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Abstract

In this paper the study of a non-local Cahn-Hilliard-type singularly
perturbed family of functionals is undertaken, generalizing known results
by Alberti & Bellettini [2]. The kernels considered include those leading
to Gagliardo seminorms for fractional Sobolev spaces. The limit energy
is computed via Γ-convergence and shown to be an anisotropic surface
energy on the interface between the two phases.

1 Introduction

In [2], Alberti & Bellettini identify the Γ-limit of the functionals

Fε(u) :=
1

4ε

∫
Ω

∫
Ω

Jε(y − x)|uε(y)− uε(x)|2 dy dx+
1

ε

∫
Ω

W (u) dx, (1.1)

where Ω ⊂ RN is a bounded domain, Jε(h) := ε−NJ(h/ε) for J : RN → [0,+∞)
an even interaction potential satisfying∫

RN

J(h)|h| dh < +∞, (1.2)

and W a continuous double-well potential which vanishes at ±1 only.
Such functionals arise, for example, as continuum limits of Ising spin systems

on lattices; in this case, u represents a macroscopic magnetization density (see
[1], [8] and the references therein). This model closely resembles the classical
Cahn-Hilliard model for phase separation (see, e.g., [4], [7], [10], [21], [26]), given
by the functional

Eε(u) := ε

∫
Ω

|∇u|2 dx+
1

ε

∫
Ω

W (u) dx,

which was originally treated in the context of Γ-convergence in the seminal
paper of Modica & Mortola [20]. As noted in [2], the functionals Fε in (1.1) can
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be obtained from Eε by replacing the gradient term |∇u|2 with finite differences
averaged with respect to J ; that is,

|∇u(x)|2 ≈
∫
RN

|u(x+ εh)− u(x)|2

ε2
J(h) dh.

Functionals of the form E(u) :=
∫
Ω

∫
Ω
J(y− x)|u(y)− u(x)|2 dy dx also arise

in relation to symmetric Lévy processes (see, e.g., [5], [6]). To every mea-
sure ν on RN \ {0} satisfying

∫
RN

(
|h|2 ∧ 1

)
dν(h) < +∞ we can associate a

symmetric Lévy process with jumps distributed according to ν; conversely, the
Lévy-Khintchine formula (see [11, Section 7.6] for more details) guarantees that
every Lévy process has associated to it such a ν. In this context, the energy
E arises as the quadratic form associated to the pseudo-differential operator
Lu(x) :=

∫
RN [u(x+ h)− u(x)] J(h) dh (see [15, Section 2]).

In [3, Theorem 4.6], Alberti & Bellettini show that Fε is not identically equal
to +∞ if and only if ∫

RN

J(h)
(
|h| ∧ |h|2

)
< +∞, (1.3)

leading them to claim in [2] that the hypothesis (1.2) can be relaxed to (1.3).
Crucially, the relaxed hypothesis (1.3) would allow for singular kernels J(h) =
|h|−N−2s for 1

2 < s < 1. This choice of J in (1.1) gives the (rescaled) “fractional
Allen-Cahn energy” (see [9], [22]),

Es
ε(u) = ε2s−1|u|2Hs(Ω) +

1

ε

∫
Ω

W (u) dx,

where |·|Hs(Ω) is the fractional Sobolev seminorm in Ω (see [17] for background
on fractional Sobolev spaces). A variant of this functional including contribu-
tions outside of Ω was considered by Savin & Valdinoci in [23], where the Γ-limit
was shown to be the same as the Γ-limit of the classical Cahn-Hilliard functional
Eε.

In this paper, we will consider the functional (1.1) under the weaker hy-
pothesis (1.3), and prove that we still recover the same Γ-limit as in [2]. Unless
stated otherwise, we will always assume the following hypotheses:

(i) J : RN → [0,+∞) is an even, measurable function satisfying∫
RN

J(h)
(
|h| ∧ |h|2

)
dh =:MJ < +∞, (H1)∫

Bc
1

J(h)|h| log|h| dh < +∞, (H2)

where Br denotes the ball of radius r, and the superscript c denotes the
complement in RN .

(ii) W : R → [0,+∞) is a continuous function which vanishes at ±1 only, and
has at least linear growth at infinity. That is, there exist C,R > 0 such
that

W (z) ≥ C|z| for all |z| ≥ R.
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1.1 Main Theorem

We construct the anisotropic limit functional in a standard way using cell for-
mulae (cf. [2], [13]). Let F be the unscaled functional defined by

F(u,A) :=
1

4

∫
A

∫
RN

J(h)|u(x+ h)− u(x)|2 dh dx+

∫
A

W (u(x)) dx,

for all open A ⊂ RN and u : RN → R measurable. For a fixed unit vector
ξ ∈ SN−1, let Cξ be the collection of cubes of dimension N − 1 centered at
the origin in the hyperplane ξ⊥. Furthermore, for each cube C ∈ Cξ define via
Minkowski sum the strip TC := C + Rξ = {x+ tξ |x ∈ C, t ∈ R}, and the class
of functions

X(C) := {u : RN → [−1, 1] |u is C-periodic, lim
⟨x,ξ⟩→±∞

u(x) = ±1}.

We define the anisotropic surface tension ψ as

ψ(ξ) := inf{|C|−1F(u, TC) |C ∈ Cξ, u ∈ X(C)}, (1.4)

where |C| is the Lebesgue measure of C. The function ψ is upper semicontinuous
on the sphere (cf. [2, Lemma 5.3]).

The limit functional F is thus defined as

F (u) :=

{∫
Su
ψ(νu) dHN−1 if u ∈ BV (Ω; {−1, 1}),

+∞ if u ∈ L1(Ω) \BV (Ω; {−1, 1}).
(1.5)

For definitions of Su, νu,HN−1, and BV (Ω; {−1, 1}), see Section 1.3. We now
state our main theorem.

Theorem 1.1. Let εj → 0 as j → ∞. Under the hypotheses (i) and (ii) on J
and W , the following statements hold:

1. Compactness: Let {uj} ⊂ L1(Ω) be such that

sup
j∈N

Fεj (uj) < +∞.

Then there exists a subsequence {εjn}n∈N such that ujn → u in L1(Ω) for
some u ∈ BV (Ω; {−1, 1}).

2. Γ-lim inf: For all uj → u in L1(Ω), then we have

lim inf
j→∞

Fεj (uj) ≥ F (u).

3. Γ-lim sup: For all u ∈ BV (Ω; {−1, 1}), there exists a sequence {uj} ⊂
L1(Ω) such that uj → u in L1(Ω) and

lim sup
j→∞

Fεj (uj) ≤ F (u).
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Parts 2 and 3 of Theorem 1.1 can be summarized by saying that the sequence
{Fε} Γ-converges to F in L1(Ω). For more information on Γ-convergence, see
[12].

As indicated in [2], a truncation and diagonalization argument can be used
with their results to prove the compactness and Γ − lim inf results under our
hypotheses (see Section 2 for more details). However, their arguments cannot
directly be used to prove the Γ − lim sup under our hypotheses. When J is
allowed to have a very strong singularity at the origin, boundedness of Fε(u)
enforces regularity of u, so a more sophisticated gluing procedure is needed to
construct smooth recovery sequences.

1.2 Discussion of Hypotheses

Hypothesis (H2) is novel, and is needed in the proof and use of the modification
theorem, Theorem 3.1. As indicated in [2], their methods can identify the
Γ − lim inf of Fε under hypothesis (H1) since one can approximate J from
below by a sequence of kernels truncated away from the origin. However, this
direct approximation does not work for the Γ− lim sup since one would need to
approximate the singularity from above, which is not possible.

Note further that the far-field bounds in (H1) follow directly from the second
hypothesis (H2). We choose to state the hypotheses in this overlapping manner
since the quantity MJ defined in (H1) is useful and because it is unclear at
present whether hypothesis (H2) is strictly necessary for Theorem 1.1 or is
merely a technical necessity limited by the methods used.

To better quantify the rate of decay of J(h)|h| at infinity, define the function
ω1 : [0,+∞) → [0,+∞) by

ω1(t) :=

∫
Bc

1/t

J(h)|h| dh. (1.6)

If J satisfies hypothesis (H1), then certainly ω1(t) → 0 as t→ 0+. The following
proposition shows that hypothesis (H2) can also be stated in terms of ω1 alone.

Proposition 1.2. Suppose that J satisfies hypothesis (H1). Then (H2) holds
if and only if

∞∑
n=1

ω1

(
1

n

)
1

n
< +∞. (H2*)

Proof. Note that t 7→ ω1

(
1
t

)
1
t is a decreasing function of t for t > 1, so (H2*)

is satisfied if and only if ω1(1) < +∞ and∫ ∞

1

ω1

(
1

t

)
1

t
dt < +∞.

Since J satisfies (H1), we have that ω1(1) ≤MJ < +∞. Now, letting χU denote
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the indicator function of a set U ⊂ RN and applying Fubini’s theorem, we get∫ ∞

1

ω1

(
1

t

)
1

t
dt =

∫ ∞

1

1

t

∫
Bc

t

J(h)|h| dh dt

=

∫ ∞

1

1

t

∫
RN

χ{|h|≥t}J(h)|h| dh dt

=

∫
RN

∫ ∞

1

1

t
χ{|h|≥t} dtJ(h)|h| dh

=

∫
Bc

1

∫ |h|

1

1

t
dtJ(h)|h| dh

=

∫
Bc

1

J(h)|h| log|h| dh,

completing the proof.

This equivalent hypothesis is clearly satisfied by any kernel with asymptotic
decay ω1(t) = O(tα) for some α > 0. As an example, the fractional Sobolev
kernel J(h) = |h|−N−2s has associated decay ω1(t) ∼ t2s−1, so satisfies (H2*) if
and only if s > 1/2. These same asymptotics also hold for anisotropic Sobolev
kernels JK(h) := ∥h∥−N−2s

K , where ∥·∥K is an arbitrary norm on RN with unit
ball K (cf. [18]), so JK also satisfies hypotheses (H1) and (H2).

1.3 Sets of Finite Perimeter and Functions of Bounded
Variation

In this section we recall the definition and some basic theory of sets of finite
perimeter and functions of bounded variation (see, e.g., [14, Section 5], [19]).

Definition 1.3. A set E ⊂ RN such that |E| < +∞ is a set of finite perimeter
if

P (E) := sup

{∫
E

divφdx

∣∣∣∣φ ∈ C1
c (RN ;RN ), ∥φ∥∞ ≤ 1

}
< +∞.

Finiteness of P (E) implies that the distributional derivative of the indicator
function 1E is a vector-valued Radon measure such that |D1E |(RN ) = P (E),
and for all φ ∈ C1

c (RN ), ∫
RN

φ · dD1E =

∫
E

divφdx. (1.7)

We let BV (Ω) denote the space of all functions u : Ω → R of bounded
variation; that is, functions u ∈ L1(Ω) whose distributional derivatives are
vector-valued Radon measures. Furthermore, we let BV (Ω; {−1, 1}) denote
the subspace of functions of bounded variation taking values ±1 only. We
may identify the space BV (Ω; {−1, 1}) with sets of finite perimeter, since every
function u ∈ BV (Ω; {−1, 1}) is uniquely determined by the set {u = +1}.
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Definition 1.4. Let E ⊂ RN be a set of finite perimeter. We define the reduced
boundary ∂∗E of E to be the set of points x ∈ RN for which the limit

νE(x) = − lim
r→0+

D1E(x+Br)

|D1E |(x+Br)
,

exists and satisfies |νu(x)| = 1, where Br is the ball centered at the origin of
radius r. We call the vector νu(x) the exterior measure-theoretic normal to E
at x.

De Giorgi’s Structure Theorem (see, e.g., [19, Theorem 15.9]) relates the
measure D1E to the Hausdorff measure HN−1; specifically, we have that ∂∗E is
an HN−1-rectifiable set and D1E = −νEHN−1 ¬

∂∗E. In other words, we may
rewrite (1.7) as the generalized Gauss-Green Theorem∫

∂∗E

φ · νE dHN−1 =

∫
E

divφdx.

Since every u ∈ BV (Ω; {−1, 1}) can be identified with {u = +1}, we define
the “jump set” Su := ∂∗{u = +1} and the exterior normal νu := ν{u=+1}.

1.4 Slicing and Integral Geometry

Let SN−1 ⊂ RN be the unit sphere, and let Graff(N, 1) be the affine Grass-
mannian of lines in RN (for background on Graff(N, k), see [16, Chapter 6]).
Graff(N, 1) supports a rigid motion invariant Haar measure, which (suitably
normalized) we will denote by λN1 . This measure can be described explicitly:
given an affine line L ∈ Graff(N, 1), we may parameterize L = x0 + Rξ, where
ξ ∈ SN−1 is either of the unit vectors spanning L, and x0 ∈ ξ⊥ is a base-
point lying on the hyperplane orthogonal to ξ. Given a measurable function
f : Graff(N, 1) → R, we therefore define∫

Graff(N,1)

f(L) dλN1 (L) :=
1

2

∫
SN−1

∫
ξ⊥
f(x0 + Rξ) dHN−1(x0) dHN−1(ξ).

(1.8)
The following lemma lets us relate the integral over a function of two spatial
variables to an integral over its one dimensional slices.

Lemma 1.5 (Blaschke-Petkantschin Formula, c.f. [17, Theorem 6.46], [24,
Theorem 7.2.7]). Let f : A × B → R be a measurable function, A,B ⊂ RN

measurable subsets. Then,∫
A

∫
B

f(x, y) dy dx

=

∫
Graff(N,1)

∫
A∩L

∫
B∩L

f(x, y)|y − x|N−1 dH1(y) dH1(x) dλN1 (L).
(1.9)
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Given a set E ⊂ RN and δ > 0, define the “inner set”

Eδ := {x ∈ E | d(x, ∂E) > δ},

and the “outer set”
Eδ := {x ∈ RN | d(x,E) < δ}.

In particular, we may write the outer set as the Minkowski sum Eδ = E + Bδ,
where Bδ is the ball centered at the origin of radius δ. The following lemma
lets us control the volume of the outer set in terms of its HN−1 measure.

Lemma 1.6. Suppose X ⊂ RN is a finite union of compact, convex sets of
dimension N − 1 with pairwise HN−1-null intersections; that is, X =

⋃K
k=1Xk

for some K ∈ N, where each Xk lies in a hyperplane, and HN−1(Xi ∩Xj) = 0
for i ̸= j. If δ > 0, then

HN (Xδ) ≤ 2πδHN−1(X) +O(δ2). (1.10)

Proof. First, note that

Xδ =

K⋃
k=1

Xδ
k ,

so that we may use subadditivity of the Hausdorff measure to get

HN (Xδ) ≤
K∑

k=1

HN (Xδ
k).

To bound HN (Xδ
k), we will appeal to Steiner’s Formula [16, Theorem 9.2.3]: for

all compact, convex sets E ⊂ RN ,

µN (Eδ) =

N∑
i=1

µi(E)ωN−iδ
N−i, (1.11)

where µi are the “intrinsic volumes” on RN and ωi is the volume of the i-
dimensional unit ball (see [16] for more information on intrinsic volumes). In
particular, µi(E) = Hi(E) if E lies within a subspace of dimension ≤ i.

Therefore, since each Xk lies within a subspace of dimension N−1 (a hyper-
plane), we have µN (Xk) = HN (Xk) = 0 and µN−1(Xk) = HN−1(Xk). Applying
(1.11) to HN (Xδ

k), we find

HN (Xδ) ≤
K∑

k=1

HN (Xδ
k)

= 2πδ

K∑
k=1

HN−1(Xk) +O(δ2)

= 2πδHN−1(X) +O(δ2),

where the last equality follows since the Xk have pairwise HN−1-null intersec-
tions.
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2 Compactness and the Γ− lim inf

Given a kernel J satisfying hypotheses (H1) and (H2), for 0 < ρ < 1 define the
truncated kernels

Jρ(h) := 1Bc
ρ
(h)J(h).

That is, Jρ(h) = 0 if |h| ≤ ρ and Jρ(h) = J(h) otherwise. Furthermore, denote
with a superscript ρ the variants of Jε, Fε, F , etc., respectively defined with
Jρ in place of J . We prove the compactness statement in Theorem 1.1(1) by
considering a single truncation.

Proof of Theorem 1.1(1). Let εj → 0, and {uj} ⊂ L1(Ω) be such that Fεj (uj)
is uniformly bounded. Choose any 0 < ρ < 1. Since F ρ

ε ≤ Fε for all ε > 0,
F ρ
εj (uj) is also uniformly bounded. The kernel Jρ satisfies the hypotheses of

[2, Theorem 1.4], so we may apply the theorem to conclude that there exists a
subsequence of uj converging to some u ∈ BV (Ω; {−1, 1}).

In order to prove the Γ − lim inf statement in Theorem 1.1(2), it will be
necessary to approximate J by the truncated kernels Jρ and sending ρ → 0+.
The following lemmas ensure that this approximation process properly recovers
the surface tension and energies, respectively, associated to the kernel J .

Lemma 2.1. Let ξ ∈ SN−1. Then

lim
ρ→0

ψρ(ξ) = sup
ρ>0

ψρ(ξ) = ψ(ξ).

Proof. Recall that ψρ and ψ are defined as

ψρ(ξ) := inf
C∈Cξ,u∈X(C)

|C|−1Fρ(u, TC), (2.1)

ψ(ξ) := inf
C∈Cξ,u∈X(C)

|C|−1F(u, TC). (2.2)

By definition, for all x ∈ RN \ {0}, the function ρ 7→ Jρ(x) is decreasing and
convergences to J(x) as ρ → 0+. Therefore, the functions ρ 7→ |C|−1Fρ(u, TC)
are decreasing, so the equivalence of the limit and supremum is clear. All that
remains to show is that supρ>0 ψ

ρ(ξ) ≥ ψ(ξ).
Assume that supρ>0 ψ

ρ(ξ) < +∞, since otherwise there is nothing to prove.
By [3, Theorem 2.4, Theorem 3.3], for each ρ > 0, the infimum in (2.1) is
independent of C and achieved by a function uρ : RN → [−1, 1] given by uρ(x) :=
γρξ (⟨x, ξ⟩) for some non-decreasing function γρξ : R → [−1, 1]. Therefore, we may

apply Helly’s theorem to the family {γρξ }ρ>0 to extract a subsequence ρj → 0

such that γ
ρj

ξ → γξ pointwise for some non-decreasing γξ : R → [−1, 1]. Define

u : RN → R by u(x) := γξ(⟨x, ξ⟩), and let C ∈ Cξ be arbitrary. Then u ∈ X(C),
and we can conclude by Fatou’s lemma,

sup
ρ>0

ψρ(x) = lim
j→∞

|C|−1Fρj (uρj , TC)

≥ |C|−1F(u, TC)

≥ ψ(ξ).
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Lemma 2.2. Let ε > 0, and u ∈ L1(Ω). Then

lim
ρ→0

F ρ
ε (u) = sup

ρ>0
F ρ
ε (u) = Fε(u),

lim
ρ→0

F ρ(u) = sup
ρ>0

F ρ(u) = F (u).

Proof. As in the proof of Lemma 2.1, F ρ
ε and F ρ are decreasing in ρ so the

equivalence of the limit and the supremum follows. We may then simply pass the
supremum under the integral by the monotone convergence theorem to conclude
the first limit, and use Lemma 2.1 with the monotone convergence theorem to
conclude the second limit.

With these lemmas, the proof of the Γ− lim inf is now straightforward.

Proof of Theorem 1.1(2). Let εj → 0, and uj → u in L1(Ω). We may suppose,
without loss of generality, that

lim inf
j→∞

Fεj (uj) < +∞.

By Theorem 1.1(1), u ∈ BV (Ω; {−1, 1}), so we may apply [2, Theorem 1.4] to
conclude that for each 0 < ρ < 1,

lim inf
j→∞

F ρ
εj (uj) ≥ F ρ(u).

Combining this with Lemma 2.2 and the monotone convergence theorem, we
compute

lim inf
j→∞

Fεj (uj) = lim inf
j→∞

sup
ρ>0

F ρ
εj (uj)

≥ sup
ρ>0

lim inf
j→∞

F ρ
εj (uj)

≥ sup
ρ>0

F ρ(u) = F (u).

3 Modification Theorem

In the proof of the Γ − lim sup inequality, we will need to patch together dif-
ferent optimal profiles corresponding to different directions. In the case where
J has only a weak singularity at the origin, it is sufficient to do a näıve gluing
to construct a recovery sequence. If J has a strong enough singularity, then
boundedness of Fε(u) enforces regularity of u and a more sophisticated process
is required. The modification theorem allows us to use a fixed profile to patch
continuously between the optimal profiles of different directions in a manner
that does not affect Fε energetically too much.
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Theorem 3.1 (Modification Theorem). Let δ > 0. Let D ⊂ Ω, {uk} ⊂
L1(D; [−1, 1]), and {wk} ⊂ L1(Ω \ Dδ; [−1, 1]) such that uk − wk → 0 in
L1(D \Dδ). Then there exists {vk} ⊂ Lp(Ω) such that vk = uk in Dδ, vk = wk

in Ω \D, and

lim sup
k→∞

Fεk(vk,Ω) ≤ lim sup
k→∞

[Fεk(uk, D) + Fεk(wk,Ω \Dδ)] . (3.1)

The proof of this theorem follows exactly the structure of Proposition 4.1
in [23], with additional care and many ideas from [13] taken to treat the case
of a general kernel. As such, we will need the following lemmas, adapted from
[13]. Lemma 3.2 will address near field interactions for Jε, and Lemma 3.3 will
address far field interactions for Jε, where for measurable subsets A,B ⊂ Ω, we
define

Fε(u,A) := Jε(u,A) +Wε(u,A),

Jε(u,A) := Jε(u,A,A),

Jε(u,A,B) :=
1

4ε

∫
A

∫
B

Jε(y − x)|u(y)− u(x)|2 dy dx, (3.2)

Wε(u,A) :=
1

ε

∫
A

W (u(x)) dx.

Lemma 3.2 (cf. [13, Lemma 5.3]). Let ε > 0, let y ∈ RN , let A be a measurable
subset of RN , and let g : A→ R be a measurable function such that

0 ≤ g(x) ≤ ((a|y − x|) ∧ b)2 for every x ∈ A,

for some constants a, b > 0. If b ≥ aε, then∫
A

Jε(y − x)g(x) dx ≤ abMJε,

where MJ is defined as in (H1).

Proof. Using the change of variables h := (y − x)/ε, we get∫
A

Jε(y − x)g(x) dx ≤
∫
RN

J(h) ((aε|h|) ∧ b)2 dh

= a2ε2
∫
Bb/(aε)

J(h)|h|2 dh

+ b2
∫
RN\Bb/(aε)

J(h) dh

= a2ε2
∫
B1

J(h)|h|2 dh+ a2ε2
∫
Bb/(aε)\B1

J(h)|h|2 dh

+ b2
∫
RN\Bb/(aε)

J(h) dh

≤ a2ε2
∫
B1

J(h)|h|2 dh+ abε

∫
RN\B1

J(h)|h| dh

≤ abMJε.
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Lemma 3.3 (cf. [13, Lemma 5.4]). Let ε > 0, δ > 0, let E,F be open sets in
RN with d(E,F ) ≥ δ, and let u ∈ L2(E ∪ F ). Then,

Jε(u,E, F ) ≤
1

2δ
ω1

(ε
δ

)∫
E∪F

|u(x)|2 dx,

where ω1 is as defined in (1.6).

Proof. Using the change of variables h = (y − x)/ε and the fact that J is even,
we have

Jε(u,E, F ) =
1

4ε

∫
E

∫
F

Jε(y − x)|u(y)− u(x)|2 dy dx

≤ 1

2ε

∫
E

∫
F

Jε(y − x) dy|u(x)|2 dx

+
1

2ε

∫
F

∫
E

Jε(x− y) dx|u(y)|2 dy

≤ 1

2ε

∫
E

∫
RN\Bδ/ε

J(h) dh |u(x)|2 dx

+
1

2ε

∫
F

∫
RN\Bδ/ε

J(h) dh |u(y)|2 dy

=
1

2ε

(∫
RN\Bδ/ε

J(h) dh

)(∫
E∪F

|u(x)|2 dx
)

≤ 1

2δ
ω1

(ε
δ

)∫
E∪F

|u(x)|2 dx.

Proof of Theorem 3.1. To simplify the presentation, we will suppress reference
to the subscript k. If the right hand side of (3.1) is infinite, then there is nothing
to prove, so suppose that there exists some constant C > 0 such that for all
ε > 0,

Fε(u,D) + Fε(w,Ω \Dδ) ≤ C. (3.3)

Therefore, by (3.2), we get the kinetic energy bounds

Jε(u,D \Dδ, D) + Jε(w,D \Dδ,Ω \Dδ) ≤ C. (3.4)

Choose σ > 0, and let δ̃ := δ
M for some large M depending only on σ. Partition

D \Dδ into M shells Djδ̃ \D(j+1)δ̃, and rewrite the term above into a sum over
the shells:

Jε(u,D \Dδ, D) + Jε(w,D \Dδ,Ω \Dδ)

=

M−1∑
j=0

(
Jε(u,Djδ̃ \D(j+1)δ̃, D) + Jε(w,Djδ̃ \D(j+1)δ̃,Ω \Dδ)

)
.
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Therefore, provided we choose M ≥ C/σ, by (3.4) there exists a distinguished
0 ≤ j ≤M − 1 such that, denoting D̃ := Djδ̃, we have

Jε(u, D̃ \ D̃δ̃, D) + Jε(w, D̃ \ D̃δ̃,Ω \Dδ) ≤ σ. (3.5)

Within the shell D̃ \ D̃δ̃, we will further consider shells of width ε≪ δ̃. For

0 ≤ i ≤ K − 1 with K the integer part of δ̃/(2ε), define the shells

Ai := {x ∈ D̃ | iε < d(x, ∂D̃) < (i+ 1)ε}. (3.6)

Furthermore, denote di(x) := d(x, ∂D̃iε).
Consider the sum

K−1∑
i=0

∫
D̃iε\D̃δ̃

|u− w|min

{
ω1(1), ω1

(
ε

di(x)

)
ε

di(x)

}
dx, (3.7)

which is bounded above by the integral∫
D̃\D̃δ̃

|u− w|
K−1∑
i=0

min

{
ω1(1), ω1

(
ε

di(x)

)
ε

di(x)

}
dx. (3.8)

We observe that the integral in (3.7) is not taken over the slice Ai, but rather

over D̃iε\D̃δ̃ = Ai∪
(
D̃(i+1)ε \ D̃δ̃

)
. Since t 7→ ω1(t)t is increasing, the minimum

is determined by whether ε ≤ di(x) or di(x) ≤ ε.
Fix x ∈ D̃ \ D̃δ̃, and let ix ∈ N ∩ [0, 2K] indicate the unique slice Aix such

that x ∈ Aix . If |i − ix| ≥ 2, then di(x) ≥ ε(|i − ix| − 1). Using again the fact
that t 7→ ω1(t)t is increasing, we estimate

K−1∑
i=0

min

{
ω1(1), ω1

(
ε

di(x)

)
ε

di(x)

}

≤
K−1∑
i=0

|i−ix|≤1

ω1(1) +

K−1∑
i=0

|i−ix|≥2

ω1

(
ε

di(x)

)
ε

di(x)

≤ 3ω1(1) +

K−1∑
i=0

|i−ix|≥2

ω1

(
1

|i− ix|

)
1

|i− ix|

≤ 3ω1(1) + 2

∞∑
n=1

ω1

(
1

n

)
1

n
.

By hypothesis (H2*), this is finite, so the integral (3.8) is bounded above by a
universal constant times ∥u−w∥L1(D\Dδ). Since uk −wk → 0 in L1(D \Dδ) as
k → ∞, this can be made as small as desired in the limit, so in particular we
choose it small enough so that

K−1∑
i=0

∫
D̃iε\D̃δ̃

|u− w|min

{
ω1(1), ω1

(
ε

di(x)

)
ε

di(x)

}
dx ≤ δ̃σ

2
.
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Since K is of the order δ̃
2ε , there exists 0 ≤ i ≤ K − 1 such that∫

Ai

|u− w|ω1(1) dx+

∫
D̃(i+1)ε\D̃δ̃

|u− w|ω1

(
ε

di(x)

)
ε

di(x)
dx

=

∫
D̃iε\D̃δ̃

|u− w|min

{
ω1(1), ω1

(
ε

di(x)

)
ε

di(x)

}
dx ≤ σε.

(3.9)

Now, partition Ω into 4 disjoint sets:

P := D̃δ̃, Q := D̃(i+1)ε \ D̃δ̃, R := Ai, S := Ω \ D̃iε.

Define v := φu+ (1− φ)w, where φ is a smooth cutoff function with φ ≡ 1 on
P ∪Q, φ ≡ 0 on S, and ∥∇φ∥∞ ≤ 3

ε (by (3.6) the width of R is of order ε). If
we rearrange the nonlocal interactions appropriately, by (3.2) we can bound

Jε(v,Ω) ≤ Jε(u,D) + Jε(w,Ω \Dδ) + Jε(v,R)

+ Jε(v, P,R ∪ S) + Jε(v,Q,R ∪ S) + 2Jε(v,R, S),
(3.10)

so inequality (3.1) is established if we show that each of the last four terms goes
to zero in the limit.

First, we bound Jε(v,R). Using convexity of the map z 7→ |z|2, we have

|v(y)− v(x)|2 ≲ |u(y)− u(x)|2 + |w(y)−w(x)|2 + |u(x)−w(x)|2|φ(y)− φ(x)|2,

where the notation A ≲ B means that there is some universal constant C such
that A ≤ CB. Therefore, we can bound

Jε(v,R) ≲ Jε(u,R) + Jε(w,R)

+
1

4ε

∫
R

∫
R

Jε(y − x)|φ(y)− φ(x)|2 dy|u(x)− w(x)|2 dx.

By (3.5), the first two terms are ≤ σ. Since |u − w| ≤ 2 and |φ(y) − φ(x)| ≤
3(1 ∧ 1

ε |y − x|), by (3.9) and Lemma 3.2, we obtain

1

4ε

∫
R

∫
R

Jε(y − x)|φ(y)− φ(x)|2 dy|u(x)− w(x)|2 dx

≤ 9MJ

2ε

∫
R

|u− w| dx

≤ 9MJ

2ω1(1)
σ.

Therefore, Jε(v,R) ≲ σ.
Next, we bound Jε(v, P,R∪S). Since |v(y)−v(x)| ≤ 2 and d(P,R∪S) ≥ δ̃/2,
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we can bound

Jε(v, P,R ∪ S) = 1

4ε

∫
P

∫
R∪S

Jε(y − x)|v(y)− v(x)|2 dy dx

≤ 1

ε

∫
P

∫
Bδ̃/2(x)

c

Jε(y − x) dy dx

≤ 1

ε

∫
Ω

∫
Bc

δ̃/(2ε)

J(h) dh dx

≤ 2|Ω|
δ̃
ω1

(
2ε

δ̃

)
.

We will estimate Jε(v,Q,R∪S) in two steps. If x ∈ Q, y ∈ S, then |y−x| ≥
di(x) and |v(y)− v(x)|2 ≤ 2|w(y)− w(x)|2 + 2|u(x)− w(x)|2. Therefore, using
(1.6), (3.5), and (3.9) we get

Jε(v,Q, S) ≤ 2Jε(w,Q, S) +
1

2ε

∫
Q

∫
S

Jε(y − x) dy |u(x)− w(x)|2 dx

≤ 2Jε(w,Q, S) +
1

ε

∫
Q

|u(x)− w(x)|ω1

(
ε

di(x)

)
ε

di(x)
dx

≲ σ.

On the other hand, if x ∈ R, y ∈ Q, then |y − x| ≥ di+1(x) and |1 −
φ(x)| ≤ 3

εdi+1(x) by the gradient bounds on φ. Furthermore, by the convexity
of z 7→ |z|2, also |v(y) − v(x)|2 ≤ 2|u(y) − u(x)|2 + 2|1 − φ(x)|2|u(x) − w(x)|2.
We thus have

Jε(v,R,Q) ≤ 2Jε(u,R,Q)

+
1

2ε

∫
R

∫
Q

Jε(y − x) dy|1− φ(x)|2|u(x)− w(x)|2 dx

≤ 2Jε(u,R,Q)

+
9

ε

∫
R

ω1

(
ε

di+1(x)

)
di+1(x)

ε
|u(x)− w(x)| dx.

Note that ε
di+1(x)

≥ 1 for all x ∈ R. Since ω1(t)/t ≤MJ for all t ≥ 1, we have

ω1

(
ε

di+1(x)

)
di+1(x)

ε
≤MJ ,

for all x ∈ R. Taking this into account, and again using (3.5) and (3.9), we
deduce that

Jε(v,R,Q) ≲ σ.

Therefore, combining these results, we get

Jε(v,Q,R ∪ S) ≲ σ.
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Lastly, we bound Jε(v,R, S). If x ∈ R, y ∈ S, then |φ(x)| ≤ 3
εdi(x) and

|v(y)− v(x)|2 ≤ 2|u(y)− u(x)|2 + 2|φ(x)|2|u(x)− w(x)|2. Therefore, using the
same argument as that to bound Jε(v,R,Q), we get

Jε(v,R, S) ≲ σ.

Substituting these bounds into (3.10), this gives (for arbitrary σ > 0)

lim sup
k→∞

Jεk(vk,Ω) ≤ lim sup
k→∞

(Jεk(uk, D) + Jεk(wk,Ω \Dδ)) + Cσ, (3.11)

where C is a constant depending only on MJ .
All that remains is to bound the potential term Wε(v,Ω), but for this we

can follow exactly the same argument as [23]. Letting σ → 0+ completes the
proof.

4 Γ-Limsup Inequality

The proof of Theorem 1.1(3) is a simple consequence of the following theorem.

Theorem 4.1. For every u ∈ BV (Ω; {−1, 1}), there exists a sequence uj → u
in Lp(Ω) such that

lim sup
j→∞

Fεj (uj ,Ω) ≤
∫
Su

ψ(νu) dHN−1.

Proof of Theorem 1.1(3) supposing Theorem 4.1. Let εj → 0 and u ∈ L1(Ω). If
u ̸∈ BV (Ω; {−1, 1}), then F (u) = +∞ and there is nothing to prove, so suppose
u ∈ BV (Ω; {−1, 1}). Now simply apply Theorem 4.1.

We will first prove Theorem 4.1 for BV functions with polyhedral jump sets,
then address the general case. In order to do so, we will need a fixed profile to
glue across facets of the polyhedron, interpolating between optimal profiles in
different directions.

Fix a mollifier θ ∈ C∞
c (RN ) such that supp θ ⊂ B1(0),

∫
RN θ dx = 1,

and ∥∇θ∥∞ ≤ 2 and define θτ (x) := τ−Nθ(x/τ) for all τ > 0. For any
u ∈ BV (Ω; {−1, 1}), define

ũε := u ∗ θε, (4.1)

to be our fixed profile of scale ε. By construction, ũε(x) ∈ [−1, 1] for all x ∈ Ω.

Proposition 4.2. Let u ∈ BVloc(RN ; {−1, 1}), and for every ε > 0, let ũε be
defined as in (4.1). Assume there exists a bounded polyhedral set Σ of dimension
N − 1 such that Su = Σ, let ΣN−2 be the union of all its (N − 2)-dimensional
facets, and let (ΣN−2)δ := {x ∈ RN | d(x,ΣN−2) < δ}. Then, there exist con-
stants δΣ > 0, C = C(J, p,Σ) > 0 such that for 0 < ε < δ < δΣ, we have

Jε(ũε, (Σ
N−2)δ) ≤ CδHN−2(ΣN−2).
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Proof of Proposition 4.2. Write (ΣN−2)δ as the disjoint union of two sets,

Cδ
ε := {x ∈ (ΣN−2)δ | d(x,ΣN−2) < ε},

Ĉδ
ε := {x ∈ (ΣN−2)δ | d(x,ΣN−2) ≥ ε}.

Note that the near field set Cδ
ε is nothing more than (ΣN−2)ε.

We can break up the kinetic energy into near and far field interactions on
these sets as

Jε(ũε, (Σ
N−2)δ) ≤ 2Jε(ũε, C

δ
ε , (Σ

N−2)δ) + 2Jε(ũε, Ĉ
δ
ε ).

Using the inequality 0 ≤ |ũε(y)−ũε(x)|2 ≤
(
2
ε |y − x| ∧ 2

)2
, we can apply Lemma

3.2 to get

Jε(ũε, C
δ
ε , (Σ

N−2)δ) =
1

4ε

∫
Cδ

ε

∫
(ΣN−2)δ

Jε(y − x)|ũε(y)− ũε(x)|2 dy dx

≤ MJ

ε
LN (Cδ

ε )

≲MJεHN−2(ΣN−2) ≤MJδHN−2(ΣN−2),

for ε and δ sufficiently small.
For the second term, we note that ũε ≡ ±1 on Ĉδ

ε , and that the subsets
{ũε = +1} and {ũε = −1} are separated by a gap of size 2ε. Denote by Cδ

+

and Cδ
− the parts of Ĉδ

ε where ũε equals +1 or −1 respectively. Applying the
Blaschke-Petkantschin formula (Lemma 1.5) to this term, we get

Jε(ũε, Ĉ
δ
ε ) =

2

ε

∫
Cδ

+

∫
Cδ

−

Jε(y − x) dy dx

=
1

ε

∫
Graff(N,1)

∫
L∩Cδ

+

∫
L∩Cδ

−

Jε(y − x)|y − x|N−1 dH1(y) dH1(x) dλN1 (L)

=
1

ε

∫
Graff(N,1)

A(L) dλN1 (L)

=
1

2ε

∫
SN−1

∫
ξ⊥

A(z + Rξ) dHN−1(z) dHN−1(ξ),

(4.2)

where we have defined A : Graff(N, 1) → [0,∞) by

A(L) :=

∫
L∩Cδ

+

∫
L∩Cδ

−

Jε(y − x)|y − x|N−1 dH1(y) dH1(x). (4.3)

Since the integrand in (4.3) only depends on terms of the form y − x, the
integrand is independent of z. Furthermore, note that A(L) ̸= 0 only if L
intersects both Cδ

+ and Cδ
−; that is, if z ∈ Ĉδ

ε |ξ⊥, where U |H denotes the
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projection of U onto the hyperplane H. Therefore,

A(z + Rξ)

=

∫
(z+Rξ)∩Cδ

+

∫
(z+Rξ)∩Cδ

−

Jε(y − x)|y − x|N−1 dH1(x) dH1(y)

=

∫
Rξ∩(Cδ

+−z)

∫
Rξ∩(Cδ

−−z)

Jε(y − x)|y − x|N−1 dH1(x) dH1(y)

≤ χĈδ
ε |ξ⊥

(z)

∫ −ε

−∞

∫ ∞

ε

Jε ((t− s)ξ) |t− s|N−1 dt ds

= εχĈδ
ε |ξ⊥

(z)

∫ −1

−∞

∫ ∞

1

Jξ(t− s) dt ds,

(4.4)

where we define Jξ(t) := J(tξ)|t|N−1.

Set F (ξ) :=
∫ −1

−∞
∫∞
1
Jξ(t − s) dt ds. Substituting (4.4) back into (4.2), we

get the estimate

Jε(ũε, Ĉ
δ
ε ) ≲

∫
SN−1

∫
ξ⊥
χĈδ

ε |ξ⊥
(z)F (ξ) dHN−1(z) dHN−1(ξ)

=

∫
SN−1

HN−1(Ĉδ
ε |ξ⊥)F (ξ) dHN−1(ξ)

≤
∫
SN−1

HN−1((ΣN−2)δ|ξ⊥)F (ξ) dHN−1(ξ).

(4.5)

Recognizing (ΣN−2)δ|ξ⊥ = (ΣN−2|ξ⊥)δ ⊂ ξ⊥, we can apply Lemma 1.6 to
X = ΣN−2|ξ⊥ in the hyperplane ξ⊥ ∼= RN−1 to get that for δ ≪ 1,

HN−1((ΣN−2)δ|ξ⊥) ≲ δHN−2(ΣN−2|ξ⊥) ≤ δHN−2(ΣN−2).

Substituting this into (4.5), we find

Jε(ũε, Ĉ
δ
ε ) ≲ δHN−2(ΣN−2)

∫
SN−1

F (ξ) dHN−1(ξ).

To conclude the bound of the far field terms, it only remains to show that
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F ∈ L1(SN−1), but this is a consequence of hypothesis (H2*). To be precise,∫
SN−1

F (ξ) dHN−1(ξ) =

∫
SN−1

∫ −1

−∞

∫ ∞

1

Jξ(t− s) dt ds dHN−1(ξ)

=

∫
SN−1

∫ ∞

2

∫ ∞

s

Jξ(t) dt ds dHN−1(ξ)

≤
∫
SN−1

∫ ∞

2

∫ ∞

s

t

s
Jξ(t) dt ds dHN−1(ξ)

=

∫
SN−1

∫ ∞

2

tJξ(t)

∫ t

2

1

s
ds dt dHN−1(ξ)

≤
∫
SN−1

∫ ∞

2

tJξ(t) ln t dt dHN−1(ξ)

=

∫
Bc

2

J(h)|h| ln|h| dh < +∞.

Combining the near field bounds and far field bounds, we conclude.

The proof of the Γ-limsup requires the following two lemmas, from which
Theorem 4.1 will follow. The proof of Lemma 4.3 is identical to step 2 in the
proof of Theorem 5.2 in [2], so will be omitted (see also [13, Lemma 7.3]).

Lemma 4.3. Let P be a bounded polyhedron of dimension N − 1 containing
0 with normal ν, let ρ > 0, and let Pρ be the N -dimensional prism {x + tν |
x ∈ P, t ∈ (−ρ

2 ,
ρ
2 )}. Define wν : P ρ → R by

wν(x) =

{
+1 if x · ν > 0,

−1 if x · ν ≤ 0.

Then, for every η > 0 there exists a sequence {uε} ⊂ Lp(Pρ; [−1, 1]) such that
uε → wν in Lp(Pρ) and

lim sup
ε→0

Fε(uε, Pρ) ≤ HN−1(P ) (ψ(ν) + η) .

Lemma 4.4. Let u ∈ BVloc(RN ; {−1, 1}) be such that there exists a polyhedral
set Σ of dimension N − 1 such that Su = Σ. For every σ > 0 there exist
ρ > 0 and δ ∈ (0, ρ) with the following property: for every εj → 0 there exists
vj ∈ Lp(Σρ; [−1, 1]) such that vj = u on Σρ \ Σρ−δ and

lim sup
j→∞

Fεj (vj ,Σ
ρ) ≤

∫
Σ

ψ(νu) dHN−1 + σ.

Proof. The proof of Lemma 4.4 is very similar to the proof of Lemma 7.4 in
[13], but with some simplifications made to adapt to our functional.

Let δΣ > 0 be as in Proposition 4.2, and fix σ, σ̂ > 0 with σ̂ < min{δΣ, σ}.
There exists ρ ∈ (0, σ̂) and a finite number of bounded polyhedra P 1, . . . , P k of
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dimension N − 1 with normals ν1, . . . , νk contained in the facets of Σ such that

the closed prisms P
i

ρ are pairwise disjoint and

Σρ \
k⋃

i=1

P i
ρ ⊂ (ΣN−2)σ̂. (4.6)

Find R1, . . . , Rk bounded polyhedra of dimension N − 1 also contained in the
facets of Σ such that the closed prisms are disjoint and P i ⊂⊂ Ri for each i.

Fix η > 0 such that ηHN−1(Σ) < σ/2, so that by Lemma 4.3 for each
polyhedron Ri there exists a sequence {uij} ⊂ Lp(Ri

ρ; [−1, 1]) such that uij → u

in Lp(Ri
ρ), and

lim sup
j→∞

Fεj (u
i
j , R

i
ρ) ≤ HN−1(Ri)(ψ(νi) + η).

Choose 0 < δ < min{ρ/2, σ̂} and, as in (4.1), define ũj := u ∗ θεj . We apply
the modification theorem, Theorem 3.1, with Ω = Ri

ρ and D := (Ri
ρ)δ to glue

together uij and ũj to create functions vij ∈ L2(Ri
ρ) satisfying

1. vij ≡ uij in (Ri
ρ)2δ,

2. vij ≡ ũj on Ri
ρ \ (Ri

ρ)2δ,

3. and

lim sup
j→∞

Fεj (v
i
j , R

i
ρ) ≤ lim sup

j→∞

(
Fεj (u

i
j , (R

i
ρ)δ) + Fεj (ũj , R

i
ρ \ (Ri

ρ)2δ)
)
.

(4.7)

We now have to bound Fεj (ũj , R
i
ρ \ (Ri

ρ)2δ). As in the proof of Proposition

4.2, to bound Jεj (ũj , R
i
ρ \ (Ri

ρ)2δ), we break up the shell into a near field and
far field;

Cj := {x ∈ Ri
ρ \ (Ri

ρ)2δ | d(x,Ri) < εj},

Ĉj := {x ∈ Ri
ρ \ (Ri

ρ)2δ | d(x,Ri) ≥ εj}.

Therefore,

Jεj (ũj , R
i
ρ \ (Ri

ρ)2δ) ≤ 2Jεj (ũj , Cj , R
i
ρ \ (Ri

ρ)2δ) + 2Jεj (ũj , Ĉj),

and, as in the proof of Theorem 3.1, again the first term is ≲ δCRi
ρ
by Lemma

3.2, where CRi
ρ
is a constant depending on Ri

ρ. We break up Ĉj into the following
four sets

C+
j := {x ∈ Ĉj | d(x,Ri) ≥ ρ− 2δ, u(x) = 1},

S+
j := {x ∈ Ĉj | d(x,Ri) < ρ− 2δ, u(x) = 1},

S−
j := {x ∈ Ĉj | d(x,Ri) < ρ− 2δ, u(x) = −1},

C−
j := {x ∈ Ĉj | d(x,Ri) ≥ ρ− 2δ, u(x) = −1},
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so that by additivity of J ,

Jεj (ũj , Ĉj) ≤ Jεj (ũj , C
+
j , S

−
j ∪C−

j ) +Jεj (ũj , S
+
j , S

−
j ) +Jεj (ũj , C

+
j ∪ S+

j , C
−
j ).

The first and third terms involve sets at distance ≥ ρ − 2δ + ε, so by Lemma
3.3 they will tend to zero as j → ∞. By (4.6), the sets S±

j are actually both

subsets of (ΣN−2)σ̂+2δ ⊂ (ΣN−2)3σ̂, so by Proposition 4.2, the second term is
≲ σ̂; therefore, we get

lim sup
j→∞

Jεj (ũj , R
i
ρ \ (Ri

ρ)2δ) ≲ σ̂. (4.8)

We can also bound the potential energy by noting that W (u) = 0 on Ĉj ,
and so

lim sup
j→∞

Wεj (ũj , R
i
ρ \ (Ri

ρ)2δ) = lim sup
j→∞

Wεj (ũj , Cj) ≤MWCRi
ρ
δ, (4.9)

where MW := max[−1,1]W . Combining inequalities (4.8) and (4.9), we have
that

lim sup
j→∞

Fεj (ũj , Ĉj) ≤ κ1σ̂,

for a constant κ1 independent of u. This, together with (4.7) and by Lemma
4.3, yields

lim sup
j→∞

Fεj (v
i
j , R

i
ρ) ≤ lim sup

j→∞
Fεj (u

i
j , R

i
ρ) + κ1σ̂

≤ HN−1(Ri)(ψ(νi) + η) + κ1σ̂.
(4.10)

Define vj := vij in Ri
ρ, and vj := ũj on Aρ := Σρ \

⋃k
i=1R

i
ρ. Then vj → u in

Lp(Σρ) and vj = u on Σρ \ Σρ−δ for j ≫ 1.
By additivity of W, we obtain

Wεj (vj ,Σ
ρ) ≤

k∑
i=1

Wεj (vj , R
i
ρ) +Wεj (vj , Aρ), (4.11)

but vj = ũj on Aρ, and ũj = ±1 for x ̸∈ Σ2εj , so we can bound

Wεj (vj , Aρ) ≤ Wεj (ũj , (Σ
N−2)σ̂ ∩ Σ2εj )

≤ 1

εj
MWLN

(
(ΣN−2)σ̂ ∩ Σ2εj

)
≤MW cΣσ̂HN−2(ΣN−2),

where cΣ > 0 is a constant depending only on Σ. Combining the above inequal-
ity with (4.11), we get

Wεj (vj ,Σ
ρ) ≤

k∑
i=1

Wεj (vj , R
i
ρ) +MW cΣσ̂HN−2(ΣN−2). (4.12)
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To bound the kinetic energy, we use additivity to get

Jεj (vj ,Σ
ρ) ≤

k∑
i=1

Jεj (vj , R
i
ρ) + 2

k∑
i=1

Jεj (vj , P
i
ρ,Σ

ρ \Ri
ρ)

+ Jεj (vj , (Σ
N−2)σ̂) +

k∑
i=1
i ̸=j

Jεj (vj , R
i
ρ, R

j
ρ).

(4.13)

The sets in the second and fourth terms are at a fixed distance apart, so the
corresponding terms tend to zero in the limit as j → ∞. By Lemma 4.2,

Jεj (vj , (Σ
N−2)σ̂) ≤ κσ̂HN−2(ΣN−2),

where κ does not depend on vj . Combining this inequality with (4.12), (4.10),
and (4.13), we get

lim sup
j→∞

Fεj (vj ,Σ
ρ) ≤

∫
Σ

ψ(νu)dHN−1 + ηHN−1(Σ)

+ κ1σ̂ +MW cΣσ̂HN−2(ΣN−2) + κσ̂HN−2(ΣN−2).

Since ηHN−1(Σ) < σ/2, we can conclude by taking σ̂ sufficiently small.

From here, the proof of Theorem 4.1 follows from Lemma 4.4, approximating
a general u ∈ BV (RN ; {−1, 1}) by functions with polyhedral jump set (cf. [2,
Section 5.4], [13, Theorem 7.1]) and diagonalizing. We sketch the proof below.

Proof of Theorem 4.1. By [4, Lemma 3.1], for every u ∈ BV (Ω; {−1, 1}) there
exists a sequence {uk} in BV (Ω; {−1, 1}) converging to u in L1(Ω) such that
each jump set Suk

is the intersection of Ω and a polyhedral set of dimension N−
1. Furthermore, since ψ is upper semi-continuous, by Reshetnyak’s convergence
theorem (see [25]), we have that

lim sup
k→∞

∫
Suk

ψ(νuk
) dHN−1 ≤

∫
Su

ψ(νu) dHN−1.

Therefore, it is sufficient to prove the theorem for functions with polyhedral
jump set.

Let u ∈ BV (Ω; {−1, 1}) be such that Su = Ω∩Σ with Σ a bounded polyhe-
dral set of dimension N −1. For all σ > 0, let 0 < δ < ρ and vj be as in Lemma
4.4. Define uj ∈ L2(Ω) by uj := vj in Σρ and uj := u in Ω \ Σρ. Since vj = u
on Σρ \ Σρ−δ for j ≫ 1, we have that uj = u on Ω \ Σρ−δ. Therefore,

Wεj (uj ,Ω) ≤ Wεj (vj ,Σ
ρ), (4.14)

for sufficiently large j.
On the other hand, we can estimate Jεj (uj ,Ω) by

Jεj (uj ,Ω) ≤ Jεj (vj ,Σ
ρ) + 2Jεj (uj ,Σ

ρ−δ,Ω \ Σρ) + Jεj (u,Ω \ Σρ−δ). (4.15)
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Since d(Σρ−δ,Ω \ Σρ) > δ, we can apply Lemma 3.3 to the second term to get
the inequality

Jεj (uj ,Σ
ρ−δ,Ω \ Σρ) ≤ 1

2δ
ω1

(εj
δ

)∫
Ω

|uj(x)|2 dx.

Therefore, as j → ∞, this term vanishes from (4.15). Similarly, the third term
tends to zero by Lemma 3.3 since Ω \Σρ−δ can be partitioned into two sets, on
one of which u ≡ +1 and on the other u ≡ −1, separated by a gap of width
2(ρ− δ).

Therefore, by (4.14), (4.15), and Lemma 4.4, we have

lim sup
j→∞

Fεj (uj ,Ω) ≤ lim sup
j→∞

Fεj (vj ,Σρ) ≤
∫
Σ

ψ(νu)dHN−1 + σ.

Since we can construct such a sequence for each σ > 0, we can diagonalize this
family to get a sequence {uj} such that

lim sup
j→∞

Fεj (uj ,Ω) ≤
∫
Σ

ψ(νu)dHN−1,

concluding the proof.
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