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Abstract

Gerrymandering is the term used to describe the drawing of legislative districts to favor one
party over another. Recently, many mathematicians have tried to develop mathematical tools
to decide if legislative districts are gerrymandered, and define fair methods of districting. For
example, Landau, Reid, and Yershov [A Fair Division Solution to the Problem of Redistricting,
Social Choice and Welfare, 2008] propose a protocol for districting based on a two-player fair-
division process, where each player is entitled to draw the districts for a portion of the state. We
call this the LRY protocol. Landau and Su [Fair Division and Redistricting, arXiv:1402.0862,
2014] propose a measure of the fairness of a districting called the geometric target. In this
paper we prove that the number of districts a party can win under the LRY protocol can be at
most two fewer than their geometric target, assuming no geometric constraints on the districts.
This is the first quantitative bound of this type and we provide examples to prove this bound
is tight. The main tools involved in the proof are identifying optimal strategies for each player
in the protocol, and analyzing the number of districts they win using these strategies. We also
show that the protocol on a state drawn with geometric constraints can produce an unbounded
difference from the geometric target. Lastly, we explore ways to generalize the LRY protocol to
more than two players, and define a similar protocol with lower bounds on number of victories.

1 Introduction

Gerrymandering is the act of drawing legislative districts to favor one group over another. A com-
mon form of Gerrymandering is known as Partisan Gerrymandering where a political party draws
districts to favour their party over opposing parties. Recent work has been done on designing pro-
tocols to prevent gerrymandering or to detect if a state has been gerrymandered. Some protocols
for districting are [8, 9]. Different methods of detecting gerrymandering are discussed in [2, 11, 4].
Redistricting of states can also be thought of as what is known as a Fair Division problem. Fair
Division is the question of how to divide an object or set of objects among parties so that all par-
ties receive a portion that is considered fair by their own evaluation or some metric. The classic
fair-division problem of I cut you choose for cake cutting has been heavily expanded upon such as
in [3]. Many other ideas have been explored in the field of Fair Division such as Sperner’s lemma
for Cake cutting and Sperner applications in rental division, [10, 5] and envy-free necklace cutting [1].

The main Fair Division protocol we analyze in this paper, which we call the LRY protocol, is a
two-player fair-division procedure described in [6]. In the LRY protocol the two parties are presented
with a sequence of splits of a given state, and asked to submit preferences for which side of the split
they would prefer to draw the districts. In the end, a split is chosen and one party draws the districts
on one side, and the other party draws the districts on the other. The protocol is designed so that
the competing interests of the two parties prevent either one from gaining a significant advantage.
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In [7], Landau and Su define a measure of fairness for a given district map called the geometric
target which is the average of the best and worst cases for a party’s measure of success. In Section
2 we fully explain this protocol using our notation. In Theorem 2.13, we show that the number of
districts won by a party under the LRY protocol can differ from that party’s geometric target by at
most 2 and by a partys k-split geometric target by at most 3

2 .

In section 3 we show that using geometric constraints, it is possible to create a situation where
the protocol can return a result that arbitrarily far from the geometric target.

In section 4 we discuss the difficulties of directly applying the LRY protocol to an arbitrary m
party case. We define a new protocol which we first apply to three partys is of a similar essence of
the LRY protocol, and we prove a minimum number of districts a party is guaranteed relative to
their support in Theorem 4.3. This insight allows us to then generalize to m parties and prove a
lower bound for the number of districts a party can win by playing certain strategies in Theorem 4.4.

2 The LRY Protocol

2.1 Notation for parties, support and splits

We first define the notation we will use to describe the LRY protocol. We suppose there are two
parties, denoted A and B. We will use P to denote a generic party, P ∈ {A,B} and P to denote
the party opposing P . The goal of the protocol is to draw districts for a state, and we let n ∈ N
denote the number of districts.

For a party P , let xP denote the total support of player P in the state, and we assume xA+xB =
n, so since there are n districts, the support of the parties in each district should sum to 1.

For 0 ≤ k ≤ n define a k-split to be a division of the state so that on one side of the split (by
convention, we call this the left side) the two parties’ support sums to k, i.e. there are k districts’
worth of population on the left side of the k-split, and n− k districts’ worth on the right side. For
a k-split let Lk denote the area on the left of the split, and Rk denote the area on the right. We
denote by S a side S ∈ {L,R}. Given a k-split, Let Sk denote the area on the specified side of the
k-split, and Sk denote the area on the other side.

Call a sequence of k-splits, 0 ≤ k ≤ n nested if for every k ≥ 1, Lk−1 ⊆ Lk. For any nested
sequence of k-splits, denote by xP (Sk) the total support for party P in Sk, and let xP (k) = xP (Lk)−
xP (Lk−1), i.e. xP (k) is the support for party P between the (k− 1)-split and the k-split. Note that
for all k, xA(k) + xB(k) = 1

We assume that whichever candidate has more support in a district will win the district, and we
adopt the convention that for all k, xP (Sk) is not an integer multiple of .5. Therefore, we assume
a party can always win a district with a strict majority, and there is no need to consider tied districts.

2.2 The LRY Protocol

Following Landau and Su [7], we now describe the LRY protocol. In the protocol, an administrator
(someone not affiliated with either party) makes a sequence of nested k-splits.

For all k, each party indicates which of the following options they prefer:

1. Party A districts Lk and Party B districts Rk

2



2. Party B districts Lk and Party A districts Rk

A party may also indicate that they are indifferent between the two options.
The outcome of the protocol is as follows: If there exists some k such that Party A and Party

B both prefer that Party A district Lk or they both prefer that Party B district Lk, then a map is
created using that assignment of areas to district. If there is a k such that a party is indifferent but
the other is not, the preferences of the non-indifferent party are chosen. If there exists a k such that
both parties are indifferent then one of Option 1 and Option 2 is randomly chosen. If any of these
options are chosen, then both parties will district a side they prefer or are indifferent to. Therefore,
they will district a side in which they desire to.

Since both sides prefer to district the right side in a 0-split and the left side in an n-split, if none
of the above scenarios occur, it must be the case that there exists a k such that for the (k − 1)-
split Party A prefers Option 2 and Party B prefers Option 1 but for the k-split they switch their
preferences. We call this scenario the coin flip scenario. In this case, the protocol randomly returns
one of the following four options:

• Option 1 for the (k − 1)-split

• Option 2 for the (k − 1)-split

• Option 1 for the k-split

• Option 2 for the k-split.

We analyze the four options of the coin flip with respect to our measure of fairness the geometric
target. This will show that the protocol contains underlying inherent properties to all fair division
problems. These properties are as follows: The LRY protocol represents properties inherent to all
fair - division protocols.

1. Multilateral evaluation. A party defines fairness by their own preferences and metric.

2. Procedural fairness. All parties understand the procedure, are involved in the process and
understand the way fairness is measured. The parties are more likely to feel that the process is
fair as they are involved in the process by stating their preferences and drawing the districtings
of the side they are given as they please

3. Fairness guarantee. If you are honest with your preferences, you will be guaranteed to obtain
a portion that you deem fair under your own evaluation.

Parties define their preferences based upon the number of districts won given by their optimal
strategies. Since each party is involved in the process of districting this allows the party’s to openly
state and try to attain what they believe is fair according to the number of districts they can win
given their optimal strategy.

2.3 Optimal Strategies

We now turn our attention to the optimal strategies that each player should use in the LRY protocol.
In this section, we assume there are no geometric constraints on how the districts are drawn other
than the k-splits. We assume throughout that each player is simply trying to maximize the number
of districts they win according to a voting model V they create. A voting model is a prediction
of how the people in the state will vote. Each party may have their own private voting model
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which they base their preferences upon. Notice, however, that since each party may have their own
voting model that differs for one another that If both parties share the same voting model then it
is impossible for them to prefer the same option. Additionally, if one party is indifferent then both
parties are indifferent.

We define Pi(Sk, Pj) to be the number of districts won by party Pi on side Sk when party Pj
draws districts on Sk. Let P (Sk) be the total number of wins for P when they district Sk and P
districts Sk. That is,

Pi(Sk) = Pi(Sk, Pi) + Pi(Sk, P i).

since the number of districts in the state is the sum of the districts won by both parties

Pi(Sk) + P i(Sk) = n.

Proposition 2.1 shows the maximum number of wins a party can win when they are in control
of the districting. Let |Sk| be the number of districts in Sk, i.e. |Lk| = k and |Rk| = n− k.

Proposition 2.1. P (Sk, P ) = min{b2xP (Sk)c, |Sk|}.

Proof. There are two cases, depending whether party P has a majority or not.

Case 1: Suppose xP (Sk) > |Sk|
2 , and thus |Sk| = min{b2xP (Sk)c, |Sk|}. In this case, player P

can create |Sk| districts where in each district their support is xP (Sk)
|Sk| > 1

2 . Thus they can win |Sk|
districts, and this is the best possible.

Case 2: Suppose xP (Sk) < |Sk|
2 , and thus b2xP (Sk)c = min{b2xP (Sk)c, |Sk|}. For any district i

to be a victory for P then xP (i) > 0.5. Thus player P can create b2xP (Sk)c districts with support
just over 0.5, and can win these districts, but their remaining support is less than .5, so they cannot
win any more.

Next, we show how many districts P will win if their opponent draws the districts on one side
of a k-split. First we need to prove a property of floors and ceilings.

Lemma 2.2. Assume x, y ∈ R and x+y = k with k ∈ N. Then min{b2xc, k}+max{dy−xe, 0} = k.

Proof. Since y = k − x,

min{b2xc, k}+ max{dy − xe, 0} = min{b2xc, k}+ max{dk − 2xe, 0}.

Case 1: Assume x > k
2 . Then

min{b2xc, k}+ max{dk − 2xe, 0} = k + 0 = k.

Case 2: Assume x ≤ k
2 . Then

min{b2xc, k}+ max{dk − 2xe, 0}

= b2xc+ dk − 2xe

= b2xc+ k + d−2xe.

Since d−ze = −bzc for all z ∈ R, this quantity is equal to b2xc+ k − b2xc = k.

Corollary 2.3 shows the maximum number of wins on a side by a party when the other party is
districting that side.

Corollary 2.3. P (Sk, P ) = max {dxP (Sk)− xP (Sk)e, 0} .
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Proof. Since xP (Sk) + xP (Sk) = |Sk| and |Sk| ∈ N, by Lemma 2.2 it follows that

min{b2xP (Sk)c, |Sk|}+ max {dxP (Sk)− xP (Sk)e, 0} = |Sk|.

Additionally,
|Sk| = P (Sk, P ) + P (Sk, P ).

By Proposition 2.1, P (Sk, P ) = min{b2xP (Sk)c, |Sk|}, so

P (Sk, P ) = max {dxP (Sk)− xP (Sk)e, 0} .

2.4 The Geometric Target

The geometric target provides a measure of fairness for a districting protocol. The geometric target
is defined as the average of the parties best case scenario and worst case scenario with respect to
there voting model V . That is the average of the number of districts a party wins when they district
the state and the number of districts a party wins when the opposing party districts the state.

We now wish to show that the geometric target for P is at most 1
2 away from any k-split geometric

target. To do this, we first prove a result about the difference between floors and ceilings.

Lemma 2.4. Let r, s ∈ R+, and t = r + s. Then

i. |dte − (dre+ dse)| ≤ 1

ii. |dte − (dre+ bsc)| ≤ 1

iii. |btc − (dre+ bsc)| ≤ 1

iv. |btc − (brc+ bsc)| ≤ 1.

Proof. Parts i. and ii. follow from the observations that

dre+ dse ≥ dr + se
dr + se ≥ dre+ bsc

(dre+ dse)− (dre+ bsc)| ≤ 1

Similarly, Parts iii. and iv. follow from the observations that

brc+ bsc ≤ br + sc
br + sc ≤ dre+ bsc

(dre+ bsc)− (brc+ bsc)| ≤ 1

We would like to give formula for the geometric target for a party in terms of that party’s support.

Lemma 2.5. If xP > n/2, then geo(P ) = d2(xP )e
2 . If xP < n/2, then geo(P ) = b2xP c

2 .
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Proof. In both cases, the party A will win the most districts when it draws all districts, and will
win the fewest when B draws all the districts. Thus, by Propositions 2.1 and 2.3, when xP > n/2,

geo(A) =
A(Ln) +A(L0)

2

=
n+ dxA − xBe

2

=
n+ dxA − (n− xA)e

2

=
d2(xA)e

2
.

Similarly, when xP < n/2,

geo(A) =
A(Ln) +A(L0)

2

=
b2xAc+ 0

2

=
b2xAc

2
.

Proposition 2.6. geok(P ) = P (Lk)+P (Rk)
2 .

Proof. For every k- split,

geok(P ) =
Best Case + Worst case

2

=
P (Lk, P ) + P (Rk, P ) + P (Lk, P ) + P (Rk, P )

2

=
P (Lk) + P (Rk)

2
.

Now we can use Lemma 2.4, Lemma 2.5, and Proposition 2.6 to show that the geometric target
for P is at most 1

2 away from any k-split geometric target.

Lemma 2.7. | geo(P )− geok(P )| ≤ 1
2 .

Proof. There are 4 cases.

Case 1: Assume xA > n
2 , xA(Lk) > k

2 , and xA(Rk) > n−k
2 . Then, since A will win the most

districts when it districts both sides, and will win the fewest when B districts both sides,

geok(A) =
A(Lk, B) +A(Rk, B) +A(Lk, A) +A(Rk, A)

2

=
d2xA(Lk)− ke+ d2xA(Rk)− (n− k)e+ k + (n− k)

2

=
d2xA(Lk)e+ d2xA(Rk)e

2
.
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By Lemma 2.5, geo(A) = d2(xA)e
2 . Thus,

| geo(A)− geok(A)| =
∣∣∣∣d2xAe2

− d2xA(Lk)e+ d2xA(Rk)e
2

∣∣∣∣ .
Since xA(Lk) + xA(Rk) = xA, Lemma 2.4 Part i. implies this quantity is at most 1/2.
Case 2: Assume xA >

n
2 , xA(Lk) > k

2 and xA(Rk) ≤ n−k
2 . Then

geok(A) =
A(Lk, B) +A(Rk, B) +A(Lk, A) +A(Rk, A)

2

=
dxA(Lk)− xB(Lk)e+ 0 + k + b2xA(Rk)c

2

=
d2xA(Lk)− ke+ k + b2xA(Rk)c

2

=
d2xA(Lk)e+ b2xA(Rk)c

2
.

By Lemma 2.5, geo(A) = d2(xA)e
2 . Thus,

| geo(A)− geok(A)| =
∣∣∣∣d2xAe2

− d2xA(Lk)e+ b2xA(Rk)c
2

∣∣∣∣ .
Since xA(Lk) + xA(Rk) = xA, Lemma 2.4 Part ii.implies this quantity is at most 1/2.
Case 3: Assume xA ≤ n

2 , xA(Lk) > k
2 and xA(Rk) ≤ n−k

2 . Then

geok(A) =
A(Lk, B) +A(Rk, B) +A(Lk, A) +A(Rk, A)

2

=
dxA(Lk)− xB(Lk)e+ 0 + k + b2xA(Rk)c

2

=
d2xA(Lk)− ke+ k + b2xA(Rk)c

2

=
d2xA(Lk)e+ b2xA(Rk)c

2
.

By Lemma 2.5, geo(A) = d2(xA)e
2 .

Thus,

| geo(A)− geok(A)| =
∣∣∣∣b2xAc2

− d2xA(Lk)e+ b2xA(Rk)c
2

∣∣∣∣ .
Since xA(Lk) + xA(Rk) = xA, Lemma 2.4 Part iii. implies this quantity is at most 1/2.
Case 4: Assume xA ≤ n

2 , xA(Lk) ≤ k
2 and xA(Rk) ≤ n−k

2 . Then

geok(A) =
A(Lk, B) +A(Rk, B) +A(Lk, A) +A(Rk, A)

2

=
0 + 0 + b2xA(Lk)c+ b2xA(Rk)c

2

=
b2xA(Lk)c+ b2xA(Rk)c

2
.
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By Lemma 2.5, geo(A) = d2(xA)e
2 . Thus,

| geo(A)− geok(A)| =
∣∣∣∣b2xAc2

− b2xA(Lk)c+ b2xA(Rk)c
2

∣∣∣∣
. Since xA(Lk) + xA(Rk) = xA, Lemma 2.4 Part iv. implies this quantity is at most 1/2.

2.5 Analyzing the fairness of the LRY Protocol

Here we prove that the number of districts a party wins under the LRY protocol is at most 2 less
than its geometric target.

Lemma 2.8. Suppose xP (k) > 0.5. Then P (Lk, P )−P (Lk−1, P ) ≥ 1 and P (Rk−1, P )−P (Rk, P ) ≤
1.

Proof. Since xk(A) > 0.5, there will always exist a districting of Lk by A such that the number of
wins for A, which we indicate as A−(Lk, A), obeys A−(Lk, A) = A(Lk−1, A) + 1. Namely, A chooses
the same districting for the k − 1 area on the left and makes kth area worth of people a district.
Since A plays optimally, they maximize their wins. Thus, A(Lk, A) ≥ A−(Lk, A) and then

A(Lk, A) ≥ A−(Lk, A) = A(Lk−1, A) + 1.

Since xk(A) > 0.5, there will always exist a districting of Rk−1 by B such that the number of
wins for A, which we indicate as A−(Rk−1, B), obeys A−(Rk−1, B) = A(Rk, B) + 1. Namely, B
chooses the same districting for the k area on the right and makes the (k−1)th area worth of people
a district. Since B playing optimally, they minimize A’s wins. Thus, A(Rk−1, B) ≤ A−(Rk−1, B)
and then

A(Rk−1, B) ≤ A−(Rk−1, B) = A(Rk, B) + 1.

We have shown that when the support of the kth district is a majority for P then P will win at
least one more district when optimally districting the left side for k-split compared to the k−1-split.
Coinciding with this, since P districts the right side then P will lose at most 1 district. However,
when the support of P is a minority in the kth district, when P is districting the left they will always
win at least as much for the k-split as for the k − 1 split. For the right side they will always will as
least as much for the k-split as for the k − 1 split when P is districting.

Lemma 2.9. Suppose xP (k) < 0.5. Then P (Lk−1, P ) ≤ P (Lk, P ) and P (Rk, P ) ≥ P (Rk−1, P ).

Proof. Since xk(A) < 0.5, there will always exist a districting of Lk by A such that the number of
wins for B, which we indicate as B−(Lk, A), obeys B−(Lk, A) = B(Lk−1, A)+1. Namely, A chooses
the same districting for the k− 1 area on the left and makes the kth area worth of people a district.
Since A is playing optimally, they minimize B’s wins. Thus, B(Lk, A) ≤ B−(Lk, A) and then

B(Lk, A) ≤ B−(Lk, A) = B(Lk−1, A) + 1.

Additionally, since B(Lk, A) ≤ B(Lk−1, A) + 1,

B(Lk, A) ≤ B(Lk−1, A) + 1

k −A(Lk, A) ≤ (k − 1)−A(Lk−1, A) + 1

A(Lk−1, A) ≤ A(Lk, A).
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Since xk(A) < 0.5, there will always exist a districting of Rk−1 by B such that the number of wins
for B, which we indicate as B−(Rk−1, B), obeys B−(Rk−1, B) = B(Rk, B) + 1. Namely, B chooses
the same districting for the k area on the right and makes the (k − 1)th area worth of people a
district. Since B is playing optimally, they maximize their wins. Thus, B(Rk−1, B) ≥ B−(Rk−1, B)
and then

B(Rk−1, B) ≥ B−(Rk−1, B) = B(Rk, B) + 1.

Additionally, since B(Rk−1, B) ≥ B(Rk, B) + 1,

B(Rk−1, B) ≥ B(Rk, B) + 1

n− k + 1−A(Rk−1, B) ≥ n− k −A(Rk, B) + 1

A(Rk−1, B) ≤ A(Rk, B).

Lemma 2.8 and Lemma 2.9 now allow us to prove that in the coin flip scenario, when P is
districting the left side for the k-split, P will win at least as much as when P is districting the left
side for the k − 1-split and at most as much as 2 greater than P districting the left side for the
k − 1-split.

Theorem 2.10. P (Lk−1) ≤ P (Lk) ≤ P (Lk−1) + 2.

Proof. We will first prove that A(Lk−1) ≤ A(Lk).
Case 1: xA(k) > 0.5,

A(Lk−1) = A(Lk−1, A) +A(Rk−1, B) = A(Lk−1, A) +A(Rk−1, B) + 1− 1

by Lemma 2.8

≤ A(Lk−1, A) +A(Rk−1, B) +A(LK , A)−A(Lk−1, A) +A(RK , B)−A(Rk−1, B) = A(Lk).

Case 2: xA(k) < 0.5,
A(Lk−1) = A(Lk−1, A) +A(Rk−1, B)

by Lemma 2.9

≤ A(Lk, A) +A(Rk, B) = A(Lk).

Now we will prove: A(Lk)−A(Lk−1) ≤ 2.
Case 1: xA(k) < 0.5.
We first wish to prove that B(Rk−1, B) ≤ B(Rk, B) + 2 and B(Lk−1, A) ≤ B(Lk, A). If these are
true then,

B(Rk−1, B) ≤ B(Rk, B) + 2

n− k + 1−A(Rk−1, B) ≤ n− k −A(Rk, B) + 2

A(Rk−1, B) + 1 ≥ A(Rk, B) (2.10.1)
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and

B(Lk−1, A) ≤ B(Lk, A)

k − 1−A(Lk−1, A) ≤ k −A(Lk, A)

A(Lk−1, A) + 1 ≥ A(Lk, A). (2.10.2)

Using (2.10.1) and (2.10.2) we can conclude that:

A(Lk)−A(Lk−1) = A(Lk, A) +A(Rk, B)−A(Lk−1, A)−A(Rk−1, B)

≤ 1 + 1 = 2.

Now we prove our claims:
We know that xB(Rk−1) ≤ xB(Rk) + 1,

B(Rk−1, B) = min{b2xB(Rk−1)c, k}
≤ min{b2xB(Rk)c+ 2, k}
= min{b2xB(Rk)c, k − 2}+ 2

≤ min{b2xB(Rk)c, k}+ 2

= B(Rk, B) + 2.

Thus B(Rk−1, B) ≥ B(Rk, B) + 2.
We know that since xA(k) < 0.5, xB(k)− xA(k) ≥ 0,

B(Lk−1, A) = max{dxB(Lk−1)− xA(Lk−1)e, 0}
≤ max{dxB(Lk−1)− xA(Lk−1) + xB(k)− xA(k)e, 0}
= max{dxB(Lk)− xA(Lk)e, 0}
= B(Lk, A).

Thus B(Lk−1, A) ≤ B(Lk, A).
Case 2: xA(k) > 0.5

We first wish to prove that A(Lk, A) ≤ A(Lk−1, A) + 2 and A(Rk, B) ≤ A(Rk−1, B). If these are
true then

A(Lk)−A(Lk−1) = A(Lk, A) +A(Rk, B)−A(Lk−1, A)−A(Rk−1, B)

≤ 2 + 0 = 2.

Now we prove our claims.
Firstly, we know that xA(Lk) ≤ xA(Lk−1) + 1,

A(Lk, A) = min{b2xA(Lk)c, k}
≤ min{b2xA(Lk−1)c+ 2, k}
= min{b2xA(Lk−1)c, k − 2}+ 2

≤ min{b2xA(Lk−1)c, k − 1}+ 2

= A(Lk−1, A) + 2.
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For our second claim, by Corollary 2.3 we know that,

A(Rk, B) = max{dxA(Rk)− xB(Rk)e, 0}
= max{dxA(Rk−1)− (xB(Rk−1) + 1− 2xA(k))e, 0}
= max{dxA(Rk−1)− xB(Rk−1)e+ d−2xA(k)e+ 1 + dxA(Rk−1)− xB(Rk−1) mod 1+

(−2xA(k) mod 1)e − [xA(Rk−1)− xB(Rk−1) /∈ Z]− [−2xA(K) /∈ Z], 0}.

If 0.5 < xA(k) < 1 then d−2xA(k)e+ 1 = 0 and [xA(Rk−1)− xB(Rk−1) /∈ Z] + [−2xA(K) /∈ Z] = 2.
Thus since dxA(Rk−1)− xB(Rk−1) mod 1 + (−2xA(k) mod 1)e ≤ 2 we have that

max{dxA(Rk−1)− xB(Rk−1)e+ d−2xA(k)e+ 1 + dxA(Rk−1)− xB(Rk−1) mod 1+

(−2xA(k) mod 1)e − [xA(Rk−1)− xB(Rk−1) /∈ Z]− [−2xA(K) /∈ Z], 0}
≤ max{dxA(Rk−1)− xB(Rk−1)e+ 2− 2, 0}
= A(Rk−1, B).

Additionally if xA(k) = 1 then d−2xA(k)e+ 1 = −1 and [xA(Rk−1)−xB(Rk−1) /∈ Z] + [−2xA(K) /∈
Z] ≥ 1. Thus since dxA(Rk−1)−xB(Rk−1) mod 1+(−2xA(k) mod 1)e ≤ 2 we get the same inequality
as before. Thus A(Rk, B) ≤ A(Rk−1, B).

Theorem 2.5 allows us to prove the coinciding corollary for Rk and Rk−1.

Corollary 2.11. P (Rk−1) ≥ P (Rk) ≥ P (Rk−1) + 2.

Proof. From the first part of Theorem 2.5,

B(Lk−1) ≤ B(Lk)

n−A(Rk−1) ≤ n−A(Rk)

A(Rk−1) ≥ A(Rk).

From the second part of Theorem 2.5,

B(Lk) ≤ B(Lk−1) + 2

n−A(Rk) ≤ n−A(Rk−1) + 2

A(Rk) ≥ A(Rk−1) + 2.

The coin flip occurs for the same change in preferences of sides for the k − 1 versus k-split.
Meaning when both parties prefer option 1 for the k − 1-split such that P districts Lk−1 and P
districts Rk−1 and both parties prefer option 2 for the k-split where P districts Rk and P districts
Lk. In order to prove the fairness of the protocol we prove that the greatest difference between any
two options of the coin flip can be at most 3. This will allow us to relate the party’s geometric
targets and k-split geometric targets to their coin flip options.

Proposition 2.12. If the protocol returns a coin flip, then

|P (Lk−1)− P (Lk)| ≤ 2,

|P (Lk−1)− P (Rk−1)| ≤ 3,

11



|P (Lk−1)− P (Rk)| ≤ 1,

|P (Lk)− P (Rk−1)| ≤ 1,

|P (Lk)− P (Rk)| ≤ 3,

|P (Rk)− P (Rk−1)| ≤ 2.

Thus the greatest difference between any two option from the coin flip is 3.

Proof. In the coin flip scenario, there exists 4 options which correspond toA(Lk−1), A(Lk), A(Rk−1), A(Rk)
From Theorem 2.5 and Corollary 2.11, we can see that we obtain the 4 inequalities:

A(Lk−1) ≤ A(Lk) (i)

A(Rk) ≤ A(Rk−1) (ii)

A(Lk−1) + 2 ≥ A(Lk) (iii)

A(Rk) + 2 ≥ A(Rk−1). (iv)

In the coin flip scenario we know that all parties switch their preference from either L to R or R to
L. Thus it must be the case that either

A(Lk−1) < A(Rk−1) and A(Lk) > A(Rk)

or
A(Lk−1) > A(Rk−1) and A(Lk) < A(Rk).

Note that an equality is not possible here as it would indicate indifference between the two options
and indifference is not possible in the coin flip scenario.
If

A(Lk−1) > A(Rk−1) and A(Lk) < A(Rk),

then
A(Rk) ≤ A(Rk−1) ≤ A(Lk−1) < A(Lk) < A(Rk).

This is a contradiction, as we must have that

A(Lk−1) < A(Rk−1), (v)

and

A(Lk) > A(Rk). (vi)

From now on when we are in the coin flip scenario (v) and (vi) hold. Thus, given the inequalities
(i), (ii), (iii), (iv), (v), (vi) we prove the following differences between the 4 coin flip options:

1. |A(Lk−1)−A(Lk)| ≤ 2

|A(Lk−1)−A(Lk)| =A(Lk)−A(Lk−1) (i)

≤ A(Lk−1) + 2−A(Lk−1) (iii)

= 2

12



2. |A(Lk−1)−A(Rk−1)| ≤ 3

|A(Lk−1)−A(Rk−1)| = A(Rk−1)−A(Lk−1) (v)

≤ A(Rk−1)−A(Lk) + 2 (iii)

< A(Rk−1)−A(Rk) + 2 (vi)

≤ 2 + 2 (iv)

= 4

Since |A(Lk−1) − A(Rk−1)| < 4 and |A(Lk−1) − A(Rk−1)| ∈ N, we must have |A(Lk−1) −
A(Rk−1)| ≤ 3.

3. |A(Lk−1)−A(Rk)| ≤ 1

case 1: |A(Lk−1)−A(Rk)| = A(Lk−1)−A(Rk)

< A(Rk−1)−A(Rk) (v)

≤ A(Rk) + 2−A(Rk) (iv)

= 2

case 2: |A(Lk−1)−A(Rk)| = A(Rk)−A(Lk−1)

≤ A(Rk)−A(Lk) + 2 (iii)

< A(Lk) + 2−A(Lk) (vi)

= 2

Since |A(Lk−1)−A(Rk)| < 2 and |A(Lk−1)−A(Rk)| ∈ N, we must have |A(Lk−1)−A(Rk)| ≤ 1.

4. |A(Lk)−A(Rk−1)| ≤ 1

case 1: |A(Lk)−A(Rk−1)| = A(Lk)−A(Rk−1)

≤ A(Lk−1) + 2−A(Rk−1) (iii)

< A(Rk−1) + 2−A(Rk−1) (v)

= 2

case 2: |A(Lk)−A(Rk−1)| = A(Rk−1)−A(Lk)

≤ A(Rk) + 2−A(Lk) (iv)

< A(Lk) + 2−A(Lk) (vi)

= 2

Since |A(Lk)−A(Rk−1)| < 2 and |A(Lk)−A(Rk−1)| ∈ N, we must have |A(Lk)−A(Rk−1)| ≤ 1

5. |A(Lk)−A(Rk)| ≤ 3

13



|A(Lk)−A(Rk)| = A(Lk)−A(Rk) (vi)

≤ A(Lk−1) + 2−A(Rk) (iii)

< A(Rk−1) + 2−A(Rk) (v)

≤ A(Rk) + 2 + 2−A(Rk) (iv)

= 4

Since |A(Lk)−A(Rk)| < 4 and |A(Lk)−A(Rk)| ∈ N, we must have |A(Lk)−A(Rk)| ≤ 3

6. |A(Rk)−A(Rk−1)| ≤ 2

|A(Rk)−A(Rk−1)| = A(Rk−1)−A(Rk) (ii)

≤ A(Rk) + 2−A(Rk) (iv)

= 2

Using the Proposition 2.12, we can now show the maximum possible distance from the geometric
target by all Coin Flip options is at most 2.

Theorem 2.13. Suppose that k and k − 1 are the two splits in the coin flip scenario for a given
state. Then

i. |P (Lk)− geok(P )| ≤ 3
2

ii. |P (Lk−1)− geok−1(P )| ≤ 3
2

iii. |P (Rk)− geok(P )| ≤ 3
2

iv. |P (Rk−1)− geok−1(P )| ≤ 3
2

v. ∀S and for i ∈ {k, k − 1}, | geo(P )− P (Si)| ≤ 2

Proof of i.

|A(Lk)− geok(A)| =
∣∣∣∣A(Lk)− A(Lk) +A(Rk)

2

∣∣∣∣
by Proposition 2.12

=

∣∣∣∣A(Lk)−A(Rk)

2

∣∣∣∣ ≤ 3

2
.

Proof of ii.

|A(Lk−1)− geok−1(A)| =
∣∣∣∣A(Lk−1)− A(Lk−1) +A(Rk−1)

2

∣∣∣∣
by Proposition 2.12

=

∣∣∣∣A(Lk−1)−A(Rk−1)

2

∣∣∣∣ ≤ 3

2
.

14



Proof of iii.

|A(Rk)− geok(A)| =
∣∣∣∣A(Rk)− A(Lk) +A(Rk)

2

∣∣∣∣
by Proposition 2.12

=

∣∣∣∣A(Rk)−A(Lk)

2

∣∣∣∣ ≤ 3

2
.

Proof of iv.

|A(Rk−1)− geok−1(A)| =
∣∣∣∣A(Rk−1)− A(Lk−1) +A(Rk−1)

2

∣∣∣∣
by Proposition 2.12

=

∣∣∣∣A(Rk−1)−A(Lk−1)

2

∣∣∣∣ ≤ 3

2
.

Proof of v. Since by Lemma 2.7

| geo(A)− geoi(A)| ≤ 1

2

and

| geoi(A)−A(Si)| ≤
3

2
,

it follows that:

| geo(A)−A(Si)| = | geo(A) + geoi(A)− geoi(A)−A(Si)|
≤ | geoi(A)−A(Si)|+ | geo(A)− geoi(A)|
≤ 2.

Therefore we have shown that for the available coin flip options that can be selected for P , the
difference from the k-split geometric target can be at most 3

2 and the difference from the geometric
target can be at most 2. We provide an example to that this bound is tight.

Example 2.14. Let

• xA(L5) = 1.9, xB(L5) = 3.1

• xA(D6) = 1, xB(D6) = 0

• xA(R6) = 1.4, xB(R6) = 2.6.

Then by Proposition 2.1 and Corollary 2.3, A(R6, A) = 2, A(R6, B) = 0, A(L6, A) = 5 ,
A(L6, B) = 0, A(R5, A) = 4, A(R5, B) = 0, A(L5, A) = 3, A(L5, B) = 0, A(L6, A) = 5, and
A(L6, B) = 0.
Thus A(R5) = 4, A(L5) = 3, A(R6) = 2, and A(L6) = 5. Additionally since xA = 4.3 by Lemma 2.5,

geoA = 4. Lastly by Proposition 2.6 geo5 = A(R5)+A(L5)
2 = 3.5 and geo6 = A(R6)+A(L6)

2 = 3.5 Thus
there exists a coin flip option 1.5 away from geok and 2 away from geo. Namely A(R6) = 2 and
geo6 = 3.5, geo = 4.
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0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 The LRY Protocol with Geometric Constraints

We now wish to show that given some geometric constraints, it is possible to obtain a result from
the coin flip scenario that is arbitrarily far from the geometric target.

First let us define our geometric constraints. We model our state through a square lattice with
l ∈ N squares. Each square represents an indivisible area of population. We call the number of
squares that constitutes the population of one district, φ ∈ N. Each square has a number inside
it which represents the fraction of support for party A in that square, i.e a square with 0 has no
support for party A and a square with 0.4 has 40% support for party A.

We also stipulate that districts must be drawn contiguously, i.e squares in the same district must
share a side with another square in that district. Lastly, our districts must be compact, which we
define as each distinct fitting inside a z by z square, where z = b2

√
φc. Our first example is the

following state with φ = 100 and l = 10000, meaning there are 20 total districts. We consider the
k-splits as vertical lines moving across the state from left to right. We will analyze the coin flip
scenario between L50, L51, R50, and R51, that is between the 50-split and the 51-split. We will refer
to the squares in the state by their corresponding matrix coordinate ai,j , i.e the square in the top
left corner is a1,1. Using these constraints we can define an example with a coin flip option that is
2.5 away from the geometric target.

Example 3.1. Construct a state with the following distribution:

ai,j =


1 if j = 51 or j = 50, 49, 48, 47, or 46 and i ≡ 1, 2, 3, 4, 5, or 6 mod 20

0.1 j = 50 and i ≡ 7 mod 20

0 otherwise.
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For the 50-split and 51-split, there is a coin flip scenario where three coin flip options, A(L50),
A(R51), and A(L51), differ from the geometric target by 2.5.

Proof. The figure above is a representation of this state and it starts with its top left corner as a1,44.
This pattern repeats down the rows of the grid, and this repeating pattern is the only non-zero
elements of the grid.

We can see that A(L50) = 0, A(R50) = 2, A(R51) = 0.
The only non-trivial coin flip option is A(L51). A(L51) = 5, and the winning 5 districts can be made
in the following manner. For the qth winning district where q ∈ N and q ∈ [1, 5], include all ai,j such
that i = (1, 2, ..., or 16)+20(q−1) and j = 51, 50, 49, 48, 47, or 46 or i = (17, 18, 19 or 20)+20(q−1)
and j = 51.

We can see that the worst case for A overall for this state is 0 victories and the best case is 5
victories, giving a geometric target of geo(A) = 0+5

2 = 2.5. Since A(L50) = 0, A(R51) = 0 and
A(L51) = 5, the coin flip options A(L50), A(R51), and A(L51) are 2.5 away from the geometric
target.

We can now use this example to construct a state with the same geometric constraints and a
coin flip result arbitrarily far from the geometric target. Let ∆′ be an arbitrary number of districts
from the geometric target. We will construct a state such that there is a coin flip scenario with coin
flip options at least ∆′ away from the geometric target. Set ∆ = d∆′e. We will construct a state
with a geometric target of ∆ and two coin flip options, A(Lφ/2) and A(Lφ/2+1), that are 0 districts
won and 2∆ districts won, respectively. From our geometric constraint from before, districts must
fit inside z by z square, where z = b2

√
φc. We wish to have 2∆ districts border in A(Lφ/2+1) on

the left side of the φ/2-split, which will be of height φ. We must allot an area for each district in
A(Lφ/2+1) of size z by z. To prevent creating a winning district by districting support from two

potential district areas in A(Lφ/2), we must fill out the z by z square with 0. Thus 2∆ = φ
2
√
φ

meaning φ = 16∆2. Additionally, in order to have enough support to win, the total support in our
allotted area for each district in A(Lφ/2+1) must be φ

2 + ε for ε > 0. Since our final winning district
will also include squares from the φ/2 split, which will be all 1’s, our potential district area will
need an additional support of φ

2 −
φ

2∆ + ε. We also stipulate that this additional support be close to
the φ/2 split, to allow for contiguity. Thus we construct a rectangle of squares that are all 1 such
that the area of this rectangle is φ

2 −
φ

2∆ = φ∆−φ
2∆ . Additionally since our district must be within

a 2
√
φ by 2

√
φ square, we shall make the height of this rectangle 2

√
φ, meaning that the length is

φ∆−φ
2∆ =

√
φ

4 − 1. This will give a total support of φ/2 in each district, so we must also include a
single square with 0.1 in each 2

√
φ by 2

√
φ square.

Example 3.2. Thus we construct a state as follows. Create a φ by φ square grid of size l = φ2 with
the following distribution:

ai,j =


1 if j = φ/2 or ∀ q, (q − 1)2

√
φ+ 1 ≤ i ≤ q2

√
φ, φ/2−

√
φ

4 + 1 ≤ j ≤ φ/2− 1

0.1 ∀q, i = (q − 1)2
√
φ+ 1, j = φ/2−

√
φ

4

0 otherwise.

For the φ/2-split and φ/2+1-split, there is a coin flip scenario where three coin flip options, A(Lφ/2),
A(Rφ/2+1), and A(Lφ/2+1), differ from the geometric target by ∆.
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Proof. We can see that A(Lφ/2) = 0, A(Rφ/2) = 2, A(Rφ/2+1) = 0. The only non-trivial coin flip

option is A(Lφ/2+1). A(Lφ/2+1) = 2∆ and to create the winning qth district for A(Lφ/2+1), include

all ai,j such that (q− 1)2
√
φ+ 1 ≤ i ≤ q2

√
φ, φ/2−

√
φ

2 + 1 ≤ j ≤ φ/2. This will include all squares
in the 2

√
φ by 2

√
φ square such that ai,j = 1 or 0.1 and it will be of size φ, the size of one district.

We can see that the worst case for A overall for this state is 0 victories and the best case is
2∆ victories, giving a geometric target of geo(A) = 0+2∆

2 = ∆. Since ∆ is arbitrary, A(Lφ/2),
A(Rφ/2+1) = 0, and A(Lφ/2+1) will be an arbitrary distance away from the geometric target.

4 Generalizing the Protocol

4.1 3 Party Protocol

When adapting the LRY protocol to 3 parties we found that a minority party can district where
they do not have support and will decide who wins between the two other parties. Evidently, the
minority party can give a strong advantage to one of the parties who’s ideals align with theirs or
who they make an agreement with. An additional problem we found with generalizing the LRY
protocol occurs due to a coin flip scenario. When the k-split lines create two highly desirable areas
for districting where moving 1 k split changes preferences of the parties, it is possible that the result
of the coin flip would give a party an area that they have no preference for. Thus since we found that
the LRY protocol does generalize well to 3 parties, we defined a new protocol with many similarities
to that of the LRY protocol which adapts itself more efficiently to 3 or more parties. We make the
following assumptions:

(1) Agreed upon Voting model. There exists some agreed upon voting model Vall. For example
Vall could be the results of the last elections.

(2) Vall is true. Suppose Vall actually represents the support of each party in the state.

(3) No Geometric Constraints. As before we do not consider geometric constraints in the state.

(4) Drawing winning districts. Parties can only draw districts which they win under Vall.

(5) Party Drop Out. If a party does not have enough support to make a winning district during
their next turn, they cannot choose another districting.

In the protocol parties play a game where they take turns in a circular fashion where the first party
in the first round is chosen at random. A round consists of 1 turn from each party. A turn consists of
a party drawing one district that will be in the final districting. If it is a party’s turn but they cannot
create a winning district under Vall, start a new game with the remaining parties and remaining
area from the districting created by the previous map. The first turn goes to the following party
from the previous game. The game concludes when all districts are drawn. In this protocol there
exists two possible optimal strategies. Both strategies are generalizations of the optimal strategy for
I cut I choose protocol for 2 players.

Strategy 4.1. Efficient: A player uses as little support as possible to win a district. For example,
in the 3 player case with parties A, B, and C for A playing the efficient strategy, A would create a
district with xA = 1

3 + 2ε, xB = 1
3 − ε and xc = 1

3 − ε for ε > 0.
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Strategy 4.2. Cracking: A players uses the maximum amount of support from 1 other player while
still winning the district. This strategy does not depend on the number of parties. For example, in
the 3 player case with parties A, B, and C when A is playing the cracking strategy against B it
follows that xA = 1

2 + ε, xB = 1
2 − ε and xC = 0 for ε > 0.

Note: The cracking and the efficient strategies are the same for 2 players.

There exists a third logical strategy called Packing, Such that a party is creates a district with
only the support of 1 opposing party. This strategy is disqualified under assumption (4) in our
protocol. However, this strategy is less effective for the party implementing it compared with the
other two strategies. In essence when a party is packed, they gain an extra win for that round, but
they only have to spend an extra 1

2 more support than if they were cracked. This gives the party
that is packed a higher wins per support spent overall than the cracking strategy.

We define new notation for the new protocol. Let n be the number of districts and P (3) be the
total number of wins by a party P when there exists 3 parties at the beginning of the protocol. As
before, xP is the total support of a player in the state .

We can now define a lower bound for the number of wins that a party can guarantee themselves
to win using each strategy.

Theorem 4.3. For a party P in the 3 party protocol playing

i. efficient strategy, P (3) ≥ 3
4xP −

3
4 ,

ii. cracking strategy, P (3) ≥ 2
3xP −

2
3 .

Proof of i. Using induction on the number of districts n, we will prove A(3) ≥ 3
4xA −

3
4 for a party

A using the efficient strategy for n districts. Let xA,n be the amount of support in for A when n
districts remain.

Base cases: Assume n = 0, then xA,0 = 0 and A(3) = 0. It follows that A(3) = 0 ≥ 3
4 (0)− 3

4 =
− 3

4 , so the inequality holds.

Assume n = 1, then xA,1 ≤ 1 and it follows that 3
4xA,1 −

3
4 ≤

3
4 (1) − 3

4 = 0. Since A(3) ≥ 0 it
follows that A(3) ≥ 3

4xA,1 −
3
4 .

Assume n = 2, then xA,2 ≤ 2. If 1 < xA,2 ≤ 2 then 3
4xA,2 −

3
4 ≤

3
4 (2) − 3

4 = 3
4 . If 1 < xA,2 ≤ 2

then A(3) ≥ 1 and thus A(3) ≥ 3
4xA,2 −

3
4 .

If 1 ≥ xA,2 then 3
4xA,2 −

3
4 ≤

3
4 (1)− 3

4 = 0. Since A(3) ≥ 0 it follows that A(3) ≥ 3
4xA,1 −

3
4 .

Inductive Hypothesis: Suppose for districts n ≥ 3 A(3) ≥ 3
4xA,n−3− 3

4 . In the worst case scenario
for A, both of A’s opponents crack A. Thus, in order for A to win 1 district per round, A uses 4

3 of
their support. Then for n districts it follows that A has 1 win and a support of xA,n−3 ≥ xA,n − 4

3 .
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By inductive hypothesis,

A(3) ≥ 3

4
xA,n−3 −

3

4

≥ 3

4
(xA,n −

4

3
)− 3

4
+ 1

=
3

4
xA,n − 1− 3

4
+ 1

=
3

4
xA,n −

3

4
.

Therefore, by induction

A(3) ≥ 3

4
xA −

3

4
.

Proof of ii. Using induction on the number of districts n, we will prove A(3) ≥ 2
3xA −

2
3 for a party

A using the cracking strategy for n districts.

Base cases: Assume n = 0, then xA,0 = 0 and A(3) = 0. It follows that A(3) = 0 ≥ 2
3 (0)− 2

3 =
− 2

3 , so the inequality holds.

Assume n = 1, then xA,1 ≤ 1 and it follows that 2
3xA,1 −

2
3 ≤

2
3 (1) − 2

3 = 0. Since A(3) ≥ 0 it
follows that A(3) ≥ 2

3xA,1 −
2
3 .

Assume n = 2, then xA,2 ≤ 2. If 1 < xA,2 ≤ 2 then 2
3xA,2 −

2
3 ≤

2
3 (2) − 2

3 = 2
3 . If 1 < xA,2 ≤ 2

then A(3) ≥ 1 and thus A(3) ≥ 2
3xA,2 −

2
3 .

If 1 ≥ xA,2 then 2
3xA,2 −

2
3 ≤

2
3 (1)− 2

3 = 0. Since A(3) ≥ 0 it follows that A(3) ≥ 2
3xA,1 −

2
3 .

Inductive Hypothesis: Suppose for districts n ≥ 3 A(3) ≥ 2
3xA,n−3− 2

3 . In the worst case scenario
for A, A is being cracked by both opponents. Thus, since A is playing the cracking strategy, in order
for A to win 1 district per round, A uses 3

2 of their support. Then for n districts it follows that A
has 1 win and a support of xA,n−3 ≥ xA,n − 3

2 .
By inductive hypothesis,

A(3) ≥ 2

3
xA,n−3 −

2

3

≥ 2

3
(xA,n −

3

2
)− 2

3
+ 1

=
2

3
xA,n − 1− 2

3
+ 1

=
2

3
xA,n −

2

3
.

Therefore, by induction

A(3) ≥ 2

3
xA −

2

3
.
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4.2 Generalizing the 3 Party Protocol to m Parties

We can now generalize the 3 party protocol to m parties. The generalization of the protocol extends
directly with the same assumptions. Let P (m) be the total number of wins by a party P when there
exists m parties at the beginning of the protocol.

Theorem 4.4. For a party P in the m party protocol playing the

i. efficient strategy, P (m) ≥ 2m
m2−m+2xP − 1.

ii. cracking strategy, P (m) ≥ 2
mxP − 1.

Proof of i. Using induction on the number of districts n, we will prove A(m) ≥ 2m
2+m2−mxA − 1 for

a party A using the efficient strategy for n districts. Let γ ∈ [0,m− 1]. and γ ∈ N.
Base Case: We consider all base cases where n ≤ m − 1. Therefore it follows that the support of
xA,γ is 0 ≤ xA,γ ≤ m− 1. Thus

xA,γ ≤
m2 −m
m

<
m2 −m+ 2

m

=
2(m2 −m+ 2)

2m
.

Therefore,

xA,γ <
2(m2 −m+ 2)

2m

0 ≤ 2m

m2 −m+ 2
xA,γ < 2.

Therefore there are two cases:
Case 1: Assume 2 > 2m

m2−m+2xA,γ > 1.
It follows that

xA,γ >
m2 −m+ 2

2m

Assume for the sake of contradiction that A wins no districts if xA,γ >
m2−m+2

2m . In the worst case,
after all m − 1 opponents crack A, xA,γ >

1
m . However, the support must have been added to a

districting making A win 1 district as in this scenario all m−1 would have made A spend 1
2 support,

which is a contradiction. Thus A(m) ≥ 1. If 2 > 2m
m2−m+2xA,γ > 1 then 1 > 2m

m2−m+2xA,γ − 1 > 0

therefore, 1 > 2m
m2−m+2xA,γ − 1. Thus A(m) ≥ 2m

m2−m+2xA,γ − 1.

Case 2: Assume 1 ≥ 2m
m2−m+2xA,γ ≥ 0.

It follows that

m2 −m+ 2

2m
≥ xA,γ ≥ 0.
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Then,
2m

m2 −m+ 2
xA,γ − 1 ≤ 2m

m2 −m+ 2

(
m2 −m+ 2

2m

)
− 1 = 0.

Since A(m) ≥ 0 it follows that for 1 ≥ 2m
m2−m+2 ≥ 0,

A(m) ≥ 2m

m2 −m+ 2
xA − 1.

Inductive Hypothesis: Suppose that for n ≥ m, A(m) ≥ 2m
m2−m+2xA,n−m − 1. In the worst case

scenario for A, A’s m− 1 opponents crack A meaning A spends 1
2 support for each opponents turn,

thus A spends m−1
2 , and A will spend 1

m , from the efficient strategy, to win a district. Therefore to

win 1 district per round A spends at most 1
m + m−1

2 = m2−m+2
2m . Then for n districts it follows that

after 1 round, A has 1 win and support of xA,n−m ≥ xA,n − m2−m+2
2m .

By inductive hypothesis,

A(m) ≥ 2m

m2 −m+ 2
xA,n−m − 1

≥ 2m

m2 −m+ 2

(
xA,n −

m2 −m+ 2

2m

)
− 1 + 1

=
2m

m2 −m+ 2
xA,n − 2 + 1

=
2m

m2 −m+ 2
xA,n − 1.

Therefore,by induction

A(m) ≥ 2m

m2 −m+ 2
xA − 1

for all districts n ≥ 0.

Proof of ii. Using induction on the number of districts n, we will prove A(m) ≥ 2
mxA−1 for a party

A using the cracking strategy for n districts.
Base Case: We consider all base cases where n ≤ m − 1. Therefore it follows that the support of
xA,γ is 0 ≤ xA,γ ≤ m− 1. Thus,

xA,γ ≤ m− 1

< m

=
2m

2
.

Therefore
2

m
xA,γ < 2.

There are two cases:
Case 1: 2 > 2

mxA,γ > 1.
It follows that

xA,γ >
m

2
.
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Assume for the sake of contradiction that A wins no districts if xA,γ >
m
2 . In the worst case, after

all m − 1 opponents crack A, xA,γ ≥ m
2 −

m−1
2 = 1

2 . However, the support must have been added
to a districting making A win 1 district as in this scenario all m − 1 would have made A spend 1

2
support, which is a contradiction. Thus A(m) ≥ 1. If 2 > 2

mxA,γ > 1 then 1 > 2
mxA,γ − 1 > 0 and

therefore, 1 > 2
mxA,γ − 1. Thus A(m) ≥ 2

mxA,γ − 1.

Case 2: 1 ≥ 2
mxA,γ ≥ 0. It follows that

m

2
≥ xA,γ ≥ 0.

Therefore,
2

m
xA,γ − 1 ≤ 2

m

(m
2

)
− 1 = 0.

Since A(m) ≥ 0 it follows that for 1 ≥ 2
m ≥ 0,

A(m) ≥ 2

m
xA − 1.

Inductive Hypothesis: Suppose that for n ≥ m, A(m) ≥ 2
mxA,n−m−1. In the worst case scenario for

A, A’s m− 1 opponents crack A making A spend 1
2 support for each opponents turn, thus A spends

m−1
2 from opponents, and A will spend 1

2 , from the cracking strategy to win a district. Therefore
to win 1 district per round A spends at most m

2 . Then for n districts it follows that after 1 round,
A has 1 win and support of xA,n−m ≥ xA,n − m

2 .
By inductive hypothesis

A(m) ≥ 2

m
xA,n−m − 1

≥ 2

m

(
xA,n −

m

2

)
− 1 + 1

=
2

m
xA,n − 2 + 1

=
2

m
xA,n − 1.

Therefore, by induction

A(m) ≥ 2

m
xA − 1

for all districts n ≥ 0.

The efficient strategy provides the maximum lower bound on the number of wins regardless of
the strategies played by the party’s opponents. However, the strategy that will maximize a party’s
wins in a given districting relies on knowing their opponents strategies. For example, if all other
parties agree to crack 1 other party, the cracking parties will have a higher wins per support spent
ratio than if all parties play efficiently. This is true withstanding the support of the cracked party,
the ratio is proportional to the support of the cracked party. However, if a party cannot convince the
other parties to crack the same target party, some cracking parties will have lower wins per support
spent ratios than if all parties played efficiently. Therefore, a party maximizes their wins when they
have the knowledge of the other parties strategies and can adapt to what the other parties will do
throughout each sub-game.
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5 Future Work

While we prove that if there are no geometric constraints, the LRY protocol can return a result
as most 2 from the geometric target, we also give an example where if geometric constraints are
insisted, this claim is not true. Therefore the question remains of how likely a typical state with
geometric constraints is to differ from the geometric target by more than 2. While it seems likely
that a contrived state must be created in order to have a coin flip deviate from the geometric target
by more than 2, a quantification of this likely hood has yet to be explored.

For our m player protocol we provide a lower bound on the number of wins, however there is
still a question if one could relax the assumptions of the protocol and still find a lower bound on the
number of wins for a party. One way these assumptions could be relaxed is assuming Vall is not true
and each party has their own voting model that could be different from the accepted voting model
Vall. Another assumption that could be relaxed is the assumptions that there is an accepted voting
model at all, however some constraints would have to be put on the parties so that they cannot
exert too much control over the other parties once they no longer have support.

References

[1] R. Barrera, K. Nyman, A. Ruiz, F. E. Su, and Y. X. Zhang. Envy-free and Approximate
Envy-free Divisions of Necklaces and Grids of Beads. ArXiv e-prints, October 2017.

[2] Maria Chikina, Alan Frieze, and Wesley Pegden. Assessing significance in a markov chain
without mixing. Proceedings of the National Academy of Sciences, 114(11):2860–2864, 2017.

[3] John Cloutier, Kathryn L. Nyman, and Francis Edward Su. Two-player envy-free multi-cake
division. Mathematical Social Sciences, 59(1):26 – 37, 2010.

[4] M. Duchin. Gerrymandering metrics: How to measure? What’s the baseline? ArXiv e-prints,
January 2018.

[5] F. Frick, K. Houston-Edwards, and F. Meunier. Achieving rental harmony with a secretive
roommate. ArXiv e-prints, February 2017.

[6] Z. Landau, O. Reid, and I. Yershov. A fair division solution to the problem of redistricting.
Social Choice and Welfare, 32(3):479–492, 2009.

[7] Zeph Landau and Francis Edward Su. Fair division and redistricting. CoRR, abs/1402.0862,
2014.

[8] Wesley Pegden, Ariel D. Procaccia, and Dingli Yu. A partisan districting protocol with provably
nonpartisan outcomes. CoRR, abs/1710.08781, 2017.
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