Following Carriero, Leaci and Tomarelli (see [9] and [10]) we define

SBV 2(Ω;Rd) = {v ∈ SBV (Ω;Rd), ∇v ∈ SBV (Ω;Rd×N )}.
If u ∈ SBV 2(Ω;Rd) we use the notation ∇2u = ∇(∇u), that is, ∇2u is the absolutely continuous part
of D(∇u) with respect to Lebesgue measure.

We will also denote by

BV 2(Ω;Rd) = {v ∈ BV (Ω;Rd), ∇v ∈ BV (Ω;Rd×N)}.
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2.3 Integral representation results

In this section we recall Theorem 3.12 in [5] and apply it to an auxiliary functional which will be used
in order to derive the upper bound inequality. Let:

F : BV (Ω;Rd)×A(Ω) → [0,+∞)

satisfying:

i) F(u; .) is the restriction to A(Ω) of a Radon measure,

ii) F(.;A) is L1(A;Rd)- lower semicontinuous,

iii) 1
C
|Du|(A) ≤ F(u,A) ≤ C

(

LN (A) + |Du|(A)
)

for some C > 0,

iv) There exists a modulus of continuity φ(t) satisfying

|F(u(.− z) + b; z +A)−F(u,A)| ≤ φ(|b|+ |z|)
(

LN (A) + |Du|(A)
)

.

Define the set function:

m(u;A) := inf
{

F(v;A), v|∂A = u|∂A, v ∈ BV (Ω;Rd)
}

,

and let

f(x0, a, ζ) := lim sup
ǫ→0+

m(a+ ζ(. − x0);Q(x0, ǫ))

ǫN
, (2.4)

g(x0, λ, θ, ν) := lim sup
ǫ→0+

m(uλ,θ,ν(.− x0);Qν(x0, ǫ))

ǫN−1
(2.5)

for all x0 ∈ Ω, a, θ, λ ∈ R
d, ζ ∈ R

d×N , where

uλ,θ,ν(y) :=







λ if y · ν > 0,

θ otherwise.

Then the following full representation result of F on BV (Ω;Rd) holds:

Theorem 2.4 Under hypotheses i), ii), iii) and iv),

F(u;A) =

∫

Ω

f(x, u,∇u) dx+

∫

Su∩A

g(x, u+, u−, νu) dHN−1

+

∫

A

f∞

(

x, u,
dDcu

d|Dcu|

)

d|Dcu|,

where f and g are defined by (2.4) and (2.5) respectively and f∞ denotes the recession function of f
in the last variable, defined by

f∞(x0, u0, ξ) := lim sup
t→∞

f(x0, u0, tξ)

t
.
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Next we apply the Theorem above to the functional

Î
(G,b)
1,δ (g,A) = inf

{gn}

{

lim inf
ǫn→0

δ

∫

A×I

∣

∣

∣

∣

(

∇αgn|
∇3gn

ǫn

)∣

∣

∣

∣

dx (2.6)

+

∫

Sgn∩(A×I)

Ψ1

(

[gn], να(gn),
1

ǫn
ν3(gn)

)

dH2

gn
L1

−→ g,
1

ǫn
∇3gn

L1

−→ b, ||∇αgn −G||L1 ≤ Cǫn
2

}

,

defined in A(ω) where G, b are fixed piecewise constant L∞ functions. We prove that

Proposition 2.5 The functional Î
(G,b)
1,δ (g,A) admits an integral representation of the form:

Î
(G,b)
1,δ (g,A) =

∫

A

f
(G,b)
δ (∇g) dx+

∫

Sg∩A

h
(G,b)
δ ([g], νg) dH2,

where A ∈ A(ω).

Proof. In order to comply with the conditions in Theorem 2.4 we first prove that Î
(G,b)
1,δ (g, .) is the

restriction of a Radon measure in M(R2) to A(ω). For each point a ∈ ω with rational coordinates
consider balls B(a, ri) with radius ri (defined for i ∈ N large enough, depending on a) such that

|ri −
1

i
| ≤ 1

i2
, B(a, ri) ⊂ ω and ||Dsg||(∂B(a, ri)) = 0.

We denote by B(ω) the set of all such balls and their finite unions (it consists of a numerable number of
sets). The set of all closed balls B(a, ri) is a fine cover to ω. We can take an appropriate subsequence
of {ǫn}, which we denote by ǫnk

, such that for each element in B (which we denote by B) there exists

a sequence g
{B}
k ⊂ SBV2(Ω;R

d) (which we denote by gk for simplicity) such that

gk
L1

−→ g,
1

ǫnk

∇3gk
L1

−→ b, ||∇αgk −G||L1 ≤ Cǫnk

2,

and

Î
(G,b)
1,δ (g;B) = lim

k→∞
δ

∫

B×I

∣

∣

∣

∣

(

∇αgk,
∇3gk

ǫnk

)∣

∣

∣

∣

dx+

∫

Sgk
∩(B×I)

Ψ1

(

[gk], να(gk),
1

ǫnk

ν3(gk)

)

dH2.

(2.7)

In order to prove that Î
(G,b)
1,δ (g, .) is a Radon measure we need first the following subadditivity Lemma:

Lemma 2.6 Let A,B,C be open sets in A(ω) such that A ⊂⊂ B ⊂ C. Then we have that

Î
(G,b)
1,δ (g, C) ≤ Î

(G,b)
1,δ (g,B) + Î

(G,b)
1,δ (g, C \A).

Proof. We first derive an upper bound for Î
(G,b)
1,δ . Let

gk := g + h− hk + ǫnk
x3b, (2.8)

where h ∈ SBV2(ω;R
3) is such that ∇h = G − ∇g (see Theorem 2.2) and hk is piecewise constant

function such that hk → h in L1 (see Lemma 2.1). Using the sequence above we get the upper bound
as follows

Î
(G,b)
1,δ (g,A) ≤ δ

∫

A

|(G, b)| dx + C

∫

A

|G−∇g| dx+ ||Dsg||(A), (2.9)
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for every open set A ∈ A(ω).

For each Borel set B define the bounded Radon measure

∆(B) := δ

∫

B

|(G, b)| dx+ C

∫

B

|G−∇g| dx+ ||Dsg||(B).

For each ρ > 0 consider an open set Bρ in B(ω) such that Bρ ⊂ B. Using Besicovitch’s Covering
Theorem we can find a set Aρ ∈ B such that Aρ ⊂ C \A and

∆((C \A) \Aρ) < ρ.

Note that we can choose the sets above in such a way that there exist an open set with Lipschitz
boundary Â, with A ⊂⊂ Â ⊂⊂ Bρ, with ∂Â ⊂ Aρ.

Now we can find sequences g1k ⊂ SBV2(Aρ;R
3) and g2k ⊂ SBV2(Bρ;R

3) verifying (2.7). We can
define a new sequence

ĝk :=











g1k in Aρ \ Â,
g2k in Â,

gk otherwise inC

(2.10)

where gk is defined in (2.8). We then have that

Î
(G,b)
1,δ (g, C) ≤ lim

k→∞
δ

∫

C×I

∣

∣

∣

∣

(

∇αĝk,
∇3ĝk

ǫnk

)
∣

∣

∣

∣

dx (2.11)

+

∫

Sĝk
∩(C×I)

Ψ1

(

[ĝk], να(ĝk),
1

ǫnk

ν3(ĝk)

)

dH2 (2.12)

≤ Î
(G,b)
1,δ (g,Bρ) + Î

(G,b)
1,δ (g,Aρ) + ∆((C \A) \Aρ) (2.13)

≤ Î
(G,b)
1,δ (g,Bρ) + Î

(G,b)
1,δ (g,Aρ) + ρ, (2.14)

and the result follows from letting ρ→ 0.

We may suppose, without loss of generality, that the equality (2.7) also holds for the set ω, with
an appropriate sequence gωk (which we again denote by gk). Define the sequence of bounded Radon
measures as follows

Λk(B) := δ

∫

B×I

∣

∣

∣

∣

(

∇αgk,
∇3gk

ǫnk

)∣

∣

∣

∣

dx+

∫

Sgk
∩(B×I)

Ψ1

(

[gk], να(gk),
1

ǫnk

ν3(gk)

)

dH2

where B ⊂ R
2 is an arbitrary Borel set. We may extract a subsequence such that Λk

∗
⇀ Λ. Then the

following holds

Lemma 2.7 For every open set A ∈ A(ω) we have that

Î
(G,b)
1,δ (g;A) = Λ(A).

Proof. First note that for any open set A ∈ A(ω) we have that

Î
(G,b)
1,δ (g;A) ≤ Λ(A). (2.15)
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Given V ∈ A(ω), let ρ > 0 and take W ⊂⊂ V such that Λ(V \W ) < ρ. It follows that

Λ(V ) ≤ Λ(W ) + ρ

= Λ(ω)− Λ(ω\W ) + ρ

≤ Î
(G,b)
1,δ (g;ω)− Î

(G,b)
1,δ (g;ω\W̄ ) + ρ

≤ Î
(G,b)
1,δ (g;V ) + ρ

where we have used the equality Λ(ω) = Λ(ω), (2.15) and Lemma 2.6. Thus, letting ρ→ 0, we get

Λ(V ) ≤ Î
(G,b)
1,δ (g;V ). (2.16)

Let us see now the reverse inequality. Let K ⊂⊂ V be a compact set such that ∆(V \K) < ρ (see
2.9), and choose an open set W such that K ⊂⊂W ⊂⊂ V. Using again Lemma 2.6 we have

Î
(G,b)
1,δ (g;V ) ≤ Î

(G,b)
1.δ (g;W ) + Î

(G,b)
1,δ (g;V \K)

≤ Λ(W̄ ) + ∆(V \K)

≤ Λ(V ) + Cρ,

which, together with (2.16), yields the statement after letting ρ→ 0.

From Lemma 2.7 we have that Î
(G,b)
1,δ (g,A) satisfies the point i) of Theorem 2.4. The points ii) and

iv) are easy to verify. The bounds in point iii) follow from the upper bound given by ∆ in (2.9) (note
that we are assuming G to be a fixed L∞ function) and the lower semicontinuity of the total variation
with respect to weak* convergence (for the lower bound). Thus, applying Theorem 2.4, we get the

existence of Borel functions f
(G,b)
δ (only dependent of ∇u in this case) and h

(G,b)
δ (only dependent on

([u], νu)) such that

Î
(G,b)
1,δ (g;A) =

∫

A

f
(G,b)
δ (∇g) dx+

∫

A∩Sg

h
(G,b)
δ ([g], νg) dH2. (2.17)

2.4 Relaxation results for structured deformations

In [7] we studied the relaxation

I(g,G) = inf
{un∈SBV 2(Ω;Rd)}

{

lim inf
n→∞

E(un): un ∈ SBV 2(Ω;Rd), un
L1

−→ g, ∇un L1

−→G

}

, (2.18)

under hypotheses (H1)− (H7), of the energy

E(u) =

∫

Ω

W (∇u,∇2u) dx+

∫

Su

Ψ1([u], ν(u))dHN−1 +

∫

S(∇u)

Ψ2([∇u], ν(∇u))dHN−1,

where Ω ⊂ R
N , u ∈ SBV 2(Ω;Rd).

Remark 2.8 We extend Ψi, i = 1, 2 as homogeneous functions of degree one in the second variable
to all of RN (respectively R

d×N).
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Under the hypotheses (H1)− (H7), an integral representation of the energy I(g,G) was derived for
g ∈ BV 2(Ω;Rd) and G ∈ BV (Ω;Rd×N ). Namely, given A,B ∈ R

d×N and C ∈ R
d×N×N and defining

W1(A)= inf
u∈SBV (Q;Rd)

{
∫

Su∩Q

Ψ1([u], ν(u)) dHN−1, u|∂Q = 0,∇u = A a.e. in Q

}

,

W2(B,C) = inf
v∈SBV (Q;Rd×N )

{
∫

Q

W (B,∇v(x)) dx

+

∫

Q∩Sv

Ψ2([v], ν(v)) dHN−1, v|∂Q = C x

}

,

γ1(λ, ν) = inf
u∈SBV (Qν ;Rd)

{
∫

Qν∩Su

Ψ1([u], ν(u)) dHN−1, u|∂Qν
= γ(λ,ν),∇u = 0

}

,

where

γ(λ,ν)(x) :=







λ if x.ν > 0

0 if x.ν < 0,

γ2(Λ,Γ, ν)= inf
v∈SBV (Qν ;Rd×N )

{
∫

Qν

W∞(v,∇v) dx+

∫

Qν∩Sv

Ψ2([v], ν(v)) dHN−1,

v|∂Qν
= γ(Λ,Γ,ν)

}

where

γ(Λ,Γ,ν)(x) :=







Λ if x.ν > 0

Γ if x.ν < 0,

and

W∞
2 (A,B) = inf

v∈SBV (Q;Rd×N )

{
∫

Q

W∞(A,∇v(x)) dx

+

∫

Q∩Sv

Ψ2([v], ν(v)) dHN−1, v|∂Q = Bx

}

,

the following result was proved:

Theorem 2.9 Under hypotheses (H1)− (H7), for all (g,G) ∈ BV 2(Ω;Rd)×BV (Ω;Rd×N ), we have
that

I(g,G) = I1(g,G) + I2(g,G)

where

I1(g,G) = inf
un∈SBV 2(Ω;R3)

{

lim inf
n→∞

∫

Sun

Ψ1([un], ν(un))dHN−1: un
L1

−→ g, ∇un L1

−→G

}

,

and
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I2(g,G) = inf
un∈SBV 2(Ω;R3)

{

lim inf
n→∞

∫

Ω

W (∇un,∇2un) dx +

∫

S∇un

Ψ2([∇un], ν(∇un))dHN−1: un
L1

−→ g, ∇un L1

−→G

}

,

and the functionals above admit an integral representation as follows

I1(g,G) =

∫

Ω

W1(G−∇g) dx+

∫

Ω

W1

(

− dDcg

d|Dcg|

)

d|Dcg|+
∫

Sg

γ1([g], ν(g))dHN−1,

I2(g,G) =

∫

Ω

W2(G,∇G) +
∫

Ω

W∞
2

(

G,
dDcG

d|DcG|

)

d|DcG|+
∫

SG

γ2(G
+, G−, ν(G)) dHN−1.

3 Proofs

In this section we prove Theorem 1.2.

We start by noting that for any (g, b,G) ∈ BV 2(ω;R3) × BV (ω;R3) × BV (ω;R3×2) and for any

fixed sequence ǫn → 0 there exists un ∈ SBV 2(Ω;R3) such that un
L1

−→ g, 1
ǫn
∇3un

L1

−→ b, and

∇un L1

−→(G, 0). In fact, given (g,G) ∈ BV (ω;R3) × BV (ω;R3×2) and b ∈ BV (ω;R3), by Theorem

2.2 there exists h ∈ SBV (ω;R3) such that ∇h(xα) = G(xα) a.e. xα ∈ w and

||Dsh||(ω) ≤ C1||G||L1(ω;R3) (3.19)

for some C1 ≡ C1(N) > 0. By Lemma 2.1, there exist {vn} piecewise constant such that

vn
L1(ω;R3)−→ g − h and ||Dvn||(ω) = ||Dsvn||(ω) → ||Dg −Dh||(ω).

Define now un ∈ SBV (Ω;R3) by un(xα, x3) := vn(xα) + h(xα) + ǫnb(xα)x3. Clearly we have that

∇αun(x)
L1(Ω;R3×3)−→ G(xα), un

L1(Ω;R3)−→ g,
∇3un

ǫn

L1(Ω;R3)−→ b.

3.1 Decomposition

In order to get an integral representation for I(g, b,G) we bound it by two first order functionals and
then use integral representation results from Bouchitté, Fonseca and Mascarenhas (see Theorem 2.4).
In this section we derive appropriate first order lower (see 3.20) and upper bounds (see 3.21).

For (g, b,G) ∈ BV 2(ω;R3)×BV (ω;R3)×BV (ω;R3×2) write

I(g, b,G) = inf
un∈SBV 2(Ω;R3)

{

lim inf
ǫn→0

[
∫

Ω

W (∇αun, bn,∇2
α,βun,∇αbn,

1

ǫn
∇2

3βun,
1

ǫn
∇3bn)dx

+

∫

Sun

Ψ1([un], να(un),
1

ǫn
ν3(un)) dH2

+

∫

S∇un

Ψ2([∇αun], [bn], να(∇un),
1

ǫn
ν3(∇un)) dH2

]

un
L1

−→ g, bn
L1

−→ b, ∇αun
L1

−→G

}

,
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where

bn :=
∇3un

ǫn
.

Then the functional I(g, b,G) has the lower bound

I(g, b,G) ≥ I1(g, b,G) + I2(b,G) (3.20)

with

I1(g, b,G) = inf
un∈SBV 2(Ω;R3)

{

lim inf
ǫn→0

∫

Sun

Ψ1([un], να(un),
1

ǫn
ν3(un)) dH2

un
L1

−→ g,
1

ǫn
∇3un

L1

−→ b, ∇αun
L1

−→
n→∞

G

}

,

and

I2(b,G) = inf
hn∈SBV (Ω;R3×3)

{

lim inf
ǫn→0

[
∫

Ω

W (hn,∇αhn,
1

ǫn
∇3hn) dx

+

∫

Shn

Ψ2([hn], να(hn),
1

ǫn
ν3(hn)) dH2

]

hn
L1

−→
n→∞

(G, b)

}

.

Indeed if we put vn = ∇αun and hn = (vn, bn) it is immediate to see that

I(g, b,G) ≥ I1(g, b,G) + I2(b,G).

Next we prove and upper bound for I

I(g,G, b) ≤ Î1(g,G, b) + Î2(b,G) (3.21)

where

Î1(g, b,G) = inf
un∈SBV 2(Ω;R3)

{

lim inf
ǫn→0

∫

Sun

Ψ1([un], να(un)|
1

ǫn
ν3(un)) dH2

un
L1

−→ g,
1

ǫn
∇3un

L1

−→ b, ||∇αun −G||L1 ≤ Cǫn
2

}

,

and

Î2(b,G) = inf
hn∈SBV (Ω;R3×3)

{

lim inf
ǫn→0

[
∫

Ω

W (hn,∇αhn|
1

ǫn
∇3hn) dx

+

∫

Shn

Ψ2([hn], να(hn)|
1

ǫn
ν3(hn)) dH2

]

hn
L1

−→
n→∞

(G, b), ||vn −G||L1 ≤ Cǫn
2

}

.
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Fix a sequence {ǫn} with ǫn → 0. From the definition of Î1 we can find a sequence un ∈ SBV 2(Ω;Rd)
with

(

un,∇αun,
1

ǫn
∇3un

)

L1

−→(g,G, b)

and

||∇αun −G||L1 ≤ Cǫ2n (3.22)

such that

Î1(g, b,G) = lim
n→∞

∫

Sun

Ψ1([un], να(un)|
1

ǫn
ν3(un)) dH2(x).

Moreover, from the definition of Î2, we can find sequences vn ∈ SBV (Ω;R3×2), bn ∈ SBV (Ω;R3)
with

(vn, bn)
L1

−→(G, b),

and

||vn −G||L1 ≤ Cǫn
2 (3.23)

in such a way that (setting hn = (vn, bn)) the equality bellow holds

Î2(b,G) = lim
n→∞

[
∫

Ω

W (hn,∇αhn|
1

ǫn
∇3hn) dx

+

∫

Shn

Ψ2([hn], να(hn),
1

ǫn
ν3(hn)) dH2

]

.

Remark 3.1 In fact the equalities above for Î1 and Î2 only hold if we pass to a subsequence of {ǫn}
(for which we still use the same notation). In the next sections we will prove that Î1 and Î2 are
independent of the sequence ǫn.

Now we can construct a sequence wn as follows

wn := un + ρn − ρ̂n

where ∇ρn = (vn −∇αun, ǫnbn −∇3un) is obtained from Theorem 2.2 and ρ̂n is a piecewise constant

function such that ρn − ρ̂n
L1

−→ 0 and ||Dρn||(Ω)− ||Dρ̂n||(Ω) → 0 (see Lemma 2.1). Note that

||Dρn||(Ω) ≤ C

∫

Ω

|vn −∇αun| dx+ Cǫn

∫

Ω

∣

∣

∣

∣

bn − ∇3un

ǫn

∣

∣

∣

∣

dx. (3.24)

It is easy to check that wn is an admissible sequence for I. Indeed we have

∇αwn = vn,
1

ǫn
∇3wn = bn

and thus
(

wn,∇αwn,
1
ǫn
∇3wn

)

L1

−→(g,G, b). Then, setting hn = (vn, bn) and using H4, (3.22), (3.23)
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and (3.24), we have that

I(g, b,G) ≤ lim inf

∫

Ω

W

(

hn,∇αhn,
1

ǫn
hn

)

dx+

∫

Shn

Ψ2

(

[hn], να(hn),
1

ǫn
ν3(hn)

)

dH2

+

∫

Swn

Ψ1

(

[wn], να(wn),
1

ǫn
ν3(wn)

)

dH2

≤ Î2(b,G) + Î1(g, b,G) + C

∫

Sρn

|[ρn]|
∣

∣

∣

∣

(

να(ρn),
1

ǫn
ν3(ρn)

)
∣

∣

∣

∣

dH2

+C

∫

Sρ̂n

|[ρ̂n]|
∣

∣

∣

∣

(

να(ρ̂n),
1

ǫn
ν3(ρ̂n)

)
∣

∣

∣

∣

dH2

≤ Î2(b,G) + Î1(g, b,G) +
C

ǫn
||Dρn||(Ω)

≤ Î2(b,G) + Î1(g, b,G) +
C

ǫn

∫

Ω

|vn −∇αun| dx+ C

∫

Ω

∣

∣

∣

∣

bn − ∇3un

ǫn

∣

∣

∣

∣

dx

≤ Î2(b,G) + Î1(g, b,G) + Cǫn + C

∫

Ω

∣

∣

∣

∣

bn − ∇3un

ǫn

∣

∣

∣

∣

dx.

Letting n→ ∞, (3.21) follows.

3.2 Lower bounds

We first derive a lower bound for I1. Fix {ǫn} and denote by

I1
{ǫn}(g, b,G) = inf

un∈SBV 2(Ω;R3)

{

lim inf
ǫn→0

∫

Sun

Ψ1([un], να(un),
1

ǫn
ν3(un)) dH2

un
L1

−→ g,
1

ǫn
∇3un

L1

−→ b, ∇αun
L1

−→G

}

.

Given an arbitrary sequence un
L1

−→ g with ∇αun
L1

−→G and 1
ǫn
∇3un

L1

−→ b, define

L1 := lim inf
n→∞

∫

Sun∩Ω

Ψ1

(

[un], να(un),
1

ǫn
ν3(un)

)

dH2.

Then clearly

L1 ≥ lim inf
n→∞

∫

Sun∩Ω

Ψ1([un], να(un)) dH2.

For x3 fixed set now ux3
n (xα) := un(xα, x3). Then, by Theorem 3.1.1 in [6](Slicing Theorem),

L1 ≥ lim inf
n→∞

∫

Sun∩Ω

Ψ1([un], να(un)) dH2

≥ lim inf
n→∞

∫ 1

0

∫

S
u
x3
n

∩ω

Ψ1([u
x3

n ], να(u
x3

n )) dH1(xα) dx3.
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Note that

ux3

n

L1

−→ g, ∇ux3

n

L1

−→G.

Hence, by Fatou’s Lemma and the integral representation in Theorem 2.9 (see also Remark 3.2 and
3.3 below), and using the arbitrariness of the sequence un we arrive at the inequality below

I1
{ǫn}(g, b,G) ≥

∫

ω

W1(G−∇g) dxα +

∫

Sg

Γ1([g], ν(g)) dH1 +

∫

ω

W1

(

− dDcg

d|Dcg|

)

d|Dcg|

where

W1(A) = inf
u∈SBV (Q′;R3)

{
∫

Su∩Q′

Ψ1([u], ν(u)) dH1, u|∂Q = 0,∇u = A a.e. in Q′

}

,

and

Γ1(λ, ν) = inf
u∈SBV (Q′

ν ;R
3)

{

∫

Q′
ν∩Su

Ψ1([u], ν(u)) dH1, u|∂Q′
ν
= τ(λ,ν),∇u = 0

}

,

with

τ(λ,ν)(xα) :=







λ if xα.ν > 0

0 if xα.ν < 0.

Remark 3.2 We note that Ψ1 is continuous. In fact, if (λn, νn) → (λ, ν) in R
3×S1 and if we assume

that limn→∞ Ψ1(λn, νn) = lim infn→∞ Ψ1(λn, νn) we get that

lim
n→∞

Ψ1(λn, νn) = lim
n→∞

Ψ1(λn, τn) = Ψ1(λ, τ)

where τn = (νn,tn)√
|νn|

2+t2n
is a sequence in S2 which we assume to be convergent to a point τ ∈ S2. On

the other hand if we write τ = limn→∞
(ν,tn)√
|ν|2+t2n

and use the definition of Ψ1 we get that

Ψ1(λ, τ) = lim
n→∞

Ψ1(λ, ν, tn)
√

|ν|2 + t2n

≥ Ψ1(λ, ν),

which together with the previous equality gives the lower semicontinuity of Ψ1. For the upper semi-
continuity of Ψ1 we consider again a sequence (λn, νn) → (λ, ν) in R

3 × S1 and tn such that

Ψ1(λ, ν) = limn→∞
Ψ1(λn,νn,tn)√

|νn|
2+t2n

and thus

lim sup
n→∞

Ψ1(λn, νn) ≤ lim
n→∞

Ψ1(λn, νn, tn)
√

|νn|2 + t2n

= lim
n→∞

Ψ1(λ, ν, tn)
√

|ν|2 + t2n

= Ψ1(λ, ν).

Remark 3.3 We do not know if Ψ1 inherits the subadditivity from Ψ1 but it keeps the Lipschitz
continuity and the growth conditions from Ψ1 which are also sufficient to apply Theorem 2.9.
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Now we derive the lower bound for I2. Again, for a given sequence {ǫn} and (b,G) ∈ BV (w;R3)×
BV (w;R3×2), we define

I2
{ǫn}(b,G) = inf

hn∈SBV (Ω;R3×3)

{

lim inf
ǫn→0

[
∫

Ω

W (hn,∇αhn,
1

ǫn
∇3hn) dx

+

∫

Shn

Ψ2([hn], να(hn),
1

ǫn
ν3(hn)) dH2(x)

]

hn
L1

−→(G, b)

}

.

Let hn
L1

−→(G, b) be an arbitrary sequence and for fixed {ǫn} define

L2 : = lim inf
n→∞

[
∫

Ω

W (hn,∇αhn,
1

ǫn
∇3hn) dx

+

∫

Shn

Ψ2([hn], να(hn),
1

ǫn
ν3(hn)) dH2

]

.

Clearly we have that

L2 ≥ lim inf
n→∞

[
∫

Ω

W (hn,∇αhn) dx

+

∫

Shn

Ψ2([hn], να(hn)) dH2

]

.

Let now x3 be fixed and set hx3
n (xα) = hn(xα, x3). Then, by Theorem 3.1.1 of [6],

L2 ≥ lim inf
n→∞

[
∫

Ω

W (hn,∇αhn) dx

+

∫

Shn

Ψ2([hn], να(hn)) dH2(x)

]

≥ lim inf
n→∞

[
∫ 1

0

∫

w

W (hn,∇αh
x3

n ) dxα dx3

+

∫ 1

0

∫

S
h
x3
n ∩w

Ψ2([h
x3

n ], να(h
x3

n )) dH1(xα) dx3

]

.

Noting that hx3
n

L1

−→(b,G), by Fatou’s Lemma a lower bound for I2
{ǫn}(b,G) will be given by Theorem

4.2.2 in [5].
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3.3 Upper bounds

We first derive an upper bound for Î1(g, b,G). We recall the family of functionals (depending on a
parameter δ > 0) defined in (2.6) for G and b fixed piecewise constant functions:

Î
(G,b)
1,δ (g,A) = inf

{gn}

{

lim inf
ǫn→0

δ

∫

A×I

∣

∣

∣

∣

(

∇αgn|
∇3gn

ǫn

)∣

∣

∣

∣

dx

+

∫

Sgn∩(A×I)

Ψ1

(

[gn], να(gn),
1

ǫn
ν3(gn)

)

dH2

gn
L1

−→ g,
1

ǫn
∇3gn

L1

−→ b, ||∇αgn −G||L1 ≤ Cǫn
2

}

.

Using Proposition 2.5 we get that for A ∈ A(w)

Î
(G,b)
1,δ (g,A) =

∫

A

f
(G,b)
δ (∇g) dxα +

∫

Sg∩A

h
(G,b)
δ ([g], νg) dH1.

Given g ∈ SBV 2(ω;R3) with ∇g an L∞ piecewise constant function we fix G = ∇g and construct

an admissible sequence for Î
(∇g,b)
1,δ as follows

gn := g + ǫnx3b.

Using the sequence above we get

∫

A

f
(∇g,b)
δ (∇g) +

∫

Sg∩A

h
(∇g,b)
δ ([g], νg)dH1 ≤ δ

∫

A

|(∇g, b)|+
∫

Sg∩A

Ψ1([g], νg)dH1,

and the by taking the Radon-Nikodým derivative with respect to the Lebesgue measure it follows that

f
(∇g,b)
δ (∇g) ≤ δ|(∇g, b)|

for a.e. x ∈ ω.
Now we construct a sequence in order to get an estimate for h

(∇g,b)
δ . Fix µ in R

3 and να ∈ S1, and
let τ ∈ R be such that

Ψ1(µ, να) =
1

√

|να|2 + τ2
Ψ1(µ, να, τ)

Consider the sequence

ρn :=

{

µ if να.(xα − x0) + ǫnx3τ > 0

0 if να.(xα − x0) + ǫnx3τ < 0

and let

gn := g − hn + ρn + ǫnx3b,

where hn is a piecewise constant function such that hn → g in L1, and ||Dhn||(Ω) → ||Dg||(Ω) (see
Lemma 2.1). We then have that

gn
L1

−→
{

µ if να.(xα − x0) > 0,

0 if να.(xα − x0) < 0.
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Note that ∇gn = ∇g and 1
ǫn
∇3gn = b. Thus

Î
(∇g,b)
1,δ (g,A) =

∫

A

f
(∇g,b)
δ (0) dx+

∫

A∩{να.(xα−x0)=0}

h
(∇g,b)
δ (µ, να) dH1

≤ δ

∫

A

|(∇g, b)|+Ψ1(µ, να, τ)L1 (A ∩ {να.(xα − x0) = 0}) + C||Dg||(A).

If we choose A = Q′
να
(x0; s) and let s→ 0 we get

h
(∇g,b)
δ (µ, να) ≤ Ψ1(µ, να).

Using the bounds above we get the estimates

Î
(∇g,b)
1,δ (g,A) ≤ δ

∫

A

|(∇g, b)| dx+

∫

Sg

Ψ1([g], νg) dH1

and letting δ → 0 we have that

Î1(g,∇g, b) ≤
∫

Sg

Ψ1([g], νg) dH1. (3.25)

Next we extend the upper bound above to a general g ∈ SBV 2(ω;R3). Let hn be a L∞ piecewise
constant function such that hn → ∇g in L1 (see Lemma 2.1), Hn ∈ SBV2(ω;R

3) such that ∇Hn =
hn−∇g and

∫

SHn
|[Hn]|dH1 → 0 (see Theorem 2.2) and H̃n a sequence of piecewise constant functions

such that Hn − H̃n → 0 and |DHn|(ω)− |DH̃n|(ω) → 0. Using the sequence

gn = g +Hn − H̃n,

the bounds of Ψ1 and the lower semicontinuity of Î1 we get (3.25). Note that the estimate (3.25) is
independent of b, so by using again the lower-semicontinuity of Î1 if follows that holds for general b.

Using now Theorem 2.9 it follows that

Î1(g,G, b) ≤
∫

ω

W1(G−∇g) dx+

∫

Sg

Γ1([g], νg)dH1 +

∫

ω

W1

(

− dDcg

d|Dcg|

)

d|Dcg|.

Finally we derive the upper bound for Î2. By a straightforward application of Theorem 2.4 we
obtain that Î2 is independent of the sequence {ǫn} and has an integral representation of the form (see
section 2.3 where we have used similar arguments for Î1)

Î2(h;A) =

∫

A

W0(h,∇h) dx+

∫

A∩S(h)

Ψ0([h], ν(h)) dH1 +

∫

A

W∞
0 (h,

dDch

d|Dch| )d|D
ch|.

We next prove that

W0(a, Fα) ≤W (a, Fα), ∀a ∈ R
3×3, ∀Fα ∈ R

3×3×2, (3.26)

and that

Ψ0(λ, να) ≤ Ψ2(λ, να), ∀λ ∈ R
3×3, ∀να ∈ S1. (3.27)

In order to prove (3.26) consider

hn = a+ Fα(xα − x0) + ǫnF3xn,
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where F3 ∈ R
3 is such that

W (a, Fα) =W (a, Fα, F3).

Notice that, by (H1) the infimum in the definition fo W is attained. Since

hn
L1

−→h = a+ Fα(xα − x0),

by the definition of Î2, we have that

Î2(a+ Fα(xα − x0);Q(x0, δ)) ≤ lim inf
ǫn→0

∫

Q(x0,δ)

W (a+ Fα(xα − x0) + ǫnF3x3, Fα|F3) dx

≤
∫

Q(x0,δ)

W (a, Fα, F3) dx + C

∫

Q(x0,δ)

Fα(xα − x0) dx,

where we used (H2) in the last inequality. Dividing both terms in the previous inequality by δN and
letting δ → 0+, we end up with (3.26).

We proceed similarly to prove (3.27). Define hn (see figure 1 below) by:

hn =























λ if να · (xα − x0) + ǫn(x3 − iǫn)µ > 0, x3 ∈ [iǫn, (i+ 1)ǫn] (i even)

λ if να · (xα − x0)− ǫn(x3 − (i+ 1)ǫn)µ > 0, x3 ∈ [iǫn, (i+ 1)ǫn] (i odd)

0 otherwise,

where i ∈ N.

λ0

Figure 1:

Clearly hn
L1(Q(x0;δ);R

3)−→ uλ,ναx0
(x) given by

uλ,ναx0
(x) =







λ if να · (xα − x0) > 0,

0 if να · (xα − x0) ≤ 0.
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and ||hn − uλ,ναx0
||L1(Q(x0;δ);R3) ≤ Cǫ2n. Thus hn is admissible for Î2 and we have that

Î2(u
λ,να
x0

(x);Q(x0, δ)) ≤ lim inf
n→∞

∫

Q(x0,δ)

W (hn, 0) dx

+
1

2
Ψ2(λ, να, µ)L2 ({να · (xα − x0) = 0 ∩ (Q(x0, δ)})

+
1

2
Ψ2(λ, να,−µ)L2 ({να · (xα − x0) = 0 ∩ (Q(x0, δ)})

= lim inf
n→∞

∫

Q(x0,δ)

W (hn, 0) dx+Ψ2(λ, να, µ)L2 ({να · (xα − x0) = 0 ∩ (Q(x0, δ)})

where we used (H8) in the last equality. Here µ ∈ R is such that Ψ̄2(λ, να) :=
1√

|να|2+µ2
Ψ2(λ, να, µ).

The existence of such µ results from the coercivity condition (H5). Dividing both terms by δN−1

letting δ → 0+ (and for x0 a point in Sh) we get (3.27). The upper bound results now of relaxing
from SBV to BV, together with an application of Theorem 4.2.2 in [5].
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[15] Del Piero, G., D. Owen, Structured Deformations of Continua, Arch. Rational Mech. Anal. 124
(1993), pp. 99-155.

[16] Evans, L. C. and R. F. Gariepy. Measure Theory and Fine Properties of Functions, Studies in
Advanced Mathematics, CRC Press, 1992.

[17] Federer, H, Geometric Measure Theory, Springer, Berlin, 1969.

[18] Giusti, E. Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, 1984.
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