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Strongly anisotropic geomaterials, such as layered shales, have been observed to undergo fracture under
compressive loading. This paper applies a phase-field fracture model to study this fracture process. While
phase-field fracture models have several advantages — primarily that the fracture path is not pre-determined but
arises naturally from the evolution of a smooth non-singular damage field — they provide unphysical predictions
when the stress state is complex and includes compression that can cause crack faces to contact.

Building on a recently-developed phase-field model that accounts for compressive traction across the crack
face, this paper extends the model to the setting of anisotropic fracture. The key features of the model include:
(1) a homogenized anisotropic elastic response and strongly-anisotropic model for the work to fracture; (2) an
effective damage response that accounts consistently for compressive traction across the crack face, that is derived
from the anisotropic elastic response; (3) a regularized crack normal field that overcomes the shortcomings of the
isotropic setting, and enables the correct crack response, both across and transverse to the crack face.

To test the model, we first compare the predictions to phase-field fracture evolution calculations in a fully-
resolved layered specimen with spatial inhomogeneity, and show that it captures the overall patterns of crack
growth. We then apply the model to previously-reported experimental observations of fracture evolution in
laboratory specimens of shales under compression with confinement, and find that it predicts well the observed
crack patterns in a broad range of loading conditions. We further apply the model to predict the growth of wing
cracks under compression and confinement. Prior approaches to simulate wing cracks have treated the initial
cracks as an external boundary, which makes them difficult to apply to general settings. Here, the effective
crack response model enables us to treat the initial crack simply as a non-singular damaged zone within the
computational domain, thereby allowing for easy and general computations.

1. Introduction
Many geomaterials in the environment are anisotropic. In particular, transverse isotropy is a characteristic feature of various
types of rock, including sedimentary and metamorphic rocks. Many foliated metamorphic rocks, namely schists, slates, gneisses,
and phyllites, generally have a distinct directional dependence on their strength [Goo93]. Furthermore, stratified / layered
sedimentary structures, such as sandstone and shale, have layers that are closely spaced, resulting in a mechanical response that is
transverse isotropic, that is, the response is isotropic in the bedding plane of the layers and distinct in the out-of-plane direction
[Ama12, Wit90, TK01, CQH22, CZCF22]. A key aspect that is the focus of this paper is modeling the failure of such rocks in
settings that include compression and confinement, which is a typical stress state in natural and engineered settings.

Related prior work.Many laboratory studies have been carried out to determine the impact of anisotropy on the strength of various
transversely isotropic rocks [NSHF97, BBNB15, SB17, TKJ06]. To evaluate the strength of the rock sample, triaxial compression
tests with different confining pressures were used in these studies. To model this behavior, some studies have developed failure
models to study the strength of rocks and its dependence on the orientation of the bedding plane. For example, Jaeger [Jae60]
extrapolated the Coulomb-Navier criterion to introduce a single plane of weakness theory, recognizing two predominant failure
modes: sliding along the weak plane and failure traversing the rock matrix. Tien and Kuo [TK01] extended the failure criterion
proposed by Jaeger and substituted the Mohr-Coulomb approach with the Hoek-Brown model, and then tested their model with
experimental data [TKJ06].

In addition to developing failure criteria, the inclusion of anisotropy within the constitutive law is important to predict the effect
of the orientation of the bedding plane on the elastoplastic response and fracture of the material. To include the anisotropy of the
elastic response in the constitutive law, it is straightforward to use classical homogenization methods, e.g. [Bac62]. To model
the anisotropic inelastic response, many studies have extended the existing isotropic criteria to the anisotropic setting, such as
generalizing the von Mises criterion [Hil48] and the Mohr-Coulomb criterion [Par68] to account for anisotropy; a summary is
provided in [SWB16]. In addition, recent work, for example, [ZSYB18, ZB22, MSH22], has investigated the effect of anisotropy
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on the strength of transversely isotropic rocks. In [ZSYB18], they have used finite element methods to simulate the anisotropic
elastoplastic constitutive model proposed by [SWB16], thereby providing insight into the deformation and strength of transversely
isotropic material under axial and lateral confinements, including capturing the zigzag failure mode observed in layered rocks.

While these prior works have focused on the role of anisotropy in the elastic and inelastic responses, the role of anisotropy
in the fracture behavior has been much less studied. However, the anisotropy of fracture is an important aspect of the overall
behavior, and plays a key role in a vast range of phenomena ranging from the fracture of apple flesh [KV93], to single crystals
[QA03], to geomaterials [NM08]. Recent work that aims to model the anisotropy in the fracture behavior include strategies that
make the fracture energy anisotropic, e.g., [HK05, HK09]. However, these studies are restricted to weakly twofold anisotropic
settings and cannot capture the behaviour of material with strongly anisotropic surface energies [TRB+13].

Phase-field fracture models. Phase-field fracture models introduce a new field, in addition to the deformation, that indicates if
a material element is intact or fractured, and then regularize this phase-field using higher-order derivatives. The higher-order
derivatives endow the phase-field with sufficient smoothness to enable the use of standard numerical methods to predict crack
growth without specifying crack paths beforehand. That is, rather than sharp singular cracks as in the classical approach to
fracture, cracks are now regularized to be non-singular variations of the phase-field, making them amenable to standard numerical
approaches. The elastic response is coupled to the phase-field by setting that the regions that are fractured cannot carry any load,
that is, the elastic energy density goes to zero in fractured regions. However, the combination of crack regularization to a finite
volume and setting the fractured elastic energy to zero causes unphysical behavior, such as crack growth under compression.

This issue, which also allows unphysical contact and interpenetration of crack faces, motivated efforts such as [MWH10, AMM09],
to improve the phase-field model for compressive loading. In [MWH10], they proposed a model that decomposes the elastic
energy into tensile and compressive parts, and allows the crack to grow only due to the tensile part of the energy. In [AMM09],
they proposed decomposing the elastic energy into compressive hydrostatic, tensile hydrostatic, and deviatoric parts, and
allowed the crack to sustain only the compressive hydrostatic loads. This has been extended to the finite deformation setting in
[TZZL22, XYSW23, NS24, TZG+19]; however, these works also do not consider the orientation of the crack. Other modifications
of the energy decompositions include [VZC+24] that proposed the star-convex model as a modification of the volumetric-deviatoric
decomposition; [WSH21] that extended the spectral decomposition to account for mixed mode fracture; and [vDEEI20] to account
for anisotropy. These approaches are reviewed and compared in [ZJT22, GND+24, Rah22, Cla21] and elsewhere. However,
these approaches have a key shortcoming: they do not account for the orientation of the crack. Compressive stresses along the
crack face and across the crack face are both treated in exactly the same way; i.e., tension/compression across the crack faces is
indistinguishable from tension/compression along the crack faces in these models.

An important departure from the idea of energy decompositions is the work by [SK19], that introduced the idea that the crack
orientation plays an essential role in determining the response. Based on this idea, [SK19, FC20b, FC20a, Agr16] proposed
modifications of the stress tensor to account for the difference in crack-normal and crack-parallel tractions. While our approach
in [HADMC22] builds on the ideas of [SK19], an important distinction is that we modify the energy and hence our model is
hyperelastic. In contrast, as shown in [HADMC22], the stress-based approach is not generally hyperelastic.

To account for the role of material anisotropy of the fracture process, taking inspiration from phase-field models of crystal growth,
[LPM+15] proposed a strongly anisotropic surface energy model by using higher derivatives of the fracture phase parameter. This
results in a fourth-order system of partial differential equations (PDEs) for the displacement and crack (phase-field) variables,
which they solve using a finite element method with additional smoothness. Building on this, [TKAK17, BSC23, ZKJT21]
developed a comprehensive framework to account for general anisotropies in the phase-field modeling framework.

Contributions of this paper. In this paper, we build on our previous work [HADMC22], wherein the issue of compressive stresses
across the crack face was addressed. That work proposed a model that gave the correct intact response of the material when crack
faces came in contact, while giving the appropriate soft response for crack opening or sliding of the crack faces past each other.
An important element of that approach was a vector phase-field parameter, whose orientation provided the crack normal and
whose magnitude provided the level of fracture. However, as we discuss further below, the vector phase-field parameter is only
appropriate for the isotropic setting that was studied in [HADMC22].

Our prior work [HADMC22] was focused on homogeneous isotropic solids. In this work, we study inhomogeneous solids and
their homogenized response1 which is effectively anisotropic. To be applicable to general anisotropic settings, we therefore use in
this work a scalar phase-field variable and introduce a variational method to extract a regularized crack normal field from the
primary scalar phase-field variable. Further, we integrate the proposed phase-field model with the general model for anisotropic
fracture energy developed in [LPM+15] and [TKAK17]. The model that we develop is then able to model the unguided growth
of fractures in anisotropic homogenized specimens under complex loading that includes compression and lateral confinement.
We first compare the homogenized model predictions to phase-field fracture evolution calculations in a fully-resolved layered

1 We use homogenized in this paper to mean an equivalent homogeneous material that provides approximately the same response in terms of load-displacement
and overall crack path.
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specimen with spatial inhomogeneity, i.e., a specimen wherein the individual layers are accounted for by spatial inhomogeneity in
the elastic and fracture properties (Fig. 4). We show that the overall patterns of crack growth are similar. We then apply the model
to previously-reported experimental observations of fracture evolution in laboratory specimens of shales under compression with
confinement [TKJ06], and find that it predicts well the observed crack patterns in a broad range of loading conditions. We finally
apply the model to predict the growth of wing cracks under compression and confinement. Prior approaches to simulate wing
cracks have treated the initial cracks as an external boundary [LWCL21, SDTD21, BS18], which makes them difficult to apply to
general settings. Here, the effective crack response model enables us to treat the initial crack simply as a non-singular damaged
zone within the computational domain, thereby allowing for easy and general computations.

Structure of the paper.In Section 2, we describe the formulation, numerical implementation, and validation against a fully-resolved
specimen. In Section 3, we compare the predictions of the homogenized fracture model with those of fully-resolved calculations
under compressive loading with Mode I and Mode II fracture modes. In Section 4, we apply the model to predict the formation
of wing cracks under compression and confinement. In Section 5, we apply the model to configurations corresponding to the
experiments of [TKJ06].

2. Formulation
Section 2.A introduces the basic phase-field fracture model that is widely used. Section 2.B enhances the model to incorporate the
contact mechanics of crack faces following [HADMC22]. Section 2.C discusses the homogenized elastic response for a layered
rock. Section 2.D accounts for anisotropy in the work to fracture (i.e., the energy required to create a crack surface). Section 2.E
describes a variational approach to define the regularized crack normal. Section 2.F describes our approach to prevent the crack
from healing. Section 2.G summarizes the model that we use.

2.A. Basic Phase-Field Model
A variational (energy-based) model for quasistatic brittle fracture was proposed by [FM98]. This model is characterized by the
minimization of the potential energy E given by:

E[y, Γ ] =

∫
Ω\Γ

W (∇y) dΩ +GcHn−1(Γ ) + work due to external loads (2.1)

where y and Γ represent the deformation and the crack surface; Ω represents the body in the reference configuration; W is the
elastic energy density; and Gc and Hn−1 represent the work to fracture and the Hausdorff area of Γ , respectively. The model
asserts that the deformation and the crack surface are obtained by minimizing E subject to irreversibility, i.e., the crack cannot
heal.

This model is very challenging to use to solve realistic boundary-value problems. A regularized phase-field version of this
model was given by Ambrosio and Tortorelli [AT90, AT92], inspired by [MM77, Mod87]:

E[y, ϕ] =

∫
Ω

(
ϕ2 + ηϵ

)
W (∇y) dΩ +Gc

∫
Ω

(
(1− ϕ)2

4ϵ
+ ϵ|∇ϕ|2

)
dΩ + work due to external loads (2.2)

where ϕ(x) is a scalar phase field that quantifies the level of damage at every referential point x, and is sufficiently smooth to
allow standard FEM approximation. Specifically, ϕ, bounded by 0 ≤ ϕ ≤ 1, indicates that the material is intact at ϕ(x) ≃ 1 and
completely fractured at ϕ(x) ≃ 0. The small positive quantity ηϵ is used to ensure that the overall problem remains positive
definite even if ϕ is 0 in finite regions; for brevity, we will not write it out explicitly further. In this paper, a value of ηϵ = 1× 10−3

is used for numerical calculations.
In physical terms, if the elastic energy is large, the solid can relieve this energy by reducing the value of ϕ in regions with large

elastic energy density in the first integral in (2.2), i.e., it fractures to reduce the elastic energy. However, the fracture process
requires work, and that is accounted for by the second integral in (2.2).

2.B. Accounting for the Contact of Crack Faces
A key shortcoming of the model in Section 2.A is that it does not distinguish between compressive, shear, and tensile loadings
across the crack. Therefore, all of these types of loadings can lead to fracture which is unphysical. Various works have proposed
decompositions of the energy in different ways to try to prevent this, e.g. [DLM22, CLK23, Cla21, VZC+24, TZG+19, vDEEI20,
WSH21, ZJT22]. However, as noted by [SK19], and discussed further with some examples in [HADMC22], it is essential to
account for the crack orientation. For instance, tension across the crack face cannot be resisted by a crack, whereas tension along
the crack face will be resisted as well as if the material was intact (Fig. 1).
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Deformation Mode

Loading

Intact Response

Crack Response

(a) (c)(b) (e)(d)

Figure 1. The top row shows different loadings, and the middle and lower rows show the idealized deformation for intact and cracked specimens,
respectively. Based on this idealization, we assign zero energy to modes (a) and (b). The dotted lines in the second and third row show the
undeformed configuration. This decomposition follows [SK19].

Following [HADMC22], we use a model of the form:

E[y, ϕ] =

∫
Ω

(
ϕ2W (∇y) +

(
1− ϕ2

)
Wd(∇y,d)

)
dΩ +Gc

∫
Ω

(
(1− ϕ)2

2ϵ
+

ϵ

2
|∇ϕ|2

)
dΩ + work due to external loads.

(2.3)
The key feature of this model is the introduction of the effective crack energy density Wd that is active in the fractured volumes.
It imparts the properties of an idealized sharp crack to the regularized (finite volume) phase-field crack. Using the QR (upper
triangular) decomposition of the deformation gradient tensor in the crack basis, it enables us to transparently separate out the
deformation modes shown in Figure 1. Subsequently, we relax (i.e., minimize the energy) over the opening and shearing modes,
and assign the intact energy to crack closing modes. Wd takes as argument the deformation, as well as a vector field d that
corresponds to the unit normal to the crack face. However, d is not an independent field; rather it is a functional of ϕ as described
in Section 2.E. The use of d is essential to decompose the deformation into the modes shown in Figure 1.

It is important to highlight here that Wd is necessarily derived from a given W to ensure that it reproduces the intact elastic
response when the crack faces close, as described in detail with examples in [HADMC22]. In this work, for the specific case of
a linear elastic transversely isotropic material with a given linear elastic stiffness tensor with components Cijkl, we have from
[HADMC22] the following expression for the effective crack energy density:

Wd,lin (ε,d)

=


1
2

(
C1111 − C2

1112C2222−2C1112C1122C1222+C2
1122C1212

C1212C2222−C2
1222

)
(εd11)

2 if εd22 > C1112C1222−C1122C1212

C1212C2222−C2
1222

εd11,

1
2

(
C1111 − C2

1112

C1212

)
(εd11)

2 +
(
C1122 − C1112C1222

C1212

)
εd11ε

d
22 +

1
2

(
C2222 − C2

1222

C1212

)
(εd22)

2 otherwise,

(2.4)

where we have used ε to denote the linear strain tensor; and εd11 and εd22 are the normal strains in the crack basis, given by:

εd11 = ε22d
2
1 − 2ε12d1d2 + ε11d

2
2, εd22 = ε11d

2
1 + 2ε12d1d2 + ε22d

2
2. (2.5)

2.C. Transverse Isotropic Homogenized Elastic Response

Layered rocks can be modeled as transversely isotropic, i.e., given a layer normal or structural director denoted by a, they
are isotropic within the plane with normal a. The transverse isotropic homogenized elastic response is a classical result in
micromechanics, and we summarize the result here following [Bac62]. For a linear elastic material, the stiffness tensor can be
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represented as a matrix [Ce] in Voigt notation:

[Ce] =


c11 c12 c12 0 0 0
c12 c33 c13 0 0 0
c12 c13 c33 0 0 0
0 0 0 c66 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

 ,



c11 =
〈
H−1

〉−1

c12 =
〈
H−1

〉−1
〈
H − 2µ

H

〉
c13 =

〈
H−1

〉−1
〈
H − 2µ

H

〉2

+ 2

〈
(H − 2µ)µ

H

〉
c44 =

〈
µ−1

〉−1

c66 = ⟨µ⟩
c33 = c13 + 2c66

(2.6)

The structural director has been oriented along e1 in this representation; µ is the shear modulus, and H = K +
4

3
µ, where K is

elastic bulk modulus; and ⟨·⟩ denotes the Voigt average.

2.D. Anisotropy of the Work to Fracture
In a general anisotropic material, the work to fracture depends on the fracture direction. Specifically in stratified rock, crack
propagation is much easier along the layers rather than across the layers. In a homogenized model with structural director a, this is
reflected by the work to fracture for crack propagation along a being much larger than the work to fracture for propagation in the
plane normal to a.

In the context of phase-field fracture, a simple way to include anisotropy of the fracture is to replace |∇ϕ|2 in (2.3) by ∇ϕ ·A∇ϕ,
where A is some anisotropic 2-nd order tensor. However, it was shown by [LPM+15] that this does not provide a sufficient level
of anisotropy to model numerous relevant settings, include stratified systems. To increase the level of anisotropy, they suggested
adding a further term ∇∇ϕ : A : ∇∇ϕ, where A is a 4-th order tensor, “:” denotes a 2-nd order contraction between tensors, and
∇∇ϕ is the Hessian of ϕ. Following the systematic formulation of this idea from [TKAK17], we define the anisotropic work to
fracture γ:

γ(ϕ,∇ϕ,∇∇ϕ) = Gc

(
ϕ2

2ϵ
+

ϵ

4
∇ϕ ·A∇ϕ+

ϵ3

32
∇∇ϕ : A : ∇∇ϕ

)
,

{
A = I + αa⊥ ⊗ a⊥

A = I+ α1 (a⊥ ⊗ a⊥)⊗ (a⊥ ⊗ a⊥)
(2.7)

where I =
1

2
(δikδjl + δilδjk) ei ⊗ ej ⊗ ek ⊗ el is the 4-th order identity tensor, and α and α1 are the anisotropy coefficients

that determine the level of anisotropy. Following the usual convention: ei is the i-th unit vector in a Cartesian basis; ⊗ is the
outer/tensor product; δik is the i, k-component of the identity matrix; and a⊥ is a unit vector that is normal to a.

Figure 2 shows the anisotropy in the work to fracture, with a = e2, and we see a clear reduction in this quantity for the crack
propagating with normal ±e2.
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Figure 2. Polar plot of
(
ϵ

4
∇ϕ ·A∇ϕ+

ϵ3

32
∇∇ϕ : A : ∇∇ϕ

)
as a function of θ, where we set ∇ϕ ∼

[
cos θ
sin θ

]
and ∇∇ϕ ∼[

cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
, following [LPM+15]. We use ϵ = 0.04, and (a) α = α1 = 0, (b) α = α1 = 10, and (c) α = α1 = 100.

We use α = α1 = 100 throughout our calculations. We note that α and α1 must lie in the open range (−1,∞) for A and A to be positive-definite
[TKAK17]. The structural director is set to be a = e2 (i.e., a⊥ = e1).

In the fracture model (2.3), we replace the entire second integral by
∫
Ω

γ(ϕ,∇ϕ,∇∇ϕ) dΩ, with γ obtained from (2.7). We
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highlight that this model requires more smoothness than is available with standard FEM. [LPM+15] solve this by using finite
elements with more smoothness. We instead use a mixed FEM approach as described in Section 2.H.

2.E. Variational Regularized Definition of the Crack Normal
The phase-field model that accounts for crack face closure in (2.3) has the crack face normal vector field d(x) as an essential
element; this is required to be able to distinguish the modes in Figure 1. In principle, ϕ(x) has sufficient information to obtain
d simply by computing ±∇ϕ. In practice, this leads to severe difficulties related to the numerical evaluation: for instance, the
numerical evaluation is unstable near the crack tip, and it is not well-defined in the interior of the crack away from the crack faces
[HADMC22, Agr16].

In our previous work [HADMC22] where this model was formulated, we used d(x) as an independent vector field that replaced
the scalar field ϕ(x); in short, the magnitude of d related to the level of fracturing and the orientation provided the crack face
normal. That is, the free energy in [HADMC22] had as arguments (y,d) and hence we avoided completely the challenge of
computing ∇ϕ. While this worked well in [HADMC22] when we studied fracture in isotropic materials, it is not useful beyond
this specific simple setting. Considering the general anisotropic setting, we would account for anisotropy through terms of the
form d ·Ad and ∇d : A : ∇d, and these terms would drive d to orient in preferred directions. However, this clashes with the
primary kinematic role of d as the crack face normal; Figure 3 shows a crack configuration calculated with such a model, where
the elastic terms drive a certain direction of crack propagation and the anisotropic terms drive an orientation of d that does not
align with the crack face normal.

In summary, while the vector field d as an independent descriptor of crack propagation was a useful convenience for the
isotropic setting, it is not useful for the general setting. In physical terms, the scalar field ϕ has all the information required to
describe the configuration of the system and there is simply no need for an (independent) vector field d. It is essential to use the
scalar field ϕ as the independent descriptor, and obtain d as a derived kinematic quantity. We formulate the kinematic constraint
relation between ϕ(x) and d(x) as the Euler-Lagrange equation of a variational principle below.

(a) (b)

Figure 3. Left: the vector field d is not normal to the crack faces when we incorporate an anisotropic penalization of d in a model that treats d
as a primary variable, generalizing the isotropic model of [HADMC22]. Right: the model proposed in this paper where the scalar field ϕ is a
primary variable and d is computed from the kinematic constraints (2.8). It is clear that (a) does not work and (b) does.

For a given field ϕ(x), we define d as the minimizer of the functional:

d = argmin
p

∫
Ω

(
Hl1(|∇ϕ|, gm)

∣∣∣p⊗ p− ϕ2∇̂ϕ⊗ ∇̂ϕ
∣∣∣2 + β1Hl2(ϕ, ϕm)(|p| − ϕ)2 + β2|∇p|2

)
dΩ, given ϕ(x) (2.8)

where Hl(x, xm) is a smooth approximation of the step function centered at xm, for which we use Hl(x, xm) = 0.5 +

0.5 tanh

(
x− xm

l

)
, and ∇̂ϕ is the unit vector in the direction ∇ϕ.
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We understand this functional term-by-term below. As a preliminary, we recall from studies of liquid crystals, e.g. [Eri91],
that unit vector fields often lead to singularities. Therefore, our aim is to obtain d as the normal in the vicinity of the crack, but
allow it to take any other value in the undamaged solid — where the direction of d is unimportant — to prevent the formation of
singularities. Similarly, since we do not care about the orientation of d away from the crack, we apply natural boundary conditions
to (2.8). Further, we highlight that we want d to not flip as we go from one face of a crack to the other.

Consider the first term in (2.8). The square term aims to align d with ±∇ϕ on the crack faces, and aims to make the magnitude
of d equal to ϕ in accord with the second term. Further, the leading step function aims to enforce this only at high values of |∇ϕ|
to select the crack faces, and not within the crack volume or away from the crack.

Consider the second term in (2.8). The square term aims to set the magnitude of d proportional to ϕ, but the leading step
function aims to enforce this only within the crack volume. This ensures that the normal vector does not vanish and “flip around”
within the crack volume.

Finally, the third term in (2.8) is a standard regularization to provide some smoothness and prevent singularities in regions such
as crack tip or elsewhere. While this is used to impose regularity, it is kept small.

In (2.8), we use l1 = 0.01, gm = 10, l2 = 0.001, ϕm = 0.98, β1 = 0.8, and β2 = 0.001. While the specific values are
obtained from numerical experiments to get good performance, the heuristics are as follows. First, the regularization term is small
and meant only to preserve smoothness, and hence β2 ≪ β1. Second, the first and second contributions are both of relatively
equal importance, and hence β1 ≃ 1. Third, we want l1 ≪ 1, l2 ≪ 1 to have rapid transitions in the step function. Fourth, we use
ϕm close to 1 to ensure that only the fractured regions contribute to the second term. Finally, we use gm = 10 to ensure that only
the crack faces contribute to the first term.

2.F. Equilibrium, Evolution, and Irreversibility of Fracture
In the standard approach to phase-field modeling, given the free energy E[y, ϕ], we find the equilibrium state as the configuration
that corresponds to the energy-minimizing state, by solving the Euler-Lagrange equations δyE = 0 and δϕE = 0. Further,
evolution — for instance, driven by time-varying external loads — is modeled simply by using the equilibrium equations at all
times, when we neglect effects such as inertia and time-dependent material response [AD17, CAB+22, NWD21, NWD22]. Under
fairly general conditions, this can be shown to satisfy the constraints of thermodynamics [KMW+22, PF90]. This approach,
however, does not permit history-dependence.

In fracture, on the other hand, the growth of cracks is irreversible. A standard approach to enforce this is as follows. Given ϕ0

as the solution at a given time, the solution ϕ for the next time is obtained by minimizing over all admissible fields that satisfy the
pointwise constraint that ϕ ≥ ϕm at all points at which ϕ0 ≥ ϕm.

While this is generally applied as an inequality constraint, we use the following robust and effective variational penalization.
We augment E with a term of the form:

E → E +m

∫
Ω

Hl2(ϕ0, ϕm)(ϕ− ϕ0)
2 dΩ (2.9)

where m is a large penalty parameter, set as 4 × 105 GPa in our calculations. The regularized step function Hl(ϕ0, ϕm) is
activated only at points where ϕ0 ≳ ϕm, and hence the overall penalty forces ϕ at those points to not evolve further (i.e., neither to
decrease nor increase). As stated in the description of (2.8), l2 = 0.001, and ϕm = 0.98.

2.G. Summary of the Complete Model
The free energy that we minimize is given by the expression:

E[y, ϕ] =

∫
Ω

(
ϕ2W (∇y) +

(
1− ϕ2

)
Wd(∇y,d[ϕ])

)
dΩ +

∫
Ω

Gc

(
ϕ2

2ϵ
+

ϵ

4
∇ϕ ·A∇ϕ+

ϵ3

32
∇∇ϕ : A : ∇∇ϕ

)
dΩ

+m

∫
Ω

Hl2(ϕ0, ϕm)(ϕ− ϕ0)
2 dΩ + work due to external loads.

(2.10)

where we have accounted for the energy of the crack volume Wd in the first integral (Section 2.B); the strong anisotropy in
the second integral (Section 2.D); and the irreversibility of fracture in the third integral (Section 2.F). Given an initial crack
configuration ϕ0(x), we minimize E over admissible y and ϕ to find the updated crack configuration.

The crack normal vector field d(x) is kinematically constrained to ϕ, and given by the expression (Section 2.E):

d[ϕ] = argmin
p

∫
Ω

(
Hl1(|∇ϕ|, gm)

∣∣∣p⊗ p− ϕ2∇̂ϕ⊗ ∇̂ϕ
∣∣∣2 + β1Hl2(ϕ, ϕm)(|p| − ϕ)2 + β2|∇p|2

)
dΩ︸ ︷︷ ︸

=:D[p,ϕ]

(2.11)
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2.H. Numerical Implementation

Our model is implemented using the finite element method (FEM) in FEniCS, an open-source tool for FEM [LMW12, BYT+21],
based on the implementation from [NAMP+19]. The primary unknowns are y(x), ϕ(x), and d(x). Further, to account for the
higher-order derivatives due to anisotropy in (2.10), we used a mixed method that introduces ∇ϕ(x) as an additional variable. All
fields are discretized using linear shape functions.

To solve for the evolution under a time-dependent external loading, we need to minimize (2.10) with respect to y and ϕ given
ϕ0, while satisfying the constraint (2.11) that relates ϕ to d. We do this by individually minimizing over ϕ and y first, then solving
the constraint equation for d, and then repeating this procedure until we reach convergence. That is,

yi+1 = argmin
y

E[y, ϕi], given ϕ0 (2.12)

ϕi+1 = argmin
ϕ

E[yi+1, ϕ], given ϕ0 (2.13)

di+1 = argmin
p

D[p, ϕi+1] (2.14)

where the subscript 0 indicates initial values from the previous load increment, and superscripts indicate iterations.
In the calculations described in Sections 3 and 5, the elastic constants corresponded to those used in [TKJ06]. Further, we use

Gc = 8× 104 Nm−1 for the homogenized material. This value is consistent with those reported in [ZO22] which indicate Gc

values range from 3.2 × 103 to 9.4 × 103 Nm−1 for sandstone under biaxial compression [LZW+20], and from 1.3 × 104 to
5.1× 104 Nm−1 for granite under triaxial compression[Won82].

We employed a phase-field regularization parameter ϵ = 4 × 10−2 m, which is relatively large, and all computations are
performed on domains of size 1m × 2m. We also performed calculations with ϵ = 1.5 × 10−2 m and saw no appreciable
differences. Figure 4 shows the geometry that is used for the fully-resolved calculations and a typical finite element mesh. We use
a fine mesh in the vicinity of the crack, with element dimension on the order of 4× 10−3 m, and a less fine mesh further away
with element dimension on the order of 1.6× 10−2 m. This mesh is sufficient to resolve the phase-field for the chosen value of ϵ.

3. Comparing Homogenized and Fully-Resolved Models
We first compare our homogenized model against phase-field fracture simulations in a fully-resolved specimen wherein the
individual layers are resolved. In the fully-resolved setting, we treat the layered specimen as composed of isotropic constituent
layers with different properties, and hence overall the specimen is heterogeneous. The fully-resolved model is both much more
expensive and much more accurate than the homogenized model; hence, our goal is to test the less expensive homogenized model.

The layers of equal thickness are taken to consist of Material A (“strong”) with E = 21.7GPa, ν = 0.25, and Gc =
4× 105 Nm−1, and Material B (“weak”) with E = 10.85GPa, ν = 0.25, and Gc = 4× 104 Nm−1. These numbers roughly
correspond to [TKJ06].

The elasticity tensor for the homogenized anisotropic material is calculated using the expressions in Section 2.C. While there
exist clear and systematic procedures for the homogenization of linear elasticity, there exist no such procedures for the nonlinear
setting generally, especially for the challenging case of fracture. We therefore obtain the values of the anisotropy parameters by
using trial-and-error and comparing the homogenized and fully-resolved calculations for a small and limited set of calculations,
and then use these values for the further calculations in this section and in Section 5. Specifically, we compared crack growth for
layers oriented at 45◦ in the for crack opening mode under uniaxial compressive loading. We find that α = 100 and α1 = 100
best reproduces the fully-resolved crack patterns, and these numbers are in line with those used elsewhere, e.g. [CLK23]. We note
that these chosen values for α and α1 are very close to the allowed limit of anisotropy that still retains the positive definiteness of
the surface energy (Fig. 2).

Figure 5 compares the fully-resolved and homogenized specimens for layer orientations of 45◦, 60◦, and 75◦. The results
show the overall agreement in crack growth path between fully-resolved and homogenized domain, supporting the efficacy of our
homogenization method in representing the fracture response of the rock layers. It validates the model’s ability to replicate crack
paths observed in the experimental studies of [TKJ06] and to realistically simulate crack growth under compressive loading, as
explained in [HADMC22]. This is particularly notable given the challenges that previous models faced in accurately representing
the response of cracks when the faces come into contact under compression, as described in the Appendix of [HADMC22].

Keeping the values of α and α1 fixed going forward, we next assess crack growth when the loading leads to Mode I failure. For
these tests, the displacement at the bottom face of the domain is fixed. Subsequently, a displacement-controlled load is applied in
the vertical direction on the top face. Figure 6 compares the crack paths for both the fully-resolved and homogenized domains
under Mode I failure at angles of 45◦, 60◦, and 75◦. The results again show good agreement.

We next compare crack growth in the fully-resolved and homogenized models when the fracture is driven by a dominant shear
loading (Mode II fracture). In these calculations, the bottom face is fixed, and the top face is subjected to displacement-controlled
horizontal shearing to the right. The left and right faces remain traction-free. Figure 7 shows the results of these calculations. The
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results show that the crack path in the fully-resolved and homogenized models matches well for layers at 45◦, 60◦ and 75◦ even in
this complex loading scenario.

We highlight some key observations that holds broadly across all of the calculations described above. First, the homogenized
specimen typically nucleates a single dominant crack at the hole that drives the stress concentration, whereas the fully-resolved
specimen sometimes nucleates secondary cracks in multiple layers. It is expected that the homogenized description cannot capture
this. The effect of the nucleation of these additional cracks can be seen in the sudden load drops in the force-displacement curves
in Figures 5, 6, 7. There are further smaller oscillations in the force-displacement curves; these have been observed previously, e.g.
[WNN+20, DKAK23], and correspond to small discrete advances of the cracks in the case of displacement control. Second,
the force-displacement relations in the homogenized and fully-resolved setting match well in the linear regime before fracture
initiation, as expected since classical homogenization is dominant in this regime. Further, the force-displacement relations match
reasonably well in terms of the trends and slopes, showing that the crack face contact model performs well. However, there is a
significant discrepancy in the peak load at which the primary fracture nucleates, and this is a well-known difficulty in phase-field
fracture. Third, we see that when the layers are oriented such that failure occurs in opening mode, the response is essentially brittle,
as expected in this setting where we have not accounted for plastic effects. However, when the layers are oriented such that the
failure is driven by shear zones that are inclined with respect to the loading direction, the brittle response is seen to be attenuated.

4. Formation of Wing Cracks Under Compressive Loading
Wing cracks in anisotropic materials are tensile cracks that propagate from pre-existing flaws under compressive loads.
They contribute significantly to crack propagation and material failure in various applications, including in rock mechanics
[NNH82, PB10, BE98]. These cracks typically initiate at the tips of the flaws and grow at an angle to the direction of applied
compressive stress. The propagation of wing cracks is strongly influenced by material anisotropy where the fracture toughness and
energy release rates vary with direction. Under compressive loads in an anisotropic setting, there are complex stress concentrations
at flaw tips, and this drives the growth of complex fracture patterns, including secondary shear cracks. A key aspect of wing cracks
is that the compressive stress causes crack face contact. It is essential to account for this appropriately, however standard phase-field
fracture models do not distinguish between compressive traction across the crack face that causes contact and compressive traction
that is parallel to the crack face [SSK22, HADMC22]. However, the model proposed in this paper distinguishes between these
tractions and is able to appropriately model crack face contact.

Several prior works have applied phase-field fracture mechanics to investigate the formation and propagation of wing cracks
[XXH+24, LWCL21, SDTD21, BS18, ZSVS17], and have proven effective in capturing these complex propagation modes,
demonstrating good agreement with the expected physical behavior. However, an important shortcoming in these prior studies is
that they have modeled the initial crack as a boundary of the domain. That is, the initial crack is treated as an external surface and
is a geometric feature of the computational domain. In this work, we are able to treat the initial crack through the damage field ϕ:
our computational domain is a simple rectangle, and the interior crack is prescribed through the initial condition for ϕ. This
provides an important advantage: namely, by treating the crack as a damaged zone rather than as a special surface, it enables us
to model wing cracks in a completely general way. For instance, if the initial crack was not simply imposed but rather was the
outcome of a prior loading, our approach is seamless and does not require any special treatment to then further observe the growth
of wing cracks. On the other hand, in the current method of treating this as an external surface, it would require a much more
difficult process of identifying the crack geometry — which can itself be complex — replacing it with an external boundary and so
on, which is extremely challenging. Here, we highlight that our approach is enabled by the crack response model that enables us
to obtain the correct crack response under crack face contact in the regularized setting without needing to use a cumbersome
description of the crack faces as external surfaces.

Figure 8 shows the results of wing crack growth in an anisotropic material. We use the homogenized rock properties
corresponding to layers oriented at 45◦, as in Section 3, with the difference that we set α = α1 = 200. We apply displacement-
prescribed compression and confinement on all faces using affine boundary conditions. The results in Figure 8 demonstrate that,
under compressive loads, wing cracks initiate and propagate from the tips of pre-existing cracks, consistent with the physical
expectations of brittle fracture behavior in anisotropic materials [NNH13].

We also highlight that we have idealized the crack faces as frictionless; however, several studies have demonstrated the significant
role of friction [BE98, HNN85, Ste84]. The kinematic decomposition in our approach — into crack opening, crack parallel, and
crack shearing modes — potentially enables the explicit modeling of friction in future work, unlike the conventional energy
splitting methods.

5. Application to Confinement Experiments
Figure 9 shows the fracture patterns experimentally observed for various rock layers under differing confining compression levels
in [TKJ06]. We focus on reproducing the failure modes denoted SD with the homogenized model, without any further tuning of
the fracture anisotropy parameters beyond that described in the previous section. Specifically, we focus on the homogenized
model for layer orientations at 45◦, 60◦, and 75◦, under various confining pressures. As shown in Figure 10, the crack path in our
simulations matches well with the experimental observations of [TKJ06] for several, but not all, layer orientations and confining
pressures.
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We highlight that the stress at which the fracture propagates across the entire specimen is roughly 4 times smaller than that
reported in the experiments of [TKJ06]. The issue of initiation of fracture in phase-field models is a well-known open problem
with the model, e.g. [KM13, TLB+18, AD15a, AD15b]. In brief, it depends on the choice of the regularization parameter ϵ,
which is chosen based on considerations related to the smearing out of the crack following the general principles of phase-field
modeling [AD15a, AD15b]. Since the ratio between the elastic energy and the work to fracture — given roughly by the quantity
Gc

ϵ
— plays a leading role in determining the propagation of fractures, we can conclude that the value of ϵ that we used in our

calculations should be approximately 4 times smaller to align with the experimental values observed in [TKJ06]. Additionally, the
presence of a hole in the middle of the domain in our simulations, which is meant to deterministically initiate the fracture at the
center of the domain following [ZSYB18], causes stress concentrations that lead to fracture at lower loads. However, the primary
focus of this paper is on the propagation modes and not initiation, and we will therefore not further explore this issue.

We also highlight that the experimental study of [TKJ06] examines various types of failures, labeled as TD (Tensile-split along
discontinuities), TM (Tensile fracture across discontinuities), SM (Sliding failure across discontinuities), and SD (Sliding failure
along discontinuities) in Fig. 9. In this work, we specifically focus on replicating failures corresponding to the SD failure mode, as
our current model does not seem to adequately capture the other types of failures. Consequently, we focus on layer angles of 45◦,
60◦, and 90◦.

As depicted in Figure 10, the overall path of crack growth in the experimental data from [TKJ06] is effectively captured by our
homogenized model. However, specific details in the experimental results, such as the jump in the crack path at σ3 = 0MPa, are
not fully replicated by the homogenized model, which is to be expected. We highlight an important feature that emerges: the
confining pressure has a minor effect on the overall crack path and deformation. As in the experiments of [TKJ06], the crack path
is dominated by the anisotropy, and consequently by the orientation of the layering.

6. Discussion
In this study, we have developed a homogenized phase-field model for fracture that is anisotropic in both elasticity and fracture
energy and is able to account for compressive loads across the crack face building on our previous work [HADMC22]. We applied
this approach to model crack growth in transverse isotropic layered materials under various complex loadings, and are able to
capture the significance of anisotropic crack growth when compared to fully-resolved calculations and experimental observations.

We have further studied the important and challenging case of wing cracking. We have shown that the model is able to capture
wing cracking under compression using a phase-field approach. Unlike prior phase-field models of wing cracks that use an
external boundary to model the initial crack, we demonstrate that we can capture this by modeling the initial crack through the
phase-field. This provides much more generality since we do not have to introduce external boundaries within the domain.

We highlight that we have assumed that there is zero friction between crack faces for simplicity. For future studies aiming to
infuse more realistic physics into the model, it is important to further incorporate friction in the model [FC20b, FC20a]. The QR
decomposition, that is used in our model [HADMC22], offers a method to transparently separate the relative slip of the crack
faces from other crack deformation modes. Therefore, we anticipate that the kinematics introduced in our model will enable this
as a straightforward extension. Other important directions for the future are to couple the phase-field fracture method to, first,
plasticity following [CSW20, SWB16, SW20]; second, poromechanics following [KMW+22, KMDP23, CKK+24]; and, third,
accurate and realistic crack nucleation models following [AD15a, AD15b].
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(a) (b)

(c)

Figure 4. (a) The geometry of the fully-resolved specimen showing the inhomogeneous layers. Red indicates Material A (the “strong” material)
and blue indicates Material B (“weak” material). The layers have flat interfaces between them, but they appear rugged due to the meshing. (b) A
typical finite element mesh used in the calculations. (c) A close-up of the mesh around the center hole.
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(a) Crack growth for the layers at 45◦ in
the fully-resolved domain.

(b) Crack growth for the layers at 60◦ in
the fully-resolved domain.

(c) Crack growth for the layers at 75◦ in
the fully-resolved domain.

(d) Crack growth for the layers at 45◦ in
the homogenized domain.

(e) Crack growth for the layers at 60◦ in
the homogenized domain.

(f) Crack growth for the layers at 75◦ in
the homogenized domain.

(g) Total force versus displacement for a specimen
with layers oriented at 45◦ compared in the fully-

resolved and homogenized settings.

(h) Total force versus displacement for a specimen
with layers oriented at 60◦ compared in the fully-

resolved and homogenized settings.

(i) Total force versus displacement for a specimen
with layers oriented at 75◦ compared in the fully-

resolved and homogenized settings.

Figure 5. Comparison of crack growth in the fully-resolved and homogenized settings at various layer orientations under uniaxial compression.
The horizontal faces are subject to displacement-controlled compression, while the vertical faces are traction-free, following [TKJ06].
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(a) Crack growth for the layers at 45◦ in
the fully-resolved domain.

(b) Crack growth for the layers at 60◦ in
the fully-resolved domain.

(c) Crack growth for the layers at 75◦ in
the fully-resolved domain.

(d) Crack growth for the layers at 45◦ in
the homogenized domain.

(e) Crack growth for the layers at 60◦ in
the homogenized domain.

(f) Crack growth for the layers at 75◦ in
the homogenized domain.

(g) Total force versus displacement for a specimen
with layers oriented at 45◦ compared in the fully-

resolved and homogenized settings.

(h) Total force versus displacement for a specimen
with layers oriented at 60◦ compared in the fully-

resolved and homogenized settings.

(i) Total force versus displacement for a specimen
with layers oriented at 75◦ compared in the fully-

resolved and homogenized settings.

Figure 6. Comparison of crack growth in the fully-resolved and homogenized settings at various layer orientations with imposed vertical
extension to drive Mode I failure, keeping the vertical faces traction-free.
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(a) Crack growth for the layers at 45◦ in
the fully-resolved domain.

(b) Crack growth for the layers at 60◦ in
the fully-resolved domain.

(c) Crack growth for the layers at 75◦ in
the fully-resolved domain.

(d) Crack growth for the layers at 45◦ in
the homogenized domain.

(e) Crack growth for the layers at 60◦ in
the homogenized domain.

(f) Crack growth for the layers at 75◦ in
the homogenized domain.

(g) Total force versus displacement for a specimen
with layers oriented at 45◦ compared in the fully-

resolved and homogenized settings.

(h) Total force versus displacement for a specimen
with layers oriented at 60◦ compared in the fully-

resolved and homogenized settings.

(i) Total force versus displacement for a specimen
with layers oriented at 75◦ compared in the fully-

resolved and homogenized settings.

Figure 7. Comparison of crack growth in the fully-resolved and homogenized settings at various layer orientations with shear displacement
applied to the top face to drive Mode II failure, keeping the vertical faces traction-free.
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(a) (b)

Figure 8. (a) Initial crack before loading. (b) Growth of wing cracks driven by compressive loading under confinement. We highlight that we
use a simple rectangular domain for the the computations with no internal surfaces; the initial crack in (a) is modeled simply by the initial
condition for ϕ.
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Figure 9. Failure modes of simulated transversely isotropic rock under different values of the confining compression, as observed in the
experiments conducted by [TKJ06].
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Anisotropy Angle 45◦ Deformation (×5) 60◦ Deformation (×5) 75◦ Deformation (×2)

σ3 = 0MPa

σ3 = 6MPa

σ3 = 14MPa

σ3 = 35MPa

Figure 10. Crack growth under compression with various confining pressures (σ3) at layer orientations of 45◦, 60◦, and 75◦ generally aligns
with the experimental observations depicted in Figure 9. The phase-field parameter ϕ and the shape of the deformed specimen are both shown,
with the color in the deformation plots corresponding to the norm of the displacement.
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