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The Models

» Incompressible Navier-Stokes equations (NSE)

% + (u” - V)u¥ —vAu” +Vp¥ =
V.u =
Ul =
uy|t=0 =

» Euler equations for inviscid (dry) fluid

0
%+(u°-V)u°+Vp° ~
v-u® = 0
uw.nl,, = given

u0|t:0 = Uo.



The Main Issue

» Major issue: (model validity)
u’ —u’asv — 07?

» Yes for the case without physical boundary. For instance for
whole space, periodic box or free-slip: Wolibner, Golovin,
Yudovich, Swann, McGrath, Kato, Lions, Xiao&Xin (CPAM),....

» Yes for the case with Navier slip boundary conditions (no leading
order boundary layer): Lopez-Filho& Lopez& Planas(SIMA),
Kelliher(SIMA), Kim(SIMA), Wang& Wang& Xin (CMS),.....

» Also results on related system: Masmoudi, Grenier, ...

» Case with physical boundary is difficult in general.

» No convergence in L™= or H* k > % is possible.

» Euler can be valid in the interior region (away from the boundary)
but not up to the boundary

» What happens near the boundary is important (for drag ...)

» d’Alembert’s paradox (zero drag for inviscid incompressible
potential flow)



Example 1

v

Plane parallel channel flow ansatz (characteristic)

Q=R'x(0,00),u” = (Uf(z,1),0),p" =0, uf|,_, =0
> Reduced NSE: 24 1/8;7“5 =f, uy|,_,=given
> Reduced Euler: 24 =
» Boundary layer: uf — u ~ e(ﬁ)
» Foruy|,_,=afi =b,
t
uy(z,t) = aerf(;2=) + b [ erf(zm) ds,ud(z,t) = a+ bt.
» Generation of vorticity near the boundary.

» Obstruction to convergence in L, H', no uniform estimate in
H'(Q), uniform only away from the boundary, ...

» Disc version: Matsui, Bona& Wu, Kelliher, ... (see also examples
3 and 4)




Schematic plot for characteristic case

Figure: Schematic plot of boundary
layer in the no-slip no penetration
case

Inviscid (Euler)

Figure: horizontal velocity evolution

Boundary Layer
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(boundary layer)
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Example 2
» Channel flow with injection/suction (non-characteristic)

Q=R x(0,H), u”=(uv(z,t),-V), p"=0, UHz:OH:o
» Reduced NSE
ouy our  dPuy .
ot oz Vo~ Uil—on=0
» Reduced Euler
oud ous 0
ot~ Voz ~ il =0
» Steady state case (essentially Friedrichs)
f1 f1 H Vz
uj(z)=—-——z+ 1 —exp(———
(@) = V24 Vi ooy (1~ P

v

Boundary layer (general)

V4
qu — U10 ~ 9(;)

v

Boundary layer in downwind direction only, narrower (more
singular).



Schematic plot for the non-characteristic case

Figure: Domain with injection and
suction
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Figure: Horizontal velocity plot




Ludwig Prandtl 1875-1953




Prandtl 1904 theory

» All functions and their horizontal derivatives are bounded

» Viscous and inviscid flows match outside a thin layer (boundary
layer) near the boundary.

The boundary layer is of thickness proportional to /v.
Stretched coordinates Z = %

v

v

v

Prandtl’s 1904 resolution
The physical processes in the boundary layer between
fluid and the solid body can be calculated in a
sufficiently satisfactory way if it is assumed that the fluid
adheres to the walls, so that the total velocity there is
zero - or equal to the velocity of the body. If the viscosity
is very small and the path of the fluid along the wall is
not too long, the velocity will have again its usual value
very near to the wall. In this thin transition layer the
sharp changes of velocity, in spite of the small viscosity
coefficient, produce noticeable effects.



Prantl equation
Use stretched variable Z = 2 and drop lower order terms.

N
» Prandtl equation: approximate u” = (uy, 1%, us) and p* = p
directly
Orlh + U Oxly + UsD Uy — v th + 0xP°| _y = fi|,_
ap”
0z 0,
6)(”1 + azU3 - 0,
U |z:0 = 0’ U |z:oo = U?(X, t)’ u3’z:0 =0 s ‘t:O = U10(X, Z)

(Ol + L0, U 4 0yp° = 7, at z = 0)

» Issues with Prandil theory

» Well-posedness of the Prandtl equation: Oleinik, Xin&Zhang,
E&Engquist, Sammartino&Caflisch, Grenier,
Gerard-Varet&Dormy,...

» Matching of the solutions (essentially open): Nickel, Fife, Serrin,
Sammartino&Caflisch, Lombardo&Cannone&Sammartino,
Temam&W., ...

» Expected result: short time



Two open problems from Oleinik’s book

1. in Sect. 1.1 it has been shown how on the basis of certain
physical assumptions, called the Prandtl hypotheses, the
Navier-Stokes equations can be simplified to yield the system of
the boundary layer equations. Is it possible to give a strict
mathematical justification of this procedure and find the limits of
applicability of the Prandtl hypotheses?

2. It follows from the theorems formulated in Sect. 1.2 that under
certain assumptions, the solutions of the Prandtl system are
close to those of the corresponding Navier-Stokes equations
near the boundary of the body. Is it possible to generalize these
results and obtain an asymptotic solution of the Navier-Stokes
system on the basis of the solutions of the boundary layer
equations and the Euler-Bernoulli equations?

from Mathematical Models in Boundary Layer Theory by O.A. Oleinik
and V.N. Samokhin, Chapman and Hall /CRC, 1999. Open problems
1 & 2 onp. 500.



Olga Arsenievna Oleinik 1925-2001




Prandtl theory: Nickel’s result (1963)

» no-slip steady state on Q = (0, L) x (—H, H)
> I={x=0}u{lz[=H}
> assume
- () p'=p%
> (2) Uz < A UY,, < A B(H? — 22) < wy,uf < C,
> (3) lim,_o |[u” — u||te(r) = O;
> (4) |im,,_,0 VHU1XX||L°°(Q) =0.
» Then

lim [|u¥ — ul|joc(qy =0
,HoH [l Lo ()



Prandtl theory: Fife’s result (1965)

» no-slip steady state on Q = (0, L) x (0, 00)
» assume
> 1PY |lese (@) + 1P°l oo () < C;
uy > Mz, ui(0,z) > Mmin(Z,1);
M~"min(Z,1) < us(0,2) < Mmin(Z,1);
U1Z(07Z) S %!
ur(0,2) — ur (0, 2)| < Mumax(\/g, z),
lpx(X) — PX(x,0)] < Mv;
> [tr22(0,2) — px(0)] < M(2)?for 0 < £ < zo(v).

» Then V§ € (0,3 — 2V/2), 3k = k(9) such that

v

v

v

v

v

U (x,2) — uy(x,2)| < Cv¥,z e (0,07%),v € (0, 1
1



Prandtl theory: Sammartino & Caflisch analytical data
result (1998)

Short time validity of Prandtl theory under the assumptions
» Half space (in 2 or 3D)

» Analytical data (generalized to analytic in tangential variable only
in 2D by Lombardo, Cannone and Sammartino)



Prandtl type theory: a small variation

» approximate u — u’(~ 0) instead of u (Lyusternik& Vishik, JL

Lions, ...)

» Prandtl type equation (use stretched variable Z = < or 2 spatial

N
scale expansion):

1+ (U)o + 01)0x01 + 0108,y + 050201 — w0201
8)(91 + 8293

0
b1 |z=0 = U |z=0’ 01 |z=oo =0,

» Similar issues as the original approach
» Goal: foru? =u® + 0

u-u?—0,asv—20

0, (1
0, (2
93‘2:0 :éa



Jacques-Louis Lions and Lazar Lyusternik

Figure: Jacques-Louis Lions Figure: Lazar Lyusternik 1899-1981
1928-2001




Approximate solution, difficulty with convergence

» Assume well-posedness and nice decay. Approximate solution:
u? = u® 4 0 satisfies the NSE with an additional term (¢ = v/)

z

€ ~
ﬁw(ﬁ)
» error equation: u® =u —u?

3ue e e a e e e

W+(U~V)U + (u®-V)u? —cAu® +Vg® = f°
vV-u® = 0,
ue|a§z =0
vl

» Difficulty in energy approach: advection in the normal direction
ugo,u? (/ u30,u? - u®)

» Difficulty term vanishes if there is no normal (to the boundary)
flow.



Spectral Constraint

» Key ingredient in the validity of Prandtl theory: a speciral
constraint on the approximate solution u?: 3A independent of the
viscosity v = e such that

it Jo (V[VVE+ (v V)ud-v)
veA ||VHE2

> N> —o0 (4)

where
A={ve (H}(Q)"V-v=0,v#£0}.

» Difficult term: advection in the normal direction

/ V30,u? - v
Q



A Meta Theorem on the validity of Prandtl type theory

Theorem (W. CAM2010)
Suppose that the following two conditions are satisfied
1. The well-posedness of the Prandtl type system (1) together with
appropriate decay at infinity;
2. The verification of the spectral constraint (4) on the approximate
solution u@.
Then the Prandtl type approximation is valid in the sense that

A
o
S

Alw

G

U (izy = U — U — O] 12
1
U8l 2y = lu—U® — 0|21y < Cuvs. (6)



Example 3: 3D plane parallel flow
» Ansatz (W. IlUMJ2001) (v =€)

Q=R'xR'"x(0,1)
u = (u(t,2), ta(t, x, 2),0),ul,_; = (B4(1), Bi(t, x),0),j = 0,1,
Up = (U110(Z)7 Uz,o(X,Z)7 0),f = (f1(t, Z)7 fg(tX,Z)7 0).
» reduced NSE:

Oty — €0zzly = fy,
81U2 + U1O0xUs — €0xxUp — €0z7Un = fg
» reduced Euler
81U$ = f1,
U + oS = b,

» Prandtl type equation (another one at z = 1)
Y — €009 = 0,
03 — €0,209 + 090,603 + UO(t,0)0x03 + 690,u3(t, x,0) = O,
(ﬁ?(t) - U?(ta O)’ Bg(tv X) - Ug(t> X, O)) = (9?7 92)‘2:0



Example 3: 3D plane parallel flow (continued)

» Mazzucato& Niu & W. IUMJ2011:

3
lu—u® = 0 (x) < CO), y(L2) = 2. 7(H') = 5 = (L)

» W. 2001: (via Kato type technique)
u— UOHLW(B) -0
» Mazzucato & Taylor 2010: (via parametrix, no Prandtl)

Loo(L>)



Example 4: Parallel pipe flow
» Ansatz in cylindrical coordinates (W. [IUMJ2001):

Q={r<1,6€[0,27],x eR"}

u= U¢(t7 r)e¢+uX(t7 r, ¢)eX7p = p(t7 r)7u|r:1 = (Oaﬁ¢(t)7/6X(t7 Qs))
» reduced NSE

—(u¢,)2+r(9,p = 0,
1 12
81‘“4) = 73r(f3ru¢) — ﬁugb + f¢,
u, v
6tux+7¢6¢ux - 7a,(ra,ux)+ri’zaqﬁ(buerfX,
» reduced Euler
(U2 +rop® = 0,
Uy = fy,

ug
8tu2+78¢u,? = f,



Example 4: Parallel pipe flow (continued)

v

Prandtl type

010y — Ogbs = O,
Otlx + 005US(t, 1) + 040405 + U (1,1)00x = OFROx

Han & Mazzucato & Niu & W.2011:

v

U —u® = 0| 1 (12) 12(h1) L (L) — O

v

Le°(L*>) convergence requires anisotropic embedding as well as
decomposition of domain into boundary region and interior
region.

Curvature effects reflected in pressure estimates.

W. 2001: L>*(L?) (via Kato type on more general ansatz
u=ug(t, r,x)e, + ux(t,r,p)ex);

Mazzucato & Taylor 2010: "L>(H")" (via parametric);

v

v

v



More general parallel pipe flow

> u = Uy(t, x,r)es + ux(t, r,9)ex, p(t, x, r) reduced NSE
—(U¢)2 +rop = 0,
Oyly+UxDyly = %8,(rc’),u¢) - %uwyaxxu@ + 1y,

u . 14 v
Oy + T“Sa¢ux+dxp = ?8,(r6,ux) + r—26¢¢ux + f,

> U= Uyt x,r)e, + ux(t, r, Aex, p(t, x, r) reduced NSE (special
case of axisymmetric flow)

—(U¢)2 +rop = 0,
1% 1%
Otlp+UxOxly = 78,(r6,u¢) - ﬁu¢+uaxxu¢ + fy,

6[UX+8xp = %8r(r6rux) + fX7



Example 5: Non-characteristic case (fully nonlinear)

>

Q:R1X(O’H)’ UZ(V1,—V—|—V3),V/" =0,/=1,3,

z=0,H

» reduced Euler (Antontsev& Kazhikhov 1990: 2D, Petcu 2006:
3D): upwind boundary condition

0 0
V1 |z:H = 07 V3 |Z:0,H =0
» Prandtl type equation:
001 520, 0 20, 905
—Voar Vaz =0 0ilo= V00l =0 G5, =0

» Temam & W.1999, 2001, 2002
Ju—u®— 0| Lo (12),Lo0 (L), 12(H) — O

Alekseenko1994 (|lu — u®|[,2 — 0)
» Generalization: Hamouda-Temam, Xie, ...



Connection to another Oleinik’s open problem
Asymptotic expansion of solutions of the system of
boundary layer with strong injection. In this case one
considers the Prandtl system with a small parameter «:

o?u  Ou  Odu 1 adU(x)
@ + @ =0
ox oy

in the domain D = {0 < x < X,0 < y < oo}, with the
conditions

u(x,0) = 0,u(0,y) =0, v(x,0) = e "vp(x),

u(x,y) — U(x), asy — oo,

where U(0) = 0, U(x) > 0 for0 < x < X;dU/dx > 0 and
Vo(x) > 0 for0 < x < X,a = const > 0. It is required to find
the asymptotic expansion of the solution of this problem as
e — 0.

Mathematical Models in Boundary Layer Theory by O.A. Oleinik and



Hopf-Kato type approach
» Hopf (1951) and Kato (1984)’s observation: corrector term 6

does not necessarily obey Prandtl type equation or Prandtl
scaling

» Kato’s result:
;
0 = @l =0 = v [ [ [vup -0
0 low

> choose 6 ~ 0(5(;). suppd € [, U= u +6,u® =u-—u?,

1% 1%
v|VO - VUl < §||ue||iz+c@,
(W V)8l < Co(v)z,

18- V)Wl < Ci(v)E,
1(6-V)8l. < C8(v)2,
00 1
I5glle < Co(w)?



Hopf and Kato

Figure: Eberhard Hopf 1902-1983

Figure: Tosio Kato 1917-1999




Hopf-Kato type result
» no longer spectral constraint type approach
» Prandtl type assumptions lead to affirmative answer to vanishing
viscosity limit (in L2). Examples under v/§(v) — 0 assumption
VeIV US|l 20 mzray — Os (nec.&suff., W.20(
v? IV-UZll 20, :22(r5)) — O, (nec.&suff., W.20(
v[IV2p” [l 20, 7:2080)) — 0, (2D, lyer&Pego& W .2

1 v
32PN 20 7.4 02y — © (2D, W.2001)
()2 IV VU | 20,7225y — O (Temame& W.199¢
5(1/)% ||VTVTUZ HL2(07T;L2(F§)) — O, (Temam& W.199¢

Valll > 0,V.p" > g,6v)?|glliz0,7.1200)) — O, (2D, Temam& W19
Vol > 0,VPe 2 g,v* |gllizo 1200y — 0, (2D, lyer&Pego& W.:
vlI(u” - V)220 72y — O, (lyer&Pego&W.20

VAU B2y — 0, (lyer&Pego& W.20

VU 20,70y — O, (Kelliher2007)



A discrete Hopf-Kato type result
Theorem (Cheng& W. JMP2007)

Assume channel geometry with periodicity in x. uX solves the
truncated NSE (Py is projection onto the 1st Ky horizontal modes)

O Pl VW) — AU £ T = Pt
divuk = 0,
ufl,_on = Pib,
uflio = Prug

Assume that the following conditions are satisfied

Kk

Vk

Vi

K _n
kLU

Then

Huk - UOHLO@(O,T;LZ)

—

—

—

oo (consistency)
0 (vanishing viscosity)

0 (under — resolved condition)

R((Kiv)s + % — Pt 20,711 + [1U® — Pitt®)|



Well-known small scales in fluids
» Prandtl boundary layer thickness

VT (8)

» Kolmogorov dissipation length (3D)
(—)F ~vi (9)

where ¢ is the energy dissipation rate per unit volume and is
presumably independent of the kinematic viscosity.

» Kraichnan dissipation length (2D)

1/31

ol
l=

(10)

~ v
n

where 7 is the enstrophy dissipation rate per unit volume which is
presumably independent of the kinematic viscosity.

» Taylor micro length ,
vU
9

o=

(—) (11)



Conclusion

» Validity of Prandtl theory for special cases

>

>
>
>

half-space with analytical data

case no normal flow/no separation

injection plus suction

Prandtl type assumptions lead to affirmative answer to vanishing
viscosity limit question

» Long way to go ...

>

vvyy

short time well-posedness of Prandtl (characteristic)
short time validity of Prandtl theory (characteristic case)
theory after separation

vanishing viscosity



Thank You!



