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A Two-Phase Stokes Flow Problem with Surface Tension

Consider two 2-D immiscible fluids of the same viscosity µ = 1,
separated by a simple closed curve Γ. Their dynamics are governed
by

µ∆u −∇p = 0 on R2 \ Γ, (1)

∇ · u = 0 on R2 \ Γ, (2)

[u] = 0, (3)

[Σ(u, p)n] = −γκn (4)

where

u: fluid velocity; p: pressure; Σ(u, p): Newtonian stress tensor;

[·]: interior value minus exterior value; µ: Newtonian viscosity;

γ: surface tension coefficient; n: outward unit normal;

κ: signed curvature of the interface



The Model Diagram



Related Literature

▶ The Navier-Stokes Problem with Surface Tension
1. The One-Phase Problem

1.1 Solonnikov [23, 26, 22, 27, 28, 29, 2, 25], Mogilevskii and
Solonnikov [14], Solonnikov [26], Shibata and
Shimizu [18, 19, 20], Allain [1], Beale [4], Beale and
Nishida [5], Tani [31], Tani and Tanaka [32]

2. The Two-Phase Problem

2.1 Denisova [6, 8], Denisova and Solonnikov [9, 7], Tanaka [30],
Shimizu [21], Prüss and Simonett [15, 3, 17]

▶ The Stokes Problem with Surface Tension
1. The One-Phase Problem

1.1 Günther and Prokert [13], Prokert [16], Solonnikov [24],
Escher and Prokert [10], Günther and Prokert [13], Friedman
and Reitich [11]



Interface Parametrization

The interface Γ = z(α, t) is parametrized such that the tangent
vector’s magnitude has no dependence on α, i.e.,

zα(α, t) =
L(t)

2π
e i(α+θ(α,t))

where L(t) is the interface length at time t.
We can then derive evolution equations for L(t) and θ(α, t):

Lt(t) = −
∫ π

−π

(1 + θα(α))U(α)dα (5)

θt(α, t) =
2π

L(t)
Uα(α) +

2π

L(t)
T (α)(1 + θα(α)). (6)



Reformulation of the Evolution Equation for L(t)

Using the interior fluid’s incompressibility, we obtain(
L(t)

2π

)2

=R2

(
1 +

1

2π
Im

∫ π

−π

∫ α

0
e i(α−η)

∑
n≥1

in

n!
(θ(α)− θ(η))ndηdα

)−1

.

(7)

This analytical expression for L(t) can be shown to be equivalent
to equation (5).



Steady State Solutions

For any constants c ∈ R and R > 0,

(θ(α, t), L(t)) = (c , 2πR)

is a steady state solution to (5) and (6), which corresponds to a
stationary circle of radius R.



Solution Space

For a periodic function f defined on [−π, π), its Fourier transform
is defined as

F(f )(k) =
1

2π

∫ π

−π
f (α)e−ikαdα. (8)

The corresponding Fourier series is given as

f (α) =
∑
k∈Z

f̂ (k)e ikα. (9)



Solution Space

We let F0,1
ν and Ḟ s,1

ν , s ≥ 0, be spaces of periodic functions on
[−π, π) whose norms

∥f ∥F0,1
ν

=
∑
k∈Z

eν(t)|k|
∣∣∣f̂ (k)∣∣∣ , (10)

∥f ∥Ḟ s,1
ν

=
∑
k ̸=0

eν(t)|k| |k |s
∣∣∣f̂ (k)∣∣∣ , (11)

where

ν(t) =
t

1 + t
ν0, (12)

are finite.



Solution Space

We also use a family of Banach spaces F0,1 and Ḟ s,1, s ≥ 0,
equipped respectively with norms

∥f ∥F0,1 =
∑
k∈Z

∣∣∣f̂ (k)∣∣∣ , (13)

∥f ∥Ḟ s,1 =
∑
k ̸=0

|k |s
∣∣∣f̂ (k)∣∣∣ . (14)

The space F0,1 equipped with the norm (13) is the classical Wiener
algebra, i.e., the space of absolutely convergent Fourier series.



Main Result

Theorem (C.)

Fix γ > 0. If the initial datum θ0 ∈ Ḟ1,1 such that
∣∣F(θ0)(0)

∣∣ and∥∥θ0∥∥Ḟ1,1 are sufficiently small, then for any T ∈ (0,∞) there exists
a unique solution

θ(α, t) ∈ C ([0,T ]; Ḟ1,1
ν ) ∩ L1([0,T ]; Ḟ2,1

ν ) (15)

to the equations (5) and (6), where ν is given in (12) and ν0 > 0
is dependent on θ0. The solution becomes instantaneously
analytic. In particular, for any t ∈ [0,T ]

∥θ(t)∥Ḟ1,1
ν

+

(
Λ(
∥∥θ0∥∥Ḟ1,1)− ν0

)∫ t

0
∥θ(τ)∥Ḟ2,1

ν
dτ ≤

∥∥θ0∥∥Ḟ1,1 ,

(16)

where Λ(
∥∥θ0∥∥Ḟ1,1)− ν0 > 0. Moreover, ∥θ(t)∥Ḟ1,1

ν
decays

exponentially in time.



Boundary Integral Formulation

The fluid velocity, which appears in the evolution equation, is
represented by the single-layer potential form, i.e.,

uj(x) =
1

4π

∫
Γ
(−γκ(s)n(s))iGij(x − y(s))ds, x ∈ R2, (17)

where u(x) = (u1(x), u2(x)) and G = (Gij) given by

Gij(w) = −δij log |w |+
wiwj

|w |2
(18)

is the Green’s function for two-dimensional infinite unbounded
incompressible Stokes flow.



Key Proof Strategy

We linearize the evolution equation for θ around a steady state
solution:

∂tϕ+ (−∆)1/2ϕ = R. (19)

The R part can be shown to be ”small” in the norm of the
solution space Ḟ1,1

ν .

In the Fourier space, this equation becomes

∂t ϕ̂(k) = − |k | ϕ̂(k) + R̂(k), (20)

which clearly reveals that the principal linear part is diagonalized.



Derivation of the A Priori Estimate

Take the time derivative of

∥ϕ∥Ḟ s,1
ν

=
∑
k ̸=0

eν(t)|k| |k |s
∣∣∣ϕ̂(k)∣∣∣ = 2

∑
k≥1

eν(t)kks
∣∣∣ϕ̂(k)∣∣∣ (21)

to obtain

d

dt
∥ϕ∥Ḟ s,1

ν
(22)

=2
∑
k≥1

eν(t)kν ′(t)ks+1
∣∣∣ϕ̂(k)∣∣∣

+ 2
∑
k≥1

eν(t)kks
ϕ̂(k) ∂

∂t ϕ̂(k) + ϕ̂(k) ∂
∂t ϕ̂(k)

2
∣∣∣ϕ̂(k)∣∣∣ .



Derivation of the A Priori Estimate

Using careful estimates, we obtain

d

dt
∥ϕ∥Ḟ s,1

ν
≤ν ′(t) ∥ϕ∥Ḟ s+1,1

ν
− π

2

R

γ

4π

∑
k≥2

eν(t)kks+1
∣∣∣ϕ̂(k)∣∣∣ (23)

+
2π

L(t)

∥∥∥Ñ∥∥∥
Ḟ s,1

ν

(24)

+ 2
γ

4π

1

R
A ∥ϕ∥F0,1

∑
k≥2

eν(t)kks+1
∣∣∣ϕ̂(k)∣∣∣ . (25)



Handling the Dissipation Term

Note that ∫ π

−π
zα(α, t)dα = 0. (26)

In HLS parametrization, this identity yields

0 =

∫ π

−π
e i(α+ϕ̂(1)e iα+ϕ̂(−1)e−iα+

∑
|k|>1 ϕ̂(k)e

ikα)dα. (27)



Handling the Dissipation Term

Proposition (Gancedo, Garćıa-Juárez, Patel, and Strain)

Let r ∈ (0, 12 log
5
4). Consider ∥ϕ∥F0,1 < r . Then∣∣∣ϕ̂(1)∣∣∣+ ∣∣∣ϕ̂(−1)

∣∣∣ ≤ CI (r)r
∑
|k|≥2

∣∣∣ϕ̂(k)∣∣∣ ,
where

CI (r) =
1

r
· 2er (er − 1)

1− 4(e2r − 1)
.

Here, CI (r) > 0 is a strictly increasing function of r where

lim
r→0+

CI (r) = 2,

lim
r→log 5

4

−
CI (r) = ∞.



Derivation of the A Priori Estimate

∥∥∥Ñ∥∥∥
Ḟ1,1

ν

≤∥ϕ∥Ḟ2,1
ν

(
R1(∥ϕ∥F0,1

ν
) ∥ϕ∥Ḟ1,1

ν
+ R2(∥ϕ∥F0,1

ν
) ∥ϕ∥F0,1

ν

+ R3(∥ϕ∥F0,1
ν
) ∥ϕ∥F0,1

ν
∥ϕ∥Ḟ1,1

ν
+ R4(∥ϕ∥F0,1

ν
) ∥ϕ∥2Ḟ1,1

ν

+ R5(∥ϕ∥F0,1
ν
) ∥ϕ∥Ḟ1,1

ν

+ 3
(
H3 ∥ϕ∥Ḟ0,1

ν
+ H4 ∥ϕ∥Ḟ1,1

ν

)
+ 3

(
D1(∥ϕ∥F0,1

ν
) ∥ϕ∥2F0,1

ν
+ D2(∥ϕ∥F0,1

ν
) ∥ϕ∥F0,1

ν
∥ϕ∥Ḟ1,1

ν

)(
1 + 2 ∥ϕ∥Ḟ1,1

ν

)
+

(
D1(∥ϕ∥F0,1

ν
) ∥ϕ∥F0,1

ν
+ D2(∥ϕ∥F0,1

ν
) ∥ϕ∥F0,1

ν

)(
1 + 2 ∥ϕ∥Ḟ1,1

ν

)
+ 6 ∥ϕ∥Ḟ1,1

ν

(
H3 ∥ϕ∥F0,1

ν
+ H4 ∥ϕ∥Ḟ1,1

ν

)
+ 2

(
H3 ∥ϕ∥F0,1

ν
+ H4 ∥ϕ∥Ḟ1,1

ν

))
.



Derivation of the A Priori Estimate

Using the estimate for
∥∥∥Ñ∥∥∥

Ḟ1,1
ν

and the implicit function theorem

for
∣∣∣ϕ̂(±1)

∣∣∣, we obtain

d

dt
∥ϕ∥Ḟ1,1

ν
≤ −

(
Λ(∥ϕ∥Ḟ1,1

ν
)− ν ′(t)

)
∥ϕ∥Ḟ2,1

ν
(28)

for some function Λ, which is a monotone decreasing function of
∥ϕ∥Ḟ1,1

ν
, and

ν ′(t) =
ν0

(1 + τ)2
. (29)



Regularization Argument

Theorem (Picard-Lindelöf)
Let O ⊆ B be an open subset of a Banach space B with norm ∥·∥B and let
F : O → B be a nonlinear operator satisfying the following conditions:

1. F maps O into B.

2. F is locally Lipschitz continuous, i.e., for any X ∈ O there exists L > 0
and an open neighborhood UX ⊆ O of X such that∥∥∥F (X̃ )− F (X̂ )

∥∥∥
B
≤ L

∥∥∥X̃ − X̂
∥∥∥
B

for all X̃ , X̂ ∈ UX .

Then for any X0 ∈ O, there exists a time T such that the ordinary differential
equation

dX

dt
= F (X )

X (0) = X0 ∈ O

has a unique local solution X ∈ C 1((−T ,T );O). If F does not depend
explicitly on time, then solutions to the above ODE can be continued until they
leave the set O.



Regularization Argument

Cast our original evolution equation

θt(α) =
2π

L(t)
(Uα(θ)(α) + T (θ)(α)(1 + θα(α))),

L(t) = 2πR

(
1 +

1

2π
Im

∫ π

−π

∫ α

0
e i(α−η)

∑
n≥1

in

n!
(θ(α)− θ(η))ndηdα

)− 1
2

into an ODE on an infinite-dimensional Banach space:

dθN
dt

= (J 1
N ◦ GN)(θN). (30)



Regularization Argument

where

GN(θN)

=R−1

(
1 +

1

2π
Im

∫ π

−π

∫ α

0
e i(α−η)

∑
n≥1

in

n!
(θN(α)− θN(η))

ndηdα

) 1
2

·
(
(Uα)N(θN) + TN(θN)

(
1 + (θN)α

))
.



Regularization Argument

Apply the Picard-Lindelöf Theorem by setting B = Hm
N , O = OM ,

and F = J 1
N ◦ GN , where

Hm
N

=

{
f ∈ Hm([−π, π)) : supp(f̂ ) ⊆ [−N,N], f̂ (±1) = 0, Im(f ) = 0

}
and

OM = {f ∈ Hm
N : ∥f ∥Hm < M}.



Regularization Argument

Lemma (Aubin-Lions)

Let X0, X , and X1 be Banach spaces such that

X0 ⊆ X ⊆ X1,

with compact embedding X0 ↪→ X , and let p ∈ (1,∞]. Let G be a
set of functions mapping [0,T ] into X1 such that G is bounded in
Lp([0,T ];X ) ∩ L1loc([0,T ];X0) and ∂tG is bounded in
L1loc([0,T ];X1). Then G is relatively compact in Lq([0,T ];X ),
where q ∈ [1, p).



Regularization Argument

▶ Aubin-Lions’ Lemma allows us to extract a subsequence of
these solutions that is convergent in L2([0,T ]; Ḟ1,1

ν ) for any
T > 0.

▶ To apply Aubin-Lions’ Lemma, we set X0 = Ḟ2,1
ν , X = Ḟ1,1

ν ,
X1 = Ḟ0,1

ν , p = ∞, and let

G = {θN : N ∈ N}.

The limit of the extracted subsequence is a weak solution to
the original equation.



Inheritance of the A Priori Estimate

For all N ∈ N and for all t ∈ [0,T ],

∥ϕN(t)∥Ḟ1,1
ν

+

(
Λ(

∥∥θ0∥∥Ḟ1,1)− ν0

)∫ t

0
∥ϕN(τ)∥Ḟ2,1

ν
dτ ≤

∥∥θ0∥∥Ḟ1,1 .

(31)



Inheritance of the A Priori Estimate
By Fatou’s lemma, for any t ∈ [0,T ],∫ t

0
lim inf
N→∞

∥ϕN(τ)∥Ḟ2,1
ν

dτ ≤ lim inf
N→∞

∫ t

0
∥ϕN(τ)∥Ḟ2,1

ν
dτ.

Then we obtain for all t ∈ [0,T ]

∥ϕ(t)∥Ḟ1,1
ν

+

(
Λ(

∥∥θ0∥∥Ḟ1,1)− ν0

)∫ t

0
∥ϕ(τ)∥Ḟ2,1

ν
dτ

≤ lim inf
N→∞

∥ϕN(t)∥Ḟ1,1
ν

+

(
Λ(
∥∥θ0∥∥Ḟ1,1)− ν0

)
lim inf
N→∞

∫ t

0
∥ϕN(τ)∥Ḟ2,1

ν
dτ

≤ lim inf
N→∞

(
∥ϕN(t)∥Ḟ1,1

ν
+

(
Λ(
∥∥θ0∥∥Ḟ1,1)− ν0

)∫ t

0
∥ϕN(τ)∥Ḟ2,1

ν
dτ

)
≤
∥∥θ0∥∥Ḟ1,1 .

Therefore,

θ ∈ L∞([0,T ]; Ḟ1,1
ν ) ∩ L1([0,T ]; Ḟ2,1

ν ). (32)



Uniqueness of Solutions

Taking the time derivative of

∥θ1 − θ2∥Ḟ1,1 = 2
∑
k>0

|k | |F(θ1 − θ2)(k)| , (33)

we obtain

d

dt
∥θ1 − θ2∥Ḟ1,1 (34)

=
∑
k>0

|k |
|F(θ1 − θ2)(k)|

·
(

d

dt
F(θ1 − θ2)(k) · F(θ1 − θ2)(k)

+ F(θ1 − θ2)(k) ·
d

dt
F(θ1 − θ2)(k)

)
.



Uniqueness of Solutions

After careful estimates, we obtain that for sufficiently small∥∥θ0∥∥Ḟ1,1 ,

d

dt
∥ϕ1 − ϕ2∥Ḟ1,1 ≤ E ∥ϕ1 − ϕ2∥F1,1 , (35)

where E is a coefficient that may depend on ∥ϕ1∥Ḟ1,1 , ∥ϕ2∥Ḟ1,1 ,
∥ϕ1∥Ḟ2,1 , and ∥ϕ2∥Ḟ2,1 , and is integrable in time.



An Associated Problem I: The Muskat Problem

▶ The Muskat problem describes the dynamics of incompressible
fluids of different nature (e.g., oil and water) permeating
porous media (e.g., tar sands) under gravity.

▶ Gancedo, Garćıa-Juárez, Patel, and Strain [12] established
global-in-time existence, uniqueness, and instantaneous
analyticity of solutions for small initial data of low regularity
for a 2-D Muskat bubble immersed in Muskat flow.



An Associated Problem II: The Peskin Problem

▶ The Peskin problem is a fluid-structure interaction (FSI)
problem that describes the dynamics of a 1-D closed elastic
string separating 2-D Stokes fluids.

▶ The only mathematical difference between the Peskin model
and mine is the nature of the driving force.

▶ The Peskin model is driven by the elasticity of the string,
which obeys the following general law of elasticity:

∂θ

(
T (|∂θX |) · ∂θX

|∂θX |

)
· |∂θX |−1 . (36)

▶ The most general setting in which well-posedness has been
established for the Peskin problem is where T (α) > 0 and
T ′(α) > 0.



Computational Verification

To verify the analytical results, we numerically solve the following
dynamics equation for the fluid interface

∂tX (θ, t) =
1

4π

∫
Γ
(−γκ(s)n(s))G (X (θ, t)− X (s, t))ds, x ∈ R2.

We discretize the interface with N points for some fixed even
integer N. For a fixed time step size dt > 0, let

X n = (X n
0 ,X

n
1 , . . . ,X

n
N−1)

be the position of the interface at time n · dt.



Computational Verification

Given the initial position X 0 of the interface, the boundary integral
can be written as

∂tX (θ, t)

= − 1

4 |∂θX 0|
H(∂θX )− 1

4
H
((

1

|∂θX |
− 1

|∂θX 0|

)
∂θX

)
(θ)

− 1

4π

∫
S1

∂θ′

(
− log

(
|∆X |

2
∣∣sin( θ−θ′

2 )
∣∣
)
I +

∆X ⊗∆X
|∆X |2

)
· ∂θ′X
|∂θ′X |

dθ′,

where ∆X = X (θ, t)− X (s, t).



Computational Verification

Given X n, ensure that any adjacent pair of the N points in the
interface have the same chordal length. Then X n+1 is obtained by
solving

X n+1/2 − X n

∆t/2
=− 1

4 |DNX n|
HN

(
DNX n+1/2

)
+ R2(X n)

X n+1 − X n

∆t
=− 1

4 |DNX n|
HN

(
DNX n +DNX n+1

2

)
+ R1(X n+1/2,X n) + R2(X n+1/2),



Computational Verification

where

R1(X n+1/2,X n)

=
1

4
HN

(
DN(X n+1/2 − X n) · DN(X n+1/2 + X n)∣∣DNX n+1/2

∣∣ · |DNX n| ·
(∣∣DNX n+1/2

∣∣+ |DNX n|
)DNX n+1/2

)
and R2(X ) is a numerical computation of the integral

− 1

4π

∫
S1

∂θ′

(
− log

(
|∆X |

2
∣∣sin( θ−θ′

2 )
∣∣
)
I +

∆X ⊗∆X
|∆X |2

)
· ∂θ′X
|∂θ′X |

dθ′.



Computational Verification

To compute the perturbation, we need to devise a way to “project
away” circles from the interface. To that end, we parametrize a
circle of radius A2 + B2 > 0 centered at (C1,C2) by

X (θ) = C1

(
1
0

)
+ C2

(
0
1

)
+ A

(
cos θ
sin θ

)
+ B

(
− sin θ
cos θ

)
.

Since |∂θX | =
√
A2 + B2 is independent of θ, the points X (k · 2π

N )
for k = 0, 1, . . . ,N − 1 that make up the discretized circle will be
uniformly spaced, as in the case of the points forming the interface
from our numerical scheme. For discrete periodic functions V and
W , the discrete inner product is defined by

⟨V ,W ⟩N =
N−1∑
k=0

(Vk · Wk) ·
2π

N
.



Computational Verification
Let eN1 , e

N
2 , e

N
3 , and eN4 be

e1 =

(
1
0

)
, e2 =

(
0
1

)
, e3 =

(
cos θ
sin θ

)
, e4 =

(
− sin θ
cos θ

)
evaluated at θk = k · 2π

N for k = 0, 1, . . . ,N − 1, respectively. We
define the discrete perturbation operator by

ΠNV = V − PNV ,

where

PNV

=
1

2π

( 〈
V , eN1

〉
N
e1 +

〈
V, eN2

〉
N
e2 +

〈
V, eN3

〉
N
e3 +

〈
V, eN4

〉
N
e4

)
.

We measure the perturbation using the discrete L∞ norm

∥V ∥∞ = sup
k

|Vk | .



Computational Verification

We plot log ∥Π100(X n)∥∞ against n for dt = 0.1, 0.05, and 0.01
up to t = 50 for the initial condition on the interface

X 0 =


(
1 + ecos(3θ)

4

)
cos θ(

1 + ecos(4θ)

4

)
sin θ

 .



Computational Verification

Figure: The plot of log ∥Π100(X n)∥∞ against n for dt = 0.1, 0.05, and
0.01, up to t = 50.

The blue “theoretical” line has a slope of −
√
π

2
√
A
, where A is the

area enclosed by the initial interface. This plot suggests that the

perturbation decays at an exponential rate of −
√
π

2
√
A
.



Computational Verification



The Order of the Numerical Scheme

Let XN,T
dt be the discretized interface at time T computed by our

numerical scheme with time step size dt > 0. Suppose that for
sufficiently large n ∈ N,

EN,T
n =

∥∥∥XN,T

2−(n−1) − XN,T
2−n

∥∥∥
∞

≤ C · 2−nk

for some constants C > 0 and k > 0.



The Order of the Numerical Scheme

If XT is the unique analytical solution at time T evaluated at an
equal arclength grid, and our numerical scheme converged to it,
then∥∥∥XN,T

2−(n−1) − XT
∥∥∥
∞

≤
∥∥∥XN,T

2−(n−1) − XN,T
2−n

∥∥∥
∞

+
∥∥∥XN,T

2−n − XT
∥∥∥
∞

≤
∥∥∥XN,T

2−(n−1) − XN,T
2−n

∥∥∥
∞

+
∥∥∥XN,T

2−n − XN,T

2−(n+1)

∥∥∥
∞

+ · · ·

≤C

(
2−nk + 2−(n+1)k + · · ·

)
=

C

1− 2−k
· 2−nk .



The Order of the Numerical Scheme

Figure: The plot of log2 E
100,40
n against n for n = 3, 4, 5, 6.



Room for Exploration

▶ Global well-posedness in a scaling critical space

▶ The case of distinct viscosities

▶ Well-posedness of closely related non-Stokes fluids

▶ Convergence analysis of a numerical scheme utilizing the
“equal arclength” parametrization
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