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Physical Motivation

Large Scale Dynamics

Crust: Linear Elastic/Brittle Mechanics Mantle: Solid State Convection 
with Variable (Nonlinear) Viscosity

http://www.cev.washington.edu/

Grand Challenge

Explain the formation and motion of the tectonic plates
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Physical Motivation

Plate Boundaries & Molten Rock

Correlation

Volcanos, seismic events, and the plate boundaries
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Physical Motivation

Magmatic Events & Melt Generation

http://www.cev.washington.edu/
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Physical Motivation

Field & Lab Observations of Deformable Porous Flow

Channelization

Braun & Kelemen 2002

Shear Banding

Holtzman, Kohlstedt, & Morgan 2005
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Models

1 Physical Motivation

2 Models
Historical Development–Multiphase Flow
Multiscale Development–Homogenization

3 Evolution & Generalizations
Evolving Microstructures
Sub Grain Scale Processes
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Models Historical Development–Multiphase Flow

Assumptions

Melt Channels
and Pores

Grain
Matrix

1 mm

Two fully interpenetrating incompressible (at grain scale) viscous
fluids,

Zero Reynolds number; no intertial forces,

(((((((((
Re. (∂tu + u · ∇u) = −Re.∇p +∇2u, ∇ · u = 0

Macroscopically, grain matrix is compressible,

Macroscopic constitutive relations must be assumed
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Models Historical Development–Multiphase Flow

Previous Work

Early Multiphase Flow Models

McKenzie 1984
Scott–Stevenson 1984, 1986

Thermodynamic Models

Fowler 1984, 1985, 1989

McKenzie Refined

Spiegelman 1993
Katz et. al. 2007

Systematic Multiphase Flow Models+New Physics

Bercovici–Ricard–Schubert 2001,
Bercovici–Ricard 2003, 2006, 2007,
Hier-Majumder–Ricard–Bercovici 2006,
Takei–Hier-Majumder 2009
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Models Historical Development–Multiphase Flow

Viscously Deformable Porous Flow Equations
Multiphase Flow (“Empirical”)

Conservation of Mass

∂t (ρf φ) +∇ · (ρf φVf ) = melting/freezing (1)

∂t [ρs(1− φ)] +∇ · [ρs(1− φ)Vs ] = −melting/freezing (2)

Darcy’s Law
φ(Vf − Vs) = − K

µf
(∇P − gf ) (3)

Matrix Stress Balance

0 = ρg −∇P +∇ ·
[
(1− φ)µs

(
∇Vs + (∇Vs)T

)]
+∇

[
(1− φ)(ζs − 2

3µs)∇ · Vs
] (4)

Closures

Permeability, K ∼ φn, Bulk viscosity, ζs ∼ φ−m, other physics
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Models Historical Development–Multiphase Flow

Successes & Challenges

Computational Successes

Katz–Spiegelman–Holtzman 2006

Nonlinear Viscosity

Spiegelman–Kelemen–Aharonov 2001

Reactive Flow

Modeling Challenge

Upscale a grain scale model to a macroscopic one with self-consistent
closures.
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Models Multiscale Development–Homogenization

Results

S.–Spiegelman–Weinstein, JGR–Solid Earth, 2010

Macroscopic equations can be derived from a grain scale model of
two viscous fluids via homogenization.

Self-consistent closures for assumed microstructures can be found
numerically:

Permeability: keff. ∝ φn, n ∼ 2

Bulk Viscosity: ζeff. ∝ µsφ−m,m ∼ 1

Anisotropic Viscosity: ηeff. ∼ O(φ)

Bulk viscosity is relatively insensitive to microstructure
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Models Multiscale Development–Homogenization

Homogenization
Bensoussan–Lions–Papanicolaou, Sanchez-Palencia, Auriault,...

D�
�

L

Ω� = �Ω

Need PDE valid at the fine scale,

Lεuε + Nε(uε) = fε, x ∈ Dε

Need separation of scales,

ε = `
L � 1

Multiple Scale Expansion

Field Variables: uε(x) = u0(x, y) + εu1(x, y) + ε2u2(x, y) . . . , y = ε−1x

Derivatives: ∂xj 7→ ∂xj + ε−1∂yj

Expand equations, Match orders of ε (Fredholm Alternative)
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Models Multiscale Development–Homogenization

Fine Scale: Coupled Stokes, Perfectly Periodic Medium

Grain Matrix

∇Xσ
s + ρsg = 0

∇X · vs = 0

σs = −ps I + 2µseX(vs)

Molten Rock

∇Xσ
f + ρf g = 0

∇X · vf = 0

σf = −pf I + 2µf eX(vf )

Interface
σs · n = σf · n

vs = vf

D�
�

L

Ω� = �Ω
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Models Multiscale Development–Homogenization

Homogenized Equations

Darcy

φ(Vf − Vs) = −keff.
µf

(∇P + gf )

Matrix Stress Balance

0 = ρg −∇P +∇ ·
[
(1− φ)µs

(
∇Vs + (∇Vs)T

)]
+∇

[
(1− φ)(ζeff. − 2

3µs)∇ · Vs
]

+∇ ·
[
2ηlmeff.elm(Vs)

]
Closures

Seek keff. = keff.(φ) and ζeff. = ζeff.(φ); φ is a proxy for the
microstructure

ηeff. is new; macroscopic manifestation of grain scale anisotropy
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Models Multiscale Development–Homogenization

Computational Closures: Cell Problems

keff., ζeff., ηeff. are determined by solving Cell problems, Stokes
problems posed on a unit cell

Bulk Viscosity Cell Problem:
∇y · (−ζI + 2ey (ξ)) = 0, ∇y · ξ = 1, in Ys ,

(−ζI + 2ey (ξ)) · n = 0, on γ

ζeff. = µs
(
〈ζ〉s − 2

3(1− φ)
)

Solve ensembles (3D FEM); curve fit as a function of φ
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Models Multiscale Development–Homogenization

Computational Results for Bulk Viscosity
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)

Toy Models of Taylor 1954,
Prud’homme–Bird 1978,
S.–Spiegelman–Weinstein 2010:

ζeff. ∝ µsφ
−1

Tube Domain: 〈ζ〉s = exp(−0.131)φ−1.02(1− φ)0.884

Sphere+Tube Domain: 〈ζ〉s = exp(0.124)φ−0.985(1− φ)1.09

Sphere Domain: 〈ζ〉s = exp(0.301)φ−1.00(1− φ)0.718
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Models Multiscale Development–Homogenization

Remarks on Homogenization

A self-consistent model of a partial melt can be obtained by multiple
scale methods

ζeff. ∼ µsφ−1 has important physical implications:

For φ ∼ 1− 10%, two length scales emerge: shear deformation,
dilatational deformation:

0 = ρg −∇P +∇ ·
[
(1− φ)µs

(
∇Vs + (∇Vs)T

)]
+∇

[
(1− φ)(ζeff. − 2

3µs)∇ · Vs
]

+∇ ·
[
2ηlmeff.elm(Vs)

]
Many studies took ζeff. ∼ µs and constant; these should be revisited
Matrix resists φ→ 0

Reveals the limitations of the Stokes model; if macroscopic features
cannot be observed, the microscopic model is inadequate

Closures still require computation
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Evolution & Generalizations

1 Physical Motivation

2 Models
Historical Development–Multiphase Flow
Multiscale Development–Homogenization

3 Evolution & Generalizations
Evolving Microstructures
Sub Grain Scale Processes
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Evolution & Generalizations Evolving Microstructures

Time Dynamics

Results assumed a static, periodic, microstructure

Motion breaks this assumption

Hierarchical Model

Assume at each instant, medium is nearly periodic due to the granular
nature,
Assume φ does not vary rapidly,
Couple to:

∂t(1− φ) +∇ · [(1− φ)Vs ] = 0

Dynamic Homogenization

Large deformations of a medium–magma & beyond
Close constitutive relations of multiphase flow
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Evolution & Generalizations Sub Grain Scale Processes

Complimentary Deformation Mechanism
Pressure Solution/Grain Boundary Diffusion

Katz–Spiegelman–Holtzman 2006

Hypothesis of computational experiments,
nonlinear rheology, inconsistent with lab
experiments

Dissolution-Precipitation enhanced by stress

May be the preferred mechanism, Holness &
McKenzie 2000

Takei & Holtzman 2009 Grain Boundary
Diffusion
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Evolution & Generalizations Sub Grain Scale Processes

Complimentary Deformation Mechanism, Briefly
Takei & Holtzman Grain Boundary Diffusion

Grain-Grain
Contact

Grain-Liquid
Contact

Macroscopic velocity determines normal, local,
velocity on grain boundary

Vs 7→ vn

Conservation of mass relates normal local strain
rate to normal surface tractions

∇2fn = −NAkT

DΩδ
vn on grain-grain contacts

+ boundary conditions (chemical equilibrium)

Macro stress recovered by averaging fn,

May capture shear banding,

Challenge: Develop this via homogenization
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Evolution & Generalizations

Summary & Acknowledgements

Summary

Partially molten rock plays an important role in large scale
geodynamics,

Some features can be systematically modeled via multiscale methods,

Broader challenge to develop closures for media with evolving
microstructures,

Ongoing challenge to include other deformation mechanisms via
homogenization
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