
Global and local energy minimizers for a nanowire growth model

Irene Fonsecaa, Nicola Fuscob,∗, Giovanni Leonia, Massimiliano Morinic

aDepartment of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, U.S.A.
bDipartimento di Matematica e Applicazioni, Università degli Studi di Napoli ‘Federico II’, Napoli, Italy
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Abstract

We consider a model for vapor-liquid-solid growth of nanowires proposed in the physical
literature. Liquid drops are described as local or global volume-constrained minimizers of
the capillarity energy outside a semi-infinite convex obstacle modeling the nanowire. We first
address the existence of global minimizers and then, in the case of rotationally symmetric
nanowires, we investigate how the presence of a sharp edge affects the shape of local minimizers
and the validity of Young’s law.

1. Introduction

Nanowires are one-dimensional nanostructures with diameters of the order of nanometers
and lengths of microns. In the past decade, there has been a tremendous amount of progress
in the technological development of nanowires. Indeed, nanowires are natural candidates in
biological applications, nanoelectronic devices, energy-conversion and storage, and mechanical
applications (see, e.g., [6], [22]). For example, their narrow diameter allows the penetration of
biological structures without damaging them. At the same time, their length makes it possible
to transport signals in and out of a cell. Nanowires are also ideal as battery electrodes since
their high surface area favors rapid charging.

Because of their importance, understanding nanowire growth and controlling the nanowire
dimensions and growth pattern are paramount. The vapor-liquid-solid (VLS) crystal growth
method is one of the most common methods for the anisotropic growth of nanowires because
of its high flexibility (see [6]), [24]. During VLS growth, a nanoscale liquid drop of catalyst
(e.g., gold) deposited on a solid plane substrate (e.g., silicon) facilitates the vertical growth of
solid nanowires (e.g., gold-silicon alloy) using vapor phase reagents. We refer to [11], [15], [17],
[18], [19], [20], and the references therein for existing mathematical models of VLS growth.

Following the work of [11], [15], [17], [18], and many others, we consider a continuum
framework for nanonwire VLS growth.

We model the nanowire as a semi-infinite closed convex cylinder C ⊂ R2 × (−∞, 0] and
the liquid drop as a set E ⊆ R3 \C of finite perimeter. Hence, given −1 < λ < 1 and m > 0,
we define the energy

Jλ,C(E) := H2(∂∗E \C)− λH2(∂∗E ∩C) ,
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defined over all sets E ⊂ R3 \C of finite perimeter such that |E| = m. Here, ∂∗E stands for
the reduced boundary of E and |E| for the Lebesgue measure of E. The coefficient λ stands
for the adhesion coefficient between the drop and the convex set, and λH2(∂∗E ∩C) is the
wetting energy (see Chapter 19 in [13] and references therein).

The main results of this paper concern the existence of global minimizers and qualitative
properties of local minimizers.

We establish global existence under the hypothesis that the convex set C coincides with
a right cylinder of the form ω × (−∞, t0] in the half space R2 × (−∞, t0] with t ≤ t0, for
some bounded open convex set ω ⊂ R2 and some t0 ≤ 0. This assumption allows us to slide
sets E vertically along the lateral boundary of C without changing the energy Jλ,C(E). In
Theorem 3.9 we show that for λ = 0 existence may no longer be true if this property fails.

Our main existence result is Theorem 3.2 below, which establishes that the minimization
problem

min{Jλ,C(E) : E ⊂ R3 \C of finite perimeter with |E| = m}

admits a solution. The proof is rather delicate because the sets E lie in the unbounded set
R3 \C, and thus mass can escape to infinity.

As usual, in variational problems with a volume constraint, to have more flexibility in the
choice of competitors E, we replace the volume constraint |E| = m by a volume penalization.
To be precise, given Λ > 0 large, we consider the functional

JΛ,λ,C(E) := H2(∂∗E \C)− λH2(∂∗E ∩C) + Λ||E| −m| , (1)

defined over all sets E ⊂ R3 \C of finite perimeter contained in a ball B(0, R). This problem
admits a minimizer EΛ,R. For such a minimizer we are able to establish density estimates
independent of R (and also of C), which in turn allow us to conclude that each EΛ,R is made
up of at most κ connected components, with κ independent of R, having equibounded (with
respect to R) diameters. Using the sliding property mentioned above we may therefore assume
that the minimizers EΛ,R are equibounded. Thus, letting R → ∞, we obtain a minimizer
EΛ of the penalized energy (1). Finally, using also a non-vanishing estimate for sets of finite
perimeter and finite measure, see Lemma 3.4 below, we show that for Λ sufficiently large EΛ

has volume m, and therefore it is a global minimizer of the original energy Jλ,C.
Recall that the regularity theory developed in [21], see also [7], ensures that if C is of class

C1,1 and E is a local minimizer of Jλ,C under a volume constraint, then ∂E \C is a C1,1/2

surface with boundary. Moreover, the Young’s law νC · νE = λ holds at all points of the
contact line (∂E \C) ∩C, where νE stands for the exterior normal to ∂E. In other words,
the surface ∂E \C meets ∂C with a contact angle θλ = arccosλ.

In the second part of the paper we study qualitative properties of local minimizers. In
particular, we investigate how the presence of an edge singularity in C affects the validity of
the Young’s law. We do so in the simplified case of rotationally symmetric convex sets by
considering a semi-infinite truncated cone with circular section of the form

C = {(x′, t) ∈ R2 × (−∞, 0] : x′ ∈ (1− t tanα)D1} ,

where D1 is the open unit ball in R2 centered at the origin, and α ∈ [0, π2 ). We consider
spherical caps of the form

Sθ := B

((
0, 0,− 1

tan θ

)
,

1

sin θ

)
∩H ,
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Figure 1: The spherical cap Sθ lying on C has radius r = 1
sin θ

and center at C =
(
0, 0,− 1

tan θ

)
.

where H is the open half-space
H := R2 × (0,∞) .

Note that Sθ meets the plane {t = 0} at the angle θ and that ∂Sθ ∩C coincides with the top
of the truncated cone D1×{0}, see Figure 1. We recall that Sθλ is the unique minimizer (up
to horizontal translations) of the capillarity problem

min{H2(∂∗E \ ∂H)− λH2(∂∗E ∩ ∂H) : E ⊂H of finite perimeter with |E| = mλ}

where mλ := |Sθλ |, (see [13, Th. 19.15]). In particular, this implies that a spherical cap ηSθλ ,
lying inside the top of the truncated cone, is a local minimizer for η < 1 and remains so as
η → 1−. We are now interested in studying the case when the volume m of the drop exceeds
mλ. It is experimentally observed that the presence of a sharp edge has a pinning effect,
which inhibits the spreading of the liquid so that the wet part of the drop remains confined
and in fact coincides with the top of nanowire C for a suitable range of m > mλ, see [16]. In
the latter regime, the contact angle between the drop and the top of C is strictly larger than
θλ and thus Young’s law is violated. Finally, for larger values of m the liquid spills over the
edge and wets the lateral part of C.

The main purpose of the second part of the paper is to analytically validate these exper-
imental observations, by proving that if θλ < θ < π

2 − α + θλ, then the spherical cap Sθ is a
volume constrained local minimizer of the capillarity energy Jλ,C. We recall that α is lateral
slope of the truncated cone C, see Figure 1.

In order to prove this result, we study separately the cases θλ < θ < π
2 , θ = π

2 > θλ, and
max{π2 , θλ} < θ < π. In the first two cases, we show that Sθ is a strict local minimizer. For
a precise formulation we refer to the statements of Theorems 4.4 and 4.8 below. The case
max{π2 , θλ} < θ < π is more delicate, and we are only able to show strict local minimimality
of Sθ with respect to admissible sets that coincide with Sθ in a neighborhood of the north
pole (see Theorem 4.9). The proofs of these theorems rely on calibration techniques and on
the construction of foliating families of rotationally symmetric surfaces with constant mean
curvature.

3

5 Aug 2021 23:14:16 PDT
210805-Fusco Version 1 - Submitted to Ann. Inst. Henri Poincare, Anal. Non Lineaire



Finally, in the range θ > π
2 − α + θλ we prove that there exist drops arbitrarily close to

Sθ spilling over the edge of C and with strictly lower energy (see Proposition 4.12).

2. Preliminaries

Throughout this paper, given x ∈ R3 we write x = (x′, t) ∈ R2×R. We denote by B(x, r)
the ball in R3 centered at x and radius r > 0.

In the following, we shall often deal with sets of finite perimeter. We recall that if Ω is an
open set, then the perimeter in Ω of a Borel set E ⊂ R3 is defined as

P (E; Ω) := sup

{∫
E

div ξ dx : ξ ∈ C∞c (Ω;R3), ‖ξ‖L∞ ≤ 1

}
, (2)

and that E is said to be a set of locally finite perimeter if P (E;B(0, R)) < ∞ for all R > 0.
If P (E) := P (E;R3) <∞ we say that E is a set of finite perimeter. We recall that if E is a
set of locally finite perimeter then the distributional derivative Dχ

E
is a Radon measure in

R3 whose total variation will be denoted by |Dχ
E
|. For the basic properties of sets of locally

finite perimeter we refer to the books [2, 13]. Here we recall that the reduced boundary ∂∗E
of E is defined as the set of points x ∈ R3 such that |Dχ

E
|(B(x, r)) > 0 for all r > 0, the

following limit

νE(x) := − lim
r→0+

Dχ
E

(B(x, r))

|Dχ
E
|(B(x, r))

exists and |νE(x)| = 1. Such a vector will be called the generalized exterior normal to E at x.
Recall also that by the De Giorgi’s structure theorem, see [13, Ch. 15], Dχ

E
= −νEH2 ∂∗E,

and that for every Lipschitz continuous vector field X : R3 7→ R3 with compact support∫
E

divX dx =

∫
∂∗E

X · νE dH2 .

The essential boundary ∂eE is defined as

∂eE := RN \ (E(0) ∪ E(1)) ,

where E(0) and E(1) are the sets of points where the density of E is 0 and 1, respectively. Since
the perimeter measure coincides with theH2 measure restricted to the reduced boundary ∂∗E,
we will sometimes write H2(∂∗E∩Ω) instead of P (E; Ω). In the following, when dealing with
a set of locally finite perimeter E, we will always assume that E coincides with a precise
representative that satisfies the property ∂E = ∂∗E, see [13, Remark 16.11]. A possible
choice is given by E(1), for which one may check that

∂E(1) = ∂∗E . (3)

We recall that a sequence {Fn}n of closed sets in R3 converges in the Kuratoswki sense to
a closed set F if the following conditions are satisfied:

(i) if xn ∈ Fn for every n, then any limit point of {xn}n belongs to F ;

(ii) any x ∈ F is the limit of a sequence {xn}n with xn ∈ Fn.
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It is well known that Fn → F in the sense of Kuratowski if and only if dist(·, Fn)→ dist(·, F )
uniformly on compact sets of R3, with the convention that if F = ∅, then dist(·, F ) ≡ +∞. In
particular, by the Arzelà-Ascoli Theorem any sequence of closed sets admits a subsequence
which converges in the sense of Kuratowski.

Remark 2.1 (Kuratowski convergence of convex sets I). Let {Fn}n be a sequence of closed
convex sets. Then Fn → F in the Kuratowski sense if and only if χ

Fn
→ χ

F
pointwise almost

everywhere. Moreover, F is convex.
Indeed, assume first that Fn → F in the Kuratowski sense. If x 6∈ F then dist(x, F ) > 0

and thus dist(x, Fn) > 0, that is x 6∈ Fn, for n large. If F has empty interior, then |F | = 0
and thus we have shown the a.e. convergence of the characteristic functions. Otherwise, let
x ∈ int(F ) and let δ > 0 such that B(x, δ) ⊂ F . We claim that there exists δ′ ∈ (0, δ) such
that for n large B(x, δ′) ⊂ Fn. Indeed, if not, up to a not relabelled subsequence, there exist
xn ∈ ∂Fn such that xn → x. For every n, let νn ∈ S2 be an outer normal direction to ∂Fn
at xn. Without loss of generality we may assume that νn → ν for some ν ∈ S2. Then by
Kuratowski convergence δ

2 = dist(xn + δνn/2, Fn)→ dist(x+ δν/2, F ), but this is impossible
since dist(x+ δν/2, F ) = 0. Therefore we have that χ

Fn
(x)→ χ

F
(x) for all x ∈ R3 \ ∂F and

thus for a.e. x.
The opposite implication then follows by the previous one, recalling that the Kuratowski

convergence is compact.

Remark 2.2 (Kuratowski convergence of convex sets II). Let {Fn}n be a sequence of equi-
bounded closed convex sets with nonempty interior, converging in the Kuratowski sense to a
closed convex set F with nonempty interior. Then

H2 ∂Fn
∗
⇀ H2 ∂F weakly* in the sense of measures. (4)

To see this, assume without loss of generality that 0 ∈ int(F ). By Remark 2.1, χ
Fn
→ χ

F

pointwise a.e. and thus for every open set Ω ⊂ R3

H2(∂F ∩ Ω) ≤ lim inf
n→∞

H2(∂Fn ∩ Ω) . (5)

We now show that
H2(∂Fn)→ H2(∂F ). (6)

To this aim, we recall that if C1, C2 are two bounded convex sets and C1 ⊂ C2, then
H2(∂C1) ≤ H2(∂C2). By the Kuratowski convergence of Fn to F , we have that for every
η > 1, Fn ⊂ ηF for n large enough and thus H2(∂Fn) ≤ η2H2(∂F ). Hence (6) follows taking
into account also (5) applied to Ω = R3. In turn, (6) together with (5), imply (4), see for
instance [2, Prop. 1.80].

3. Global minimizers

In this section, we introduce the capillarity functional and discuss the existence of global
minimizers for the corresponding isoperimetric problem. We introduce a class C of semi-
infinite convex cylinders that we will be considering in the sequel.

Definition 3.1. We say that a closed convex set C ⊂ R2× (−∞, 0] belongs to C if there exist
a bounded open convex set ω ⊂ R2 and t0 ≤ 0 such that C ∩ {(x′, t) : t ≤ t0} = ω × (−∞, t0].

5
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Given λ ∈ (−1, 1) and C ∈ C, we consider the capillarity functional

Jλ,C(E) := H2(∂∗E \C)− λH2(∂∗E ∩C) , (7)

defined for all sets E ⊂ R3 \C of finite perimeter. At times it will be useful to consider the
following localized version of the functional Jλ,C,

Jλ,C(E;F ) := H2((∂∗E \C) ∩ F )− λH2(∂∗E ∩C ∩ F )

for all sets of locally finite perimeter E and for all bounded Borel set F ⊂ R3.
In this section, we establish the existence of global minimizers of Jλ,C under a volume

constraint.

Theorem 3.2. Let C ∈ C, let λ ∈ (−1, 1) and fix m > 0. Then the minimization problem

min{Jλ,C(E) : E ⊂ R3 \C of finite perimeter with |E| = m} (8)

admits a solution. Moreover, any minimizer coincides, up to a set of measure zero, with a
bounded open set Ω with finitely many connected components. Finally, H2(∂Ω′∩ ∂C) > 0 for
each connected component Ω′ of Ω.

We begin with several preliminary results. The first one shows that the functional J is
lower semicontinuous.

Lemma 3.3. Under the assumptions of Theorem 3.2, let E, En, n ∈ N, be sets of finite
perimeter contained in (R3 \ C) ∩ B(0, R) for some ball B(0, R) of radius R > 0, and such
that χEn → χE in L1(R3 \C). Then

lim inf
n→∞

Jλ,C(En) ≥ Jλ,C(E) .

Proof. The proof of this lemma is the one of Proposition 19.3 in [13], with an improvement
obtained in [23] which allows to remove the regularity assumption implicitly contained in
the hypotheses of that proposition. Set A := (R3 \ C) ∩ B(0, R). Given δ, ε > 0, from
(2) it is clear we can always find a vector field ξε,δ ∈ C∞c (R3;R3) such that ‖ξε,δ‖L∞ ≤ 1,
supp ξε,δ ⊂ Aδ := {x ∈ A : dist (x, ∂A) < δ} and∫

∂A
ξε,δ · νA dH2 > H2(∂A)− ε .

In turn, this inequality, together with the fact that ‖ξε,δ‖L∞ ≤ 1, implies that for every set
F ⊂ A of finite perimeter∫

∂A∩∂∗F
ξε,δ · νA dH2 =

∫
∂A
ξε,δ · νA dH2 −

∫
∂A\∂∗F

ξε,δ · νA dH2

> H2(∂A)− ε−H2(∂A \ ∂∗F ) = H2(∂A ∩ ∂∗F )− ε .

Since ∫
F

div ξε,δ dx =

∫
A∩∂∗F

ξε,δ · νF dH2 +

∫
∂A∩∂∗F

ξε,δ · νA dH2 ,

we deduce, using the fact that supp ξε,δ ⊂ Aδ,

H2(∂A ∩ ∂∗F ) < H2(∂∗F ∩Aδ) + ‖div ξε,δ‖L∞ |F |+ ε .

The rest of the proof goes exactly as in Proposition 19.3 in [13], with [13, Eq. (19.8)] replaced
by the inequality above.

6
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In what follows, we will use the following non-vanishing estimate for sets of finite perimeter
and finite measure, proven in any dimension in [14].

Lemma 3.4 (Lemma 2.1 in [14]). There exists a constant C ∈ (0, 1
2) such that if E ⊂ R3 is

a set of finite perimeter and finite measure, then, setting Q := (0, 1)3, we have

sup
z∈Z3

|E ∩ (z +Q)| ≥ C min
{( |E|
H2(∂∗E)

)3
, 1
}
.

We recall also the following well known property of convex sets, see for instance [9, Lemma
5.1] for a proof.

Lemma 3.5. Let C ∈ C. Then

H2(∂∗F ∩ ∂C) ≤ H2(∂∗F ∩ (R3 \C))

for every bounded set F ⊂ R3 \C of finite perimeter.

Lemma 3.6. Let C ∈ C and let E ⊂ B(0, R)\C satisfying the following minimality property:
there exists Λ ≥ 0 such that

Jλ,C(E) ≤ Jλ,C(F ) + Λ|F∆E| for all F ⊂ B(0, R) \C. (9)

Then E is equivalent to an open set Ω such that ∂Ω = ∂eΩ, hence H2(∂Ω \ ∂∗Ω) = 0.
Moreover, there exist c0 = c0(|λ|) > 0 and r0 = r0(|λ|,Λ) ∈ (0, 1) (independent of R and C),
such that if x ∈ ∂Ω′, Ω′ being a connected component of Ω, then

|Ω′ ∩B(x, r)| ≥ c0r
3 (10)

for every 0 < r ≤ r0.

Proof. The proof follows the lines of [7, Lemma 2.8]. However, we present it here since some
modifications are needed. We start by showing that (10) holds with Ω′ replaced by E.

Given x ∈ R3 \ int(C) and r ∈ (0, 1), we set m(r) := |E ∩ B(x, r)|. For a.e. such r we
have m′(r) = H2(E(1) ∩ ∂B(x, r)) and H2(∂∗E ∩ ∂B(x, r)) = 0, and we set F := E \B(x, r).
Using the assumption (9) and simplifying the common contributions of Jλ,C(E) and Jλ,C(F ),
we have

H2(∂∗E ∩ (B(x, r) \C)) ≤ H2(∂B(x, r)∩E(1)) + Λ|E ∩B(x, r)|+ |λ|H2(∂∗E ∩∂C∩B(x, r)) .
(11)

By Lemma 3.5
H2(∂∗E ∩ ∂C ∩B(x, r)) ≤ H2(∂∗(E ∩B(x, r)) \C) , (12)

thus, using also (11), we have

H2(∂∗(E ∩B(x, r))) = H2(∂∗(E ∩B(x, r)) \C) +H2(∂∗E ∩B(x, r) ∩ ∂C)

≤ 2H2(∂∗(E ∩B(x, r)) \C) = 2H2((∂∗E ∩B(x, r)) \C) + 2m′(r)

≤ 4m′(r) + 2Λm(r) + 2|λ|H2(∂∗E ∩ ∂C ∩B(x, r))

≤ 4m′(r) + 2Λm(r) + 2|λ|H2(∂∗(E ∩B(x, r)) \C) .

(13)
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Comparing the first term in the second line with the fourth line of the previous chain of
inequalities we have in particular that

H2(∂∗(E ∩B(x, r)) \C) ≤ 1

1− |λ|
(2m′(r) + Λm(r)) .

In turn, using also the first inequality in (13) and the isoperimetric inequality, we get

3
(4π

3

) 1
3
m(r)

2
3 ≤ H2(∂∗(E ∩B(x, r))) ≤ 2H2(∂∗(E ∩B(x, r)) \C)

≤ 2

1− |λ|
(2m′(r) + Λm(r)) ≤ 2

1− |λ|

(
2m′(r) + Λr

(4π

3

) 1
3
m(r)

2
3

)
≤ 4m′(r)

1− |λ|
+
[
3
(4π

3

) 1
3 − 1

]
m(r)

2
3 ,

provided r < r0, with r0 sufficiently small, depending on Λ, λ. Hence, from the previous
inequality we get

m(r)
2
3 ≤ 4

1− |λ|
m′(r) .

Observe now that, if in addition x ∈ ∂∗E, then m(r) > 0 for all r as above. Therefore, we

may divide the previous inequality by m(r)
2
3 , and integrate in (0, r) the resulting differential

inequality to get
|E ∩B(x, r)| ≥ c0r

3 , (14)

for a suitable positive constant c0 depending only on |λ|.
We show that ∂∗E ⊂ ∂eE. To this aim note that (14) holds for every x ∈ ∂∗E. Fix

x ∈ ∂∗E. If x ∈ B(0, R) \C, denote by U ⊂⊂ B(0, R) \C an open neighborhood of x and
observe that (9) implies in particular that

P (R3 \ E;U) ≤ P (F ;U) + Λ|(R3 \ E)∆F | for all F ⊂ U .

Then the same argument used above, applied to R3 \ E, shows that for r sufficiently small
we have also |B(x, r) \ E| ≥ c0r

3 (in fact instead of c0 we could choose here a constant
independent of λ). Thus x 6∈ E(0) ∪ E(1), that is x ∈ ∂eE.

On the other hand, if x ∈ ∂B(0, R) \C, then |B(x, r) \E| ≥ 1
2 |B(x, r)| and again we have

that x ∈ ∂eE. Finally, if x ∈ ∂C ∩ ∂∗E then, since C is uniformly Lipschitz, there exists a
constant c2 > 0 such that for r small |C∩B(x, r)| ≥ c2r

3. This estimate, together with (10),
imply that x ∈ ∂eE. Hence H2(∂∗E \ ∂∗E) ≤ H2(∂eE \ ∂∗E) = 0, where the last equality
follows from Theorem 16.2 in [13].

Set now Ω := E(1) \∂E(1). Recalling that ∂E(1) = ∂∗E, see (3), we have that Ω is an open
set equivalent to E such ∂Ω = ∂E(1). Finally, if x ∈ ∂Ω′, with Ω′ a connected component of
Ω, we argue exactly as in the proof of (14) using as a competitor F := (Ω\Ω′)∪ (Ω′ \B(x, r)).
Indeed, in this case all contributions coming from all connected components but Ω′ cancel
out, so that (11) reduces to

H2(Ω′ ∩ (B(x, r) \C)) ≤ H2(∂B(x, r) ∩ Ω′) + Λ|Ω′ ∩B(x, r)|+ |λ|H2(Ω′ ∩ ∂C ∩B(x, r)) .

Moreover, (12) still holds with E replaced by Ω′, and the conclusion (10) follows exactly as
before.

8
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Remark 3.7. Observe that the proof of Lemma 3.6 also yields the following density estimate.
Let E ⊂ R3 be a set of locally finite perimeter such that, for any ball B and any set F ⊂ RN \C
with E∆F ⊂⊂ B,

Jλ,C(E;B) ≤ Jλ,C(F ;B) + Λ|E∆F | . (15)

Then E is equivalent to an open set Ω, and (10) still holds with the same constants c0 and
r0.

We turn to the proof of Theorem 3.2.

Proof of Theorem 3.2. Since C and λ will be fixed throughout the proof, we will abbreviate
Jλ,C as J .
Let R0 > 0 be such that B(0, R0)\C contains a ball of volume m. Fix Λ > 0 (to be determined
later) and R ≥ R0, and consider the penalized functional

JΛ(E) := J(E) + Λ||E| −m| ,

defined on sets E ⊂ R3 \C of finite perimeter. We observe that the minimization problem

min{JΛ(E) : E ⊂ B(0, R) \C is a set of finite perimeter} (16)

admits a solution. Indeed, let {En}n be a minimizing sequence. Then

JΛ(En) ≥ H2((∂∗En ∩B(0, R)) \C)−H2(∂C ∩B(0, R)) .

It follows that H2(∂∗En) is equibounded. By a standard compactness argument and by
Lemma 3.3, we may extract a subsequence converging in L1 to a minimizer EΛ,R of (16).
From the minimality property it follows immediately that

J(EΛ,R) ≤ J(F ) + Λ|F∆EΛ,R| for all F ⊂ B(0, R) \C.

We apply Lemma 3.6 to deduce that EΛ,R is (equivalent to) an open set such that
H2
(
∂EΛ,R \ ∂∗EΛ,R) = 0. Moreover, there exist c0 = c0(λ) > 0 and r0 = r0(λ,Λ) ∈ (0, 1)

(independent of R and C), such that for every connected component EiΛ,R of EΛ,R, with

i ∈ IΛ,R ⊂ N, and x ∈ ∂EiΛ,R, we have

|EiΛ,R ∩B(x, r)| ≥ c0r
3 (17)

for every 0 < r ≤ r0. Note that (17) implies that there exists an integer κ, independent of R,
such that card(IΛ,R) ≤ κ.

We divide the rest of the proof in several steps.
Step 1: We claim that

sup
R≥R0,Λ≥1

|EΛ,R| <∞ and sup
R≥R0,Λ≥1

H2(∂EΛ,R) <∞ . (18)

To see this, observe that by the minimality of EΛ,R,

JΛ(EΛ,R) ≤ H2(∂B̂) , (19)

9

5 Aug 2021 23:14:16 PDT
210805-Fusco Version 1 - Submitted to Ann. Inst. Henri Poincare, Anal. Non Lineaire



where B̂ is a ball of volume m contained in B(0, R) \C. If −1 < λ < 0, then

H2(∂EΛ,R \C) + |λ|H2(∂EΛ,R ∩ ∂C) + Λ||EΛ,R| −m| = JΛ(EΛ,R) ≤ H2(∂B̂) ,

and the claim follows.
If 0 < λ < 1, then by Lemma 3.5

λH2(∂EΛ,R ∩ ∂C) ≤ λH2(∂EΛ,R \C) . (20)

Hence,
(1− λ)H2(∂EΛ,R \C) + Λ||EΛ,R| −m| ≤ JΛ(EΛ,R) ≤ H2(∂B̂) ,

and so
sup

R≥R0,Λ≥1
|EΛ,R| <∞ and sup

R≥R0,Λ≥1
H2(∂EΛ,R \C) <∞ .

These inequalities and (20) yield (18).
Step 2: We claim that there exists a constant d > 0 (possibly depending on Λ) such that
for every R ≥ R0 every connected component EiΛ,R of EΛ,R satisfies diamEiΛ,R ≤ d. Indeed,

if not then there exist a sequence Rn → ∞ and connected components EinΛ,Rn of EΛ,Rn such

that diamEinΛ,Rn → ∞. In turn, for each n ∈ N we can find kn ∈ N with kn → ∞ and x1,n,

. . . , xkn,n ∈ ∂E
in
Λ,Rn

with |xi,n − xj,n| ≥ 1 for all i, j ∈ {1, . . . , kn} with i 6= j. Hence, by (17)
and since the balls B(xi,n, r0), i = 1, . . . , kn, are mutually disjoint,

|EΛ,Rn | ≥
kn∑
i=1

|EinΛ,Rn ∩B(xi,n, r0)| ≥ knc0r
3
0 .

This implies that |EΛ,Rn | → ∞ as n→∞, which contradicts Step 1. Hence the claim holds.
Step 3: We want to show that there exists M > 0 (possibly depending on Λ) such that
for every R ≥ max{R0,M}, up to translating some of the connected components of EΛ,R, we
may construct another minimizer, still denoted by EΛ,R, contained in B(0,M).

Recall that the number of connected components of EΛ,R is at most κ, and that their
diameters are bounded by d. It is clear that we can slide vertically along the cylinder all
the connected components EiΛ,R that touch ∂C ∩ (R2 × (−∞, t0]), and move closer to C the
connected components that do not touch C, in such a way that the new set, still denoted by
EΛ,R, is a minimizer for the problem (16) and is contained in a ball of radius M , with M
depending only on diamω, κ, d and t0.
Step 4: By the previous step and by the second inequality in (18), we can find a sequence
Rn → ∞ and a set EΛ contained in B(0,M) \ C such that χEΛ,Rn

→ χEΛ
in L1(R3). We

claim that EΛ is a global minimizer of the functional JΛ.
Indeed, let F be a set of finite perimeter contained in R3 \ C. Assume first that F is

bounded. Then there exists n0 sufficiently large so that F ⊂ B(0, Rn) for all n ≥ n0. By the
minimality of EΛ,Rn in B(0, Rn) \C, we have

J(EΛ,Rn) + Λ||EΛ,Rn | −m| = JΛ(EΛ,Rn) ≤ JΛ(F ) .

By Lemma 3.3, and the fact that χEΛ,Rn
→ χEΛ

in L1(R3), letting n → ∞ in the previous
inequality yields JΛ(EΛ) ≤ JΛ(F ).
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On the other hand, if F is unbounded, since∫ ∞
0
H2(F (1) ∩ ∂B(0, r)) dr = |F | <∞ ,

there exists a sequence rn →∞ such thatH2(F (1)∩∂B(0, rn))→ 0 andH2(∂∗F∩∂B(0, rn)) =
0. Since F ∩B(0, rn) is a bounded set of finite perimeter, we have

JΛ(EΛ) ≤ JΛ(F ∩B(0, rn)) = H2((B(0, rn) ∩ ∂∗F ) \C) +H2((F (1) ∩ ∂B(0, rn)) \C)

− λH2(∂∗F ∩ ∂C ∩B(0, rn)) + Λ||F ∩B(0, rn)| −m|
≤ H2(∂∗F \C) +H2((F (1) ∩ ∂B(0, rn)) \C)

− λH2(∂∗F ∩ ∂C ∩B(0, rn)) + Λ||F ∩B(0, rn)| −m| ,

where we used the fact that H2(∂B(0, rn)∩∂C) = 0. Letting n→∞, and because H2(F (1)∩
∂B(0, rn))→ 0, we obtain that JΛ(EΛ) ≤ JΛ(F ).
Step 5: We observe that the global minimality of EΛ implies that

J(EΛ) ≤ J(F ) + Λ|F∆EΛ| for all F ⊂ R3 \C

and thus, by the same argument used at the beginning of the proof, EΛ has finitely many
connected components EiΛ, i = 1, . . . , κ′, for some κ′ ∈ N. We claim that H2(∂EiΛ ∩ ∂C) > 0
for each i = 1, . . . , κ′.

Note that R3 \EΛ satisfies the following minimality property: For every ball B and every
set F ⊂ RN \C, with (R3 \ EΛ)∆F ⊂⊂ B,

J−λ,C(R3 \ EΛ;B) ≤ J−λ,C(F ;B) + Λ|(R3 \ EΛ)∆F | .

In turn, by Remark 3.7, for every x ∈ ∂EΛ and r ∈ (0, r0), we have

|B(x, r) \ EΛ| ≥ c0r
3 . (21)

Assume now by contradiction that H2(∂EiΛ ∩ ∂C) = 0 for some i. Then EiΛ minimizes the
perimeter among all sets in R3 \ C with the same volume, hence it is a ball. We can now
replace EiΛ by a ball B tangent to C at a point x0 where there exists a unique tangent plane
to the cylinder, and disjoint from the other connected components of EΛ. The resulting set,
still denoted by EΛ, is still a global minimizer of JΛ. However, (21) is clearly violated at x0

for r sufficiently small. This contradiction proves the claim.
Step 6: By (19) we have JΛ(EΛ) ≤ H2(∂B̂), where B̂ is any ball in R3 \C with volume m.
In particular, this implies that

|EΛ| → m as Λ→∞ . (22)

We claim that there exists Λ0 > 0 such that for Λ ≥ Λ0, |EΛ| = m, and thus EΛ solves (8). To
see this, assume by contradiction that there exists a sequence Λn →∞ such that |EΛn | 6= m.
Set En := EΛn .

We observe that necessarily |En| < m, since otherwise we could contradict the minimality
by cutting En with a plane not intersecting the cylinder. To be precise, given a point x in the
projection of EΛ on ∂C and a tangent plane Πx to C at x, we may cut EΛ with a suitable
plane parallel to Πx. In this way we strictly lower the energy.
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By (18), (22), and Lemma 3.4, there exists a constant c2 > 0 such that |(zn +Q)∩En| ≥
c2 > 0 for some zn ∈ Z3 and for every n. Note that, up to a subsequence (not relabelled), we
may assume that χ

En−zn → χ
E

a.e., with E of finite perimeter and |E| ≥ c2.
We claim that there exist x ∈ ∂∗E and r > 0 such that

B(x, r) ∩ (−zn + C) = ∅ or all n sufficiently large. (23)

To see this note that, up to a not relabelled subsequence, we may assume that −zn+C→ C∞
in the sense of Kuratowski, for a suitable closed convex set C∞

1. Moreover, by Remark 2.1 we
have that χ−zn+C

→ χ
C∞ almost everywhere. In particular, this implies that for a.e. x ∈ R3,

χ
E

(x)χ
C∞ (x) = limn χEn−zn (x)χ−zn+C

(x) = 0. Hence, E ⊂ R3 \ C∞. Therefore, there

exist x ∈ ∂∗E \C∞ and r > 0 such that B(x, r) ∩C∞ = ∅. Recalling that the Kuratowski
convergence is equivalent to the locally uniform convergence of the distance functions, see
Section 2, (23) immediately follows.

Arguing as in Step 1 of Theorem 1.1 in [8], given ε > 0 sufficiently small to be chosen
later, we can find a ball B(x0, r) ⊂ B(x, r) such that

|E ∩B(x0, r/2)| < εr3 , |E ∩B(x0, r)| >
π

24
r3 .

Therefore, for n sufficiently large, we have

|En ∩B(x0 + zn, r/2)| < εr3 , |En ∩B(x0 + zn, r)| >
π

24
r3 .

We can now continue as in the proof of [8, Theorem 1]. For the reader’s convenience we recall
the main construction. For a sequence 0 < σn < 1/8 to be chosen later, we introduce the
bilipschitz maps

Φn(x) :=


(1− 7σn)x if |x− (x0 + zn)| ≤ r

2 ,

x+ σn

(
1− r3

|x− (x0 + zn)|3
)
x r

2 ≤ |x− (x0 + zn)| < r,

x |x− (x0 + zn)| ≥ r.

Setting Ẽn := Φn(En), arguing as in the proof of [8, formula (14)], we have

H2
(
∂En \C

)
−H2(∂∗Ẽn \C) ≥ −24σnH2(∂∗En \C) . (24)

Moreover, following exactly Step 4 of the proof of [8, Theorem 1], we have

|Ẽn| − |En| ≥ σnr3(c− εC) ,

for suitable universal constants c, C > 0. If we fix ε so that the negative term inside the
parentheses does not exceed half the positive one, we obtain

|Ẽn| − |En| ≥
c

2
σnr

3 . (25)

1Actually it can be easily seen that C∞ can only be of one the following three types: the empty set, a
translate of C, a translate of ω × R. However this classification is not relevant for the argument of the proof.
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In particular, we can choose σn so that |Ẽn| = m. With this choice of σn, by (22) σn → 0,
and it follows from (24) and (25) that

JΛn(Ẽn)− JΛn(En) ≤ 24σnH2(∂∗En \C)− Λn
c

2
σnr

3 < 0

for n large, thus contradicting the minimality of En. Therefore, the claim of the step is
proven, and the conclusion of the theorem follows.

Remark 3.8 (Regularity of minimizers). Observe that in the proof of Theorem 3.2 we have
shown that every minimizer Ω of problem (8) satisfies (15) (with Ω in place of E) for any
ball B and any set F ⊂ R3 \C, with Ω∆F ⊂⊂ B. Therefore, the classical regularity theory
for Λ-minimizers of the perimeter (see for instance [13]) implies that ∂Ω \ C is a smooth
surface with constant mean curvature. In turn, concerning the boundary regularity, we may
apply [7, Th. 1.2 and Cor. 1.4] to infer that if ∂C is of class C1,1 in a neighborhood U of a
point x ∈ Γ := ∂Ω \C, then in the same neighborhood Γ is a C1,1/2 surface with boundary.
Moreover, the Young’s law νC · νΓ = λ holds on U ∩Γ∩C, where νΓ denotes the unit normal
to Γ pointing outwards with respect to Ω.

Note that in the argument of Theorem 3.2 we used in a crucial way the fact that we can
slide sets vertically along the lateral boundary of the obstacle C without changing the energy.
In the next theorem, we show that for λ = 0 existence may no longer be true if this property
fails. To this end, we consider the following class of semi-infinite truncated cones: we say
that C ∈ C̃ if

C =
{

(x′, t) ∈ R2 × (−∞, 0] : x′ ∈
(
1− t tanα

)
ω
}
,

where ω ⊂ R2 is a bounded open strictly convex set and α ∈ (0, π/2). We denote by Rin(ω)
the inradius of ω, that is, the radius of the largest open disk contained in ω.

Theorem 3.9 (Existence vs nonexistence for λ = 0). Let C ∈ C̃, and for m > 0 consider the
minimization problem

min{H2(∂∗E \C) : E ⊂ R3 \C of finite perimeter with |E| = m} . (26)

Then, setting m0 := 2
3πRin(ω)3, we have:

(i) if m ∈ (0,m0], then problem (26) admits a solution, and all solutions are given by half
balls lying on ω × {0};

(ii) if m > m0, then problem (26) has no solution .

Proof. Let C ∈ C̃. By the relative isoperimetric inequality proved in [4], if E ⊂ R3 \C is a
set of finite perimeter and finite mass m, then its perimeter is larger than or equal to half the
perimeter of the ball with volume 2m, that is,

H2(∂∗E ∩ (R3 \C)) ≥ 3
(2

3
π
) 1

3
m

2
3 .

Moreover, equality holds if and only if E is a half ball supported on a facet of C, see [9,
Th. 1.2]. Hence item (i) follows.

Assume now that m > m0. We use a translation argument, and set C̃ := C− e3

tanα
. Note

that
C̃ =

{
(x′, t) ∈ R2 × (−∞,−1/ tanα] : x′ ∈ −(t tanα)ω

}
,
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and, since m > m0, there is no half ball of volume m supported on C̃. Thus, using again [9,
Th. 1.2], we have that

H2(∂∗E ∩ (R3 \ C̃)) > 3
(2

3
π
) 1

3
m

2
3 , (27)

for every E ⊂ R3 \ C̃ with volume m.
Fix x′0 ∈ ∂ω for which there exists a unique tangent line ` to ω at x′0. Then the

plane Π generated by ` and by the line s 7→ (−(s tanα)x′0, s), s ∈ R, is the unique tan-

gent plane to C̃ at (−(t tanα)x′0, t) for all t < −1/ tanα. Fix s0 < −1/ tanα, and set

xn := (−(ns0 tanα)x′0, ns0). Observe that for every r > 0, (−xn + C̃) ∩ B(0, r) = n(−x1 +

C̃)∩B(0, r), provided that n is large enough. Since Π is the tangent plane to C̃ at x1, we have
that n(−x1 + C̃) converge in Kuratowski sense to the closed half space Π− with boundary Π
containing C̃ and, by Remark 2.2,

H2 (−xn + ∂C̃)
∗
⇀ H2 Π (28)

weakly* in the sense of measures. Denote by rm the radius of the ball of volume 2m. The
Kuratowski convergence of (−xn + C̃) ∩ B(0, rm) to Π− ∩ B(0, rm), again by Remark 2.2,
implies that

H2(∂((−xn + C̃) ∩B(0, rm))) = H2(∂(C̃ ∩B(xn, rm))→ H2(∂(Π− ∩B(0, rm))) . (29)

Observe also that from (28) and the fact that (H2 Π)(∂B(0, rm)) = 0, we have that H2(∂C̃∩
B(xn, rm))→ H2(Π ∩B(0, rm)). From this convergence and (29), we then have that

H2(∂B(xn, rm) \ C̃)→ H2(∂B(0, rm) \Π−) = 3
(2

3
π
) 1

3
m

2
3 . (30)

Finally, note that by the convexity of C̃, |B(xn, rm) \ C̃| ≥ m. Replacing B(xn, rm) \ C̃ with
the set En obtained by cutting B(xn, rm) \ C̃ with a plane parallel to Π in such a way that
|En| = m, we clearly have that H2(∂En \ C̃) ≤ H2(∂B(xn, rm) \ C̃) and thus, recalling (27),
(30),

H2(∂En \ C̃)→ 3
(2

3
π
) 1

3
m

2
3 .

We then conclude that 3
(

2
3π
) 1

3m
2
3 coincides with the infimum of problem (26), and that it is

not attained.

Remark 3.10. Note that the strict convexity assumption on ∂ω is necessary for the nonex-
istence part of the previous theorem. Indeed, the reader may check that if ∂ω contains a line
segment then the corresponding truncated cone C has a flat facet which becomes arbitrarily
large at −∞. Hence, for every m > 0, it is always possible to find a half ball of mass m
supported on such a facet. Thus, in this case problem (26) has always a solution.

4. The case of nanowires with circular section

Throughout this section, given an open ball B(x0, r) and a unit vector ν ∈ S2, we write

∂B±ν (x0, r) := {x ∈ ∂B(x0, r) : ±(x− x0) · ν > 0} . (31)
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Given R > 0 and λ ∈ (−1, 1), note that if x ∈ ∂B(−Rλe3, R) ∩ {t = 0}, then the outward
normal ν to the ball at x satisfies ν · e3 = λ. Define

Sλ,R := B(−Rλe3, R) ∩H , (32)

where
H := {(x′, t) ∈ R3 : t > 0} .

Recall that the spherical caps Sλ,R are the unique minimizers (up to horizontal translations)
of the capillarity problem

min{H2(∂∗E \ ∂H )− λH2(∂∗E ∩ ∂H ) : E ⊂H of finite perimeter, |E| = |Sλ,R|} ,

see [13, Th. 19.15].
Given α ∈ [0, π2 ) and r > 0, we set

C =
{

(x′, t) ∈ R2 × (−∞, 0] : x′ ∈
(
1− t tanα

)
Dr

}
, (33)

where Dr denotes the planar disk centered at the origin with radius r. Without loss of
generality, we may assume r = 1. We study the local minimality of the spherical caps Sθ with
contact region coinciding with the top of C, that is, with the set

Ctop := D1 × {0} ,

and with contact angle θ. More precisely, for θ ∈ (0, π), setting Rθ := 1
sin θ , we define

Sθ := Scos θ,Rθ ,

where we used the notation introduced in (32) (see Figure 1 in the Introduction). Recalling

that the volume of a spherical cap of radius r and height h is given by πh2

3 (3r − h), we get

|Sθ| =
π

3

(1− cos θ)2(2 + cos θ)

sin3 θ
. (34)

It can be checked that the function θ → |Sθ| is strictly increasing in (0, π). We denote by γ
the contact line, that is, the circle ∂D1 × {0}. We set

θλ := arccosλ .

In this section, since we will work with a fixed convex set of the form (33), we will only
highlight the dependence of the functional in (7) on λ and therefore, to simplify the notation,
we will write Jλ instead of Jλ,C.

In this section, we address the local and global minimality properties of the spherical caps
Sθ. In particular, we identify the condition preventing the occurrence of the spillover on the
lateral boundary of C. We will consider separately the cases where θ > π

2 , θ = π
2 and θ < π

2 .

Theorem 4.1. Assume that θ ≥ θλ. Then Sθ is the unique solution to

min{Jλ(E) : E ⊂H of finite perimeter, such that |E| = |Sθ|} . (35)
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Proof. We split the proof into three steps.
Step 1. We start by proving that we may restrict the minimization problem (35) to spherical
caps (or balls) with center on the t-axis.

Indeed, let E be an admissible competitor for (35) and denote by E∗ the set obtained from
E by Schwartz symmetrization about the vertical t-axis, see [13, Sect. 19.2]. By the definition
of Schwartz symmetrization we have H2(∂∗E∗∩∂H ) = H2(∂∗E∩∂H ) and H2(∂∗E∩Ctop) ≤
H2(∂∗E∗ ∩ Ctop), hence, since λ < 1,

H2(∂∗E ∩ (∂H \ Ctop)) + λH2(∂∗E ∩ Ctop) ≥ H2(∂∗E∗ ∩ (∂H \ Ctop)) + λH2(∂∗E∗ ∩ Ctop) .

Thus, by [13, Theorem 19.11] we have that Jλ(E∗) < Jλ(E) unless almost every horizontal
section of E (and thus ∂∗E ∩ ∂H ) is equivalent to a disk. Therefore, we may restrict
the minimization problem to the class of admissible competitors E such that ∂∗E ∩ ∂H
is equivalent to a (possibly degenerate) disk. Consider any such set E, and let B the ball
such that S+ := B ∩ H has the same volume as E and ∂S+ ∩ ∂H = ∂∗E ∩ ∂H . We
claim that Jλ(S+) < Jλ(E) unless E is equivalent to S+. To see this, we observe that if
E is not equivalent to S+, then by the classical isoperimetric inequality we have P (B) <
P (E ∪ (B \ S+)), which in turn implies P (S+) < P (E). This establishes the claim of Step 1.
Step 2. Denote by Sopt an optimal spherical cap (possibly coinciding with a ball). We claim
∂Sopt ∩ ∂H ⊂ Ctop, and that H2(∂Sopt ∩ ∂H ) > 0.

To see this, fix a ball B(0, R) such that Sopt ⊂⊂ B(0, R). Arguing exactly as in Step 6 of
the proof of Theorem 3.2 there exists Λ > 0 sufficiently large such that every minimizer F of
the problem

min{Jλ(E) + Λ||E| − |Sθ|| : E ⊂ B(0, R) ∩H }

satisfies the volume constraint |F | = |Sθ|. Thus, Sopt is a minimizer of the above problem,
and in turn

Jλ(Sopt) ≤ Jλ(E) + Λ|Sopt∆E| for all E ⊂ B(0, R) ∩H . (36)

Then, arguing as in Step 5 of the proof of Theorem 3.2 we conclude thatH2(∂Sopt∩∂Ctop) > 0.
In order to show that ∂Sopt ∩ ∂H ⊂ Ctop assume by contradiction that ∂Sopt ∩ ∂H is

a disk Dr × {0} with r > 1. Let x0 ∈ ∂H belong to the relative boundary of Dr, and
let E ⊂ H be such that E∆Sopt ⊂⊂ B(x0, (r − 1)/2). Then, from (36), observing that in
B(x0, (r − 1)/2) the functional Jλ coincides with the perimeter, we have that

P (Sopt;B(x0, (r − 1)/2)) ≤ P (E ∩H ;B(x0, (r − 1)/2)) + Λ|Sopt∆(E ∩H )|
≤ P (E;B(x0, (r − 1)/2)) + Λ|Sopt∆E| .

Thus, Sopt is a Λ-minimizer of the perimeter in B(x0, (r − 1)/2). But this impossible since
Λ-minimizers of the perimeter in R3 are of class C1,α, see [13, Th. 26.3 and Th. 28.1]. This
contradiction proves the claim.
Step 3. Assume by contradiction that ∂Sopt ∩ ∂H = Dr × {0} with r < 1. Then, denoting
by θopt the contact angle of Sopt, by the optimality condition we should have θopt = θλ (see
for instance [13, Theorem 19.8]). But this would imply that, up to a translation, Sopt = rSθλ .
This contradicts the condition |Sopt| = |Sθ|, since |Sθ| ≥ |Sθλ | by strict monotonicity of the
function (34) in (0, π).
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We next address the local minimality properties of Sθ also with respect to variations
possibly spilling over the lateral boundary of C. The strategy will be based on the construction
of suitable calibrations, and on the use of Lemma 5.1. In what follows, (γ)ε stands for the
ε-tubular neighborhood of γ = ∂D1×{0}. More generally, given a set X ⊂ R3 and ε > 0, we
denote by (X)ε its ε-tubular neighborhood:

(X)ε := X +B(0, ε) .

We will often construct calibrations by considering the unit normal field to suitable foliat-
ing families of constant mean curvature surfaces. We highlight that in what follows, by mean
curvature we mean, with a slight abuse of language, the sum of the principal curvatures. To
this aim we give the following definition.

Definition 4.2. Given an open set Ω ⊂ R3 and κ ∈ R, a κ-foliation is a family F of
2-dimensional oriented analytic surfaces with constant mean curvature equal to κ, with the
property that for every x ∈ Ω there exists a unique Γx ∈ F with x ∈ Γx.

The normal field associated to the κ-foliation F is the vector field ξ : Ω → S2 such that
for every x ∈ Ω, ξ(x) is the oriented normal to Γx at x.

We recall that given a vector-field ξ ∈ C1(Ω;R3) and a C1-surface Γ ⊂ Ω, the tangential
divergence of ξ along Γ is defined as

divΓ ξ(x) := div ξ(x)−∇ξ(x)ν(x) · ν(x) ,

where ν(x) is a unit normal vector to Γ at x.
We observe that if Γ is a C2 surface and ξ is a C1 vector field defined in a neighborhood

of Γ such that ξ|Γ is a unit normal to Γ, then divΓ ξ(x) coincides with the mean curvature of
Γ with respect to the orientation induced by ξ|Γ.

Lemma 4.3. Let Ω ⊂ R3 be an open set and let κ ∈ R. Let ξ : Ω → S2 be a normal field
associated to a κ-foliation F . Assume that ξ is of class C1. Then div ξ ≡ κ in Ω.

Proof. Since |ξ(x)|2 = 1 for every x ∈ Ω, we have 0 = ∇ξ(x)ξ(x). Hence, given x ∈ Ω and
Γx,

div ξ(x) = divΓx ξ(x) + (∇ξ(x)ξ(x)) · ξ(x) = divΓx ξ(x) = κ

since ξ restricted to Γx coincides with the oriented normal field to Γx.

We start by a local minimality result for Sθ in the case λ ∈ (0, 1), that is, θλ ∈ (0, π2 ).

Theorem 4.4 (Case θ < π
2 ). Assume

0 < θλ < θ <
π

2
, and θ <

(π
2
− α

)
+ θλ (37)

Given M > 0, there exists an open set O containing
(
Sθ ∪ C

)
∩ {t > −M} such that

Jλ(Sθ) ≤ Jλ(E) (38)

for every E ⊂ O \ C, with |E| = |Sθ|, and

(∂Sθ \ ∂∗E) ∩ Ctop ⊂ (γ)ε , (39)

for some ε depending only on θ and λ. Moreover, the inequality (38) is strict provided
|E∆Sθ| > 0.
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C

V

W

Sθ

Figure 2: The foliations constructed in the proof of Theorem 4.4. In blue color the foliation defined in V and
in magenta the one defined in W .

Proof. Fix b ∈ (tan(θ − π
2 ), tan(θλ − α)), b 6= − tanα. This is possibile thanks to (37). We

now apply Lemma 5.4 below to construct a family of solutions (g(σ, ·))σ∈(−M−1/2,1/2) of (76),
with H = 2/Rθ and f(σ) = 1 − σ tanα, each of them defined and positive in the interval
(σ − η̄, σ + η̄) whose graphs foliate an open neighborhood of {(f(σ), σ) : σ ∈ [−M, 0]}. Note
that this is possible since f ′(σ) = − tanα 6= b.

Consider the corresponding family (Σσ)σ∈(−M−1/2,1/2) of surfaces of revolutions defined
by

Σσ := {(x′, t) ∈ R3 : |x′| = g(σ, t), t ∈ (σ − η̄, σ + η̄)} , (40)

which foliate an open set W̃ containing a tubular neighborhood of the form
(
Cε1 \C

)
∩{−M ≤

t ≤ 0} for some ε1 > 0 depending on M . We orient Σσ in such a way that the corresponding
normal νΣσ is outward with respect to the set Gσ := {(x′, t) ∈ R3 : |x′| < g(σ, t)}. With such
an orientation, by Remark 5.3 we have that Σσ has constant mean curvature equal to 2/Rθ.

Since by construction ∂g(σ,t)
∂t |t=σ = b and b < tan(θλ − α), the contact angle of Σσ with

the lateral boundary of C is less than θλ for σ ∈ (−M, 0). Therefore,

νΣσ · νC > λ on the lateral boundary of C , (41)

for all σ ∈ (−M, 0). Moreover, the fact that b > tan(θ − π
2 ) implies that Σ0 \ C lies outside

Sθ, provided η̄ is sufficiently small. In turn, Σσ \ C lies outside Sθ for all σ ∈ (−M, 0).
We want to define a calibration in an open set U containing Sθ. We define the set

V := (G0 ∩ {(x′, t) : 0 < t < η̄}) ∪ (Dg(0,η̄) × [η̄,+∞)) .

In order to define the calibration in V , consider the family of hemispheres Γt := ∂B+
e3(te3, Rθ)

(see (31)), t ∈ R, which defines a 2/Rθ-foliation of V , provided g(0, η̄) < Rθ (which is certainly
true if η̄ is sufficiently small). Then, consider the associated outer normal field ξV (see
Definition 4.2), so that divξ = 2/Rθ. Note, in particular, that, since arccosλ = θλ < θ < π/2,

ξV · e3 = cos θ < λ on γ ,

hence the strict inequality still holds in Ctop ∩ (γ)ε, provided ε is small enough. To complete
the definition we set

W :=
(
W̃ ∩ (Cε1 \ C)

)
\ (V ∪ Σ0) ,
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where W̃ is the open set foliated by the family (40). Observe that W satisfies (63) of
Lemma 5.1. Let ξW to be the oriented normal field associated with the foliation (Σσ)(−M−1/2,0),
according to Definition 4.2 and note that ξW satisfies the assumption (62). Finally set
U := V ∪ W ∪ (Σ0 ∩ Cε1), O := (U ∪ C) ∩ {t > −M} and observe that O contains(
Sθ ∪ C

)
∩ {t > −M}. Define the calibration

ξ :=

{
ξV in V ,

ξW on W .

and note that it satisfies by construction all the assumptions of Lemma 5.1, including those
ensuring the strict local minimality. Thus the conclusion of the theorem follows.

Remark 4.5. Note if α < θλ, we may choose b in the previous proof to be positive. In turn,
O contains a set of the form (D1+δ × (−M,+∞)) \ C for a suitable δ > 0 sufficiently small.
Note that this is always possible when α = 0.

Remark 4.6 (The case θ =
(
π
2 −α

)
+θλ ). The calibration in the previous proof works also if

the second inequality in (37) is replaced by the equality, provided we choose b = tan(θλ−α).
The only difference here is that now Σ0 ⊂ ∂Sθ and the open set U contains the closure of Sθ
except for the horizontal circle (lying on ∂Sθ) generated by the end point of Σ0∩{(x′, t) : t <
η̄}. Since now the calibration ξ is continuous on Σ0, by Remark 5.2 we obtain again that Sθ is
a local minimizer with respect to volume preserving variations that are contained in U (and
satisfying (39)). However, in this case, (41) holds as an equality and the strict minimality of
Sθ is not clear.

Remark 4.7. The condition θ ≤
(
π
2 −α

)
+ θλ in (37) is the one preventing the occurrence of

spillover on the lateral boundary of C. We will show below (see Proposition 4.12) that if such
a condition is violated then there exists a competitor with nonempty and arbitrarily small
spillover region having less energy than Sθ, see also [16].

We now turn to the case θ = π
2 and θλ <

π
2 . Note that in this case the calibration will be

defined in an open set containing Sθ minus a parallel.

Theorem 4.8 (Case θ = π
2 ). Assume

0 ≤ α < θλ <
π

2
. (42)

Given M > 0 and τ ∈ (0, 1), there exists an open set O containing
(
(Sπ

2
∪ C) ∩ {t > −M}

)
\

(∂Sπ
2
∩ {t = τ}) such that

Jλ(Sπ
2
) ≤ Jλ(E) (43)

for every E ⊂ O \ C with finite perimeter, |E| = |Sπ
2
|, and

(∂Sπ
2
\ ∂∗E) ∩ Ctop ⊂ (γ)ε ,

for some ε depending only on λ. Moreover, the inequality (43) is strict provided |E∆Sπ
2
| > 0.

Proof. Once again the strategy is to construct a suitable calibration. Note that H = 2/Rπ/2 =
2. We apply Lemma 5.5 with δ < 0, such that t(δ, π/2) > τ . This is possible thanks to (80).

19

5 Aug 2021 23:14:16 PDT
210805-Fusco Version 1 - Submitted to Ann. Inst. Henri Poincare, Anal. Non Lineaire



Thus, we get β > 0 such that the family gδa,b, where a = gπ
2
(δ) and b ∈ (g′π

2
(δ)−β, g′π

2
(δ) +β),

with gπ
2
(δ) defined in (78), foliates the open set{

(t, u) : t ∈ (δ/2, t(δ, π2 )), gδa,g′π
2

(δ)−β(t) < u < gδa,g′π
2

(δ)+β(t)
}
.

In turn, the surfaces of revolution

Γb :=
{

(x′, t) ∈ R3 : |x′| = gδa,b(t), t ∈ (δ/2, t(δ, π2 ))
}
⊂ ∂Gb, b ∈ (g′π

2
(δ)− β, g′π

2
(δ) + β) ,

(44)
where Gb :=

{
(x′, t) ∈ R3 : |x′| < gδa,b(t), t ∈ (δ/2, t(δ, π2 ))

}
, foliate an open set. In particular,

the set

Ũτ :=
{

(x′, t) ∈ R3 : t ∈ (δ/2, τ), gδa,g′π
2

(δ)−β(t) < |x′| < gδ
a,g′π

2
(δ)+β

2

(t)
}
⊂ Gb (45)

is an open set containing
(
∂Sπ

2
∩{0 < t < τ}

)
∪ γ. Denoting by νC the exterior normal to the

lateral boundary of C, from (42) we have that νSπ
2

(x) · νC(x) > λ for every x ∈ γ. Therefore,

taking β smaller, if needed, we may assume that

νGb(x) · νC(x) > λ for every x ∈ Γb ∩ ∂C and b ∈
(
g′π

2
(δ), g′π

2
(δ) +

β

2

]
. (46)

Let σ0 ∈ (δ/2, 0) be such that gδ
a,g′π

2
(δ)+β

2

(σ0) = 1− σ0 tanα. Then let I be an open interval

containing σ0 and −M . We now apply Lemma 5.4 with b =
d

dt
gδ
a,g′π

2
(δ)+β

2

(σ0) = g′π
2
(δ) +

β

2
,

f(σ) = 1 − σ tanα, to get a family of functions g(σ, t), σ ∈ I, defined for t ∈ (σ − η, σ + η),
such that g(σ0, ·) = gδ

a,g′π
2

(δ)+β
2

(·), satisfying (76). Note that with our choice of b we have

b 6= − tanα, provided β is sufficiently small. Also we may assume that η satisdies σ0 + η < τ .
In particular, the graphs of (g(σ, ·))σ∈(−M,σ0) foliate an open set.

We now set

Ψσ :=
{

(x′, t) ∈ R3 : |x′| = g(σ, t), t ∈ (σ − η, σ + η)
}
⊂ ∂Φσ, σ ∈ (−M,σ0] , (47)

where Φσ :=
{

(x′, t) ∈ R3 : |x′| < g(σ, t), t ∈ (σ − η, σ + η)
}

, and A := ∪σ∈(−M,σ0]Ψσ. Then
we set

Uτ :=
(
(Ũτ ∪A) \ C) ∪ Sπ

2
∪
(
D√1−τ2 × [τ,+∞)

)
, O := Uτ ∪ (C ∩ {t > −M}) ,

where Ũτ is defined in (45), and note that O contains
(
(Sπ

2
∪C)∩{t > −M}

)
\(∂Sπ

2
∩{t = τ}),

see Figure 4. We denote by ξSπ
2

: D1 × R 7→ R3 the outer normal field associated with the

family of foliating hemispheres (∂B+
e3(te3, 1))t∈R (see (31)), so that div ξSπ

2
= 2, by ξ

Ũτ
the

outer (with respect to Gb) normal vector field associated with the foliation (44), and by ξA
the outer (with respect to Φσ) normal vector field associated with the foliation (47). Denoting
x0 = (0, f(σ0), σ0), by construction on ∂C ∩A we have

ξA · νC = νΦσ · νC = νΦσ0
(x0) · νC(x0) > λ ,
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C

Sπ
2

A

Ũτ \ Sπ
2

Figure 3: The foliations constructed in the proof of Theorem 4.8. In magenta the foliation defined in Ũτ \ Sπ
2

and in red the foliation defined in A. The foliation in the remaining part of O is in blue color.

thanks to (46) and to the fact that
d

dt
g′(σ, ·)∣∣

t=σ

= g′π
2
(δ) + β

2 . Note also that since θλ <
π
2

we have
ξSπ

2
· νC < λ on Ctop ∩ (γ)ε,

provided that ε > 0 is sufficiently small. We set for x ∈ Uτ

ξ(x) :=


ξ
Ũτ

(x) if x ∈ Ũτ \ Sπ
2
,

ξA(x) if x ∈ A,
ξSπ

2
(x) otherwise.

Observe that, setting V := Uτ ∩{t > 0}, Σ0 := Uτ ∩{t = 0} and W := Uτ ∩{t < 0}, all the
assumptions of Lemma 5.1 are satisfied, including those ensuring the strict local minimality.
Thus the conclusion of the theorem follows.

We conclude with the case π
2 < θ < π. In this case our technique based on calibrations

yields local minimality only with respect to competitors that coincide with Sθ in a neighbor-
hood of the north pole. It is an open problem whether a stronger local minimality property
holds true also in this case.

Theorem 4.9 (Case π
2 < θ < π). Assume

0 ≤ α < θλ < θ ,
π

2
< θ <

(π
2
− α

)
+ θλ . (48)

Set H = 2/Rθ. Let t(0, θ) ∈ (−2 cos θ/H, 2(1− cos θ)/H] be as in Lemma 5.5. Then for every
M > 0, τ ∈ (−2 cos θ/H, t(0, θ)) there exists an open set D containing ∂(Sθ ∪ C) ∩ {−M <
t < τ} such that

Jλ(Sθ) ≤ Jλ(E) (49)

for every E ⊂ R3 \ C, with |E| = |Sθ| and

E∆Sθ ⊂⊂ D . (50)
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C

Sθ

A

Ũτ

Figure 4: The foliations defined in Theorem 4.9.

Moreover, the inequality (49) is strict provided |E∆Sθ| > 0.

Proof. Let τ be as in the statement and let −2(1 + cos θ)/H < δ < 0 be such that t(δ, θ) > τ .
This is possible thanks to the lower semicontinuity of t(·, ·), see Lemma 5.5. From the same
lemma we obtain that there exists β > 0 and an open neighborhood

(
∂Sθ ∩ {0 < t < τ}

)
∪ γ

foliated by the family of surfaces of revolutions

Γb :=
{

(x′, t) ∈ R3 : |x′| = gδa,b(t), t ∈ (δ/2, τ)
}
⊂ ∂Gb, b ∈ (g′θ(δ)− β, g′θ(δ) + β) , (51)

where Gb :=
{

(x′, t) ∈ R3 : |x′| < gδa,b(t), t ∈ (δ, τ)
}

with a := gθ(δ). Note also that by
construction

∂Sθ ∩
(
R2 × (0, τ)

)
= Γg′θ(δ) ∩

(
R2 × (0, τ)

)
.

Denoting by νC the exterior normal to the lateral boundary of C, from (48) we have that

νSθ(x) · e3 < λ, νSθ(x) · νC(x) > λ for every x ∈ γ .

Therefore, taking β smaller, if needed, we may assume that

νGb(x) · νC(x) < λ for every x ∈ Ctop ∩ Γb and b ∈ (g′θ(δ)− β, g′θ(δ)) .

νGb(x) · νC(x) > λ for every x ∈ Γb ∩ ∂C and b ∈
(
g′θ(δ), g

′
θ(δ) +

β

2

]
.

(52)

As in the proof of Theorem 4.8, we set

Ũτ :=
{

(x′, t) ∈ R3 : t ∈ (δ/2, τ), gδa,g′θ(δ)−β(t) < |x′| < gδ
a,g′θ(δ)+β

2

(t)
}

and define ξ
Ũτ

as the outer (with respect to Gb) normal vector field associated with the
foliation (51). We define the set A and the vector field ξA as in the proof of Theorem 4.8,
with the function gδ

a,g′π
2

(δ)+β
2

replaced by gδ
a,g′θ(δ)+β

2

. Set D := Ũτ ∪ A, Uτ := D \ C, and let

ξ : Uτ 7→ R3 be the vector field coinciding with ξ
Ũτ

in Uτ ∩ Ũτ and with ξA in Uτ ∩A.
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Observe that, setting V := Uτ ∩{t > 0}, Σ0 := Uτ ∩{t = 0}, and W := Uτ ∩{t < 0} all the
assumptions of Lemma 5.1 are satisfied, including those ensuring the strict local minimality
(see (52)). Thus the conclusion of the theorem follows.

Remark 4.10 (The limit case θ =
(
π
2 −α

)
+θλ). In the limit case θ =

(
π
2 −α

)
+θλ, the above

construction still works. The second strict inequality in (52) is now replaced by an equality.
Therefore, we may still conclude that Sθ is a local minimizer with respect to competitors
satisfying the mass constraint and (50). However, we are not able to deduce the strict local
minimality of Sθ.

Remark 4.11. We first note that under the assumption of Theorem 4.9 the condition θ ≤(
π
2 − α

)
+ θλ prevents the spillover on C, see Remark 4.7.

Note also in this case the spherical cap Sθ is an isolated local minimizer with respect to
small L∞ perturbations that leave unchanged a neighborhood of the north pole. However,
recalling (80), such a neighborhood can be made smaller and smaller as θ gets closer and
closer to π/2.

We conclude this section by showing that when the condition θ ≤ π
2 − α + θλ (see (37),

(48) and Remarks 4.6 and 4.10) is violated, there are configurations arbitrarily close to Sθ
spilling over the lateral boundary of C and with strictly lower energy.

Proposition 4.12. Assume

θ >
π

2
− α+ θλ . (53)

Then there exists a one parameter family (Φt)t∈(0,ε) of diffeomorphisms converging to the
identity in C1 such that, setting Et := Φt(Sθ), Et ⊂ R3 \ C, |Et| = |Sθ|, Ctop belongs to the
relative interior of ∂Et ∩ C and Jλ(Et) < Jλ(Sθ).

Proof. First observe that due to assumption (53) we may find an axially symmetric (non-
spherical) closed cap S ⊂ Sθ such that ∂S ∩ ∂Sθ = Ctop and C̃ := C ∪ S is of class C∞.
Without loss of generality, we may assume that

C̃ := {(x′, t) : |x′| ≤ g(t), t ∈ (−∞, tα])} ,

where the function g is continuous, tα > 0, g(tα) = 0, and g ∈ C∞(−∞, tα). Recall g(t) =
1− t tanα for t ≤ 0.

We denote by Γg ⊂ R2 := {(s, t) : s, t ∈ R}, the graph of g with respect to the vertical
t-axis, that is,

Γg := {(g(t), t) : t ∈ (−∞, tα]}

and by Ỹ : Γg → R2 a C∞ tangent vector field such that

Ỹ (g(t), t) := (tanα,−1) for t ≤ 0 , Ỹ (g(t), t) := 0 for
tα
2
≤ t ≤ tα . (54)

Let A ⊂ R2 denote the open set A :=
(
(0,+∞) × R

)
\ Sg, where Sg is the closed (vertical)

subgraph of g. We extend Ỹ to a vector field Y = (Y1, Y2) defined in A by setting

Y2(s, t) :=

{
Ỹ2(g(t), t) if t ≤ tα ,
0 otherwise,
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C

Sθ
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Eε

Figure 5: The sets Eε and S constructed in the proof of Proposition 4.12.

and

Y1(s, t) :=


1

s

[
Ỹ1(g(t), t)g(t) +

1

2

∂

∂t

(
Ỹ2(g(t), t)

)
g2(t)

]
− 1

2

∂

∂t

(
Ỹ2(g(t), t)

)
s if t ≤ tα ,

0 otherwise.

Observe that by construction
∂Y1

∂s
+
∂Y2

∂t
= −Y1

s
(55)

Let X ∈ C∞(R3 \ C;R3) be the vector field defined in R3 \ C by

X(x′, t) :=
(
Y1(|x′|, t) x

′

|x′|
, Y2(|x′|, t)

)
.

Note the by the tangential character of Ỹ and by (55), it can be shown that

divX = 0 in R3 \ C̃ , X · ν
C̃

= 0 on ∂C̃ , (56)

and, recalling (54),

X(x′, 0) =
(
x′ tanα,−1

)
on γ . (57)

In particular,

|X| = 1

cosα
on γ . (58)

Consider now the flow Φ associated with X, that is, the solution to
∂Φ

∂ε
= X(Φ)

Φ(0, x) = x ,

and set
Eε := Φ(ε, Sθ \S) ∪ (S \ Ctop) .
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Note that by (56) we have |Eε| = |Sθ| and ∂Eε \C ⊂ R3 \ C̃. On the other hand, by (56)2, (57)
and the axial symmetry of X, we have that for t small enough the contact line γε = Φ(ε, γ)
of Eε with C is an horizontal circle lying below γ. In particular, Ctop belongs to the relative
interior of ∂Eε ∩ C. By the area formula [2, Th. 2.71]

Jλ(Eε) =

∫
∂Sθ\Ctop

JΦ(ε, x) dH2(x)− λH2(Σε)− λH2(Ctop) ,

where JΦ(ε, ·) is the tangential Jacobian of Φ(ε, ·) on ∂Eε and Σε ⊂ ∂C \ Ctop is the lateral
boundary of the truncated cone lying between γ and γε. Differentiating with respect to
ε, denoting by σγ the outer conormal to γ with respect to Sθ, and recalling (58), by the
Divergence Theorem on manifolds with boundary [13, Th. 11.8] we get

d

dε
Jλ(Eε)|ε=0

=

∫
∂Sθ\Ctop

divτX dH2 − 2πλ

cosα

=
2

Rθ

∫
∂Sθ\Ctop

X · νSθ dH
2 +

∫
γ
X · σγ dH1 − 2πλ

cosα

=

∫
γ
X · σγ dH1 − 2πλ

cosα
, (59)

where in the last equality we used

2

Rθ

∫
∂Sθ\Ctop

X · νSθ dH
2 =

2

Rθ

∫
∂(Sθ\C̃)

X · ν
Sθ\C̃

dH2 = 0,

thanks to (56). Observing that the conormal σγ is given by (−x′ cos(π− θ),− sin(π− θ)) and
recalling (57), we have from (59) that

d

dε
Jλ(Eε)|ε=0

=
2π

cosα

[
sin(π − θ) cosα− sinα cos(π − θ)− λ

]
=

2π

cosα

[
sin(π − θ − α)− cos θλ

]
=

2π

cosα

[
cos
(
θ + α− π

2

)
− cos θλ

]
< 0 ,

where the last inequality follows from (53) and the fact that α ∈ (0, π2 ), θ ∈ (0, π).

5. Appendix: Technical Lemmas

We start with a technical lemma that has been used in the previous section to construct
calibrations.

Lemma 5.1 (Calibrations). Let θ ∈ (0, π) and let U ⊂ R3 \ C be an open set such that

U = V ∪W ∪ Σ0 ,

where V and W are open and disjoint, Sθ ∩ U ⊂ V ⊂ H , and Σ0 := ∂V ∩ ∂W ∩ U is a
nonempty C1-surface contained in H \ Sθ. Let ξ : U \ Σ0 → R3 be a vector field satisfying
the following properties:

(i) ξ|V and ξ|W are both Lipschitz continuous vector fields in V \(γ)δ and W \(γ)δ for every
δ > 0, respectively;
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Figure 6: A set E satisfying the assumptions of Lemma 5.1: E∆Sθ ⊂ V ∪W ∪ Σ0, |E| = |Sθ|.

(ii) divξ ≤ 2/Rθ in (U \ Σ0) ∩ Sθ and divξ ≥ 2/Rθ in U \ (Σ0 ∪ Sθ);

(iii) ξ|V · νΣ0 ≤ ξ|W · νΣ0 on Σ0, where νΣ0 is unit normal field to Σ0 pointing towards W ;

(iv) ξ = νSθ on ∂Sθ ∩ U ;

(v) ‖ξ‖∞ ≤ 1;

(vi) ξ · νC ≤ λ on Ctop ∩ (γ)ε ∩ ∂U and ξ · νC ≥ λ on (∂C \ Ctop) ∩ ∂U for some ε > 0.

Then,
Jλ(Sθ) ≤ Jλ(E) (60)

for every E ⊂ R3 \ C, with |E| = |Sθ|, E∆Sθ ⊂ U , and

Ctop \ ∂∗E ⊂ (γ)ε . (61)

Moreover, if the second inequality in (vi) is strict and

ξ|W (x′, t) · (x′, 0) ≥ 0 (62)

for all (x′, t) ∈W , and if the following property holds

(x′, t) ∈ ∂C \ Ctop =⇒ W ∩ {(sx′, t) : s ≥ 1} is a (possibly degenerate) line segment, (63)

then the inequality in (60) is strict whenever |E∆Sθ| > 0.

Proof. Let E be an admissible set. Since E and Sθ have the same volume (and thus |E \Sθ| =
|Sθ \ E|) and (ii) holds, we have∫

Sθ\E
divξ dx ≤

∫
E\Sθ

divξ dx . (64)

Assume now that ξ|V and ξ|W are Lipschitz continuous vector fields in their domains. Write∫
E\Sθ

divξ dx =

∫
(E\Sθ)∩V

divξ dx+

∫
(E\Sθ)∩W

divξ dx
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and observe that since E∆Sθ ⊂ U and Σ0 is a surface of class C1, the sets (E \ Sθ) ∩ V and
(E \Sθ)∩W have finite perimeter. Hence we can apply the divergence theorem to both sets.
Thus we get ∫

E\Sθ
divξ dx =

∫
∂∗((E\Sθ)∩V )

ξ · ν dx+

∫
∂∗((E\Sθ)∩W )

ξ · ν dx . (65)

On the other hand we may apply the divergence theorem in Sθ \ E, since Sθ \ E ⊂ V and ξ
is Lipschitz continuous in V . Using the formula for the reduced boundary of the difference of
two sets of finite perimeter (see [13, Theorem 16.3]), and conditions (iv) and (v), inequality
(64), together with (65) (and the analog for E \ Sθ), yields∫

∂Sθ\(E(1)∪∂∗E∪C)
ξ · νSθ dH

2 −
∫

(∂Sθ\∂∗E)∩C
ξ · νC dH2 −

∫
∂∗E∩Sθ

ξ · νE dH2

+H2(∂Sθ ∩ ∂∗E ∩ {νE = −νSθ})

≤
∫

(∂∗E∩V )\(Sθ∪Σ0)
ξ · νE dH2 −

∫
∂Sθ∩E(1)

ξ · νSθ dH
2 +

∫
E(1)∩Σ0

νΣ0 · ξ|V dH
2

+H2(∂∗E ∩ Σ0)−
∫
E(1)∩Σ0

νΣ0 · ξ|W dH2 +

∫
(∂∗E∩W )\(C∪Σ0)

ξ · νE dH2

−
∫

(∂∗E\∂Sθ)∩C
ξ · νC dH2 −H2(∂Sθ ∩ ∂∗E ∩ {νE = −νSθ}) .

(66)

Under the weaker assumption (i), it is enough to observe that the Divergence Theorem
can be applied in V \ (γ)δ and in W \ (γ)δ, and that the boundary contribution on ∂(γ)δ
vanishes as δ → 0+ due to assumption (v) and to the fact that H2(∂(γ)δ) → 0 as δ → 0+.
Therefore, we get the same inequality as above.

Neglecting the term H2(∂Sθ ∩ ∂∗E ∩ {νE = −νSθ}) in both sides of (66), rearranging and
combining suitably the remaining terms, and observing that ∂∗E ∩Sθ = ∂∗E ∩Sθ ∩V , we get∫

(∂Sθ\∂∗E)\C
ξ · νSθ dH

2 −
∫

(∂Sθ\∂∗E)∩C
ξ · νC dH2

≤
∫

(∂∗E∩V )\(∂Sθ∪Σ0)
ξ · νE dH2 +

∫
(∂∗E∩W )\(C∪Σ0)

ξ · νE dH2

+H2(∂∗E ∩ Σ0)−
∫

(∂∗E\∂Sθ)∩C
ξ · νC dH2 (67)

+

∫
E(1)∩Σ0

νΣ0 · ξ|V dH
2 −

∫
E(1)∩Σ0

νΣ0 · ξ|W dH2

≤
∫

(∂∗E∩V )\(∂Sθ∪Σ0)
ξ · νE dH2 +

∫
(∂∗E∩W )\(C∪Σ0)

ξ · νE dH2

+H2(∂∗E ∩ Σ0)−
∫

(∂∗E\∂Sθ)∩C
ξ · νC dH2 ,

where the last inequality follows from the assumption (iii). Using assumptions (iv) and (v),
we may now estimate

Jλ(Sθ)− Jλ(E) = H2((∂Sθ \ ∂∗E) \ C)−H2((∂∗E \ ∂Sθ) \ C)
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− λ
[
H2((∂Sθ \ ∂∗E) ∩ C)−H2((∂∗E \ ∂Sθ) ∩ C)

]
≤
∫

(∂Sθ\∂∗E)\C
ξ · νSθ dH

2 −
∫

(∂∗E∩V )\(∂Sθ∪Σ0)
ξ · νE dH2 (68)

−
∫

(∂∗E∩W )\(C∪Σ0)
ξ · νE dH2 −H2(∂∗E ∩ Σ0)

−
∫

(∂Sθ\∂∗E)∩C
ξ · νC dH2 +

∫
(∂∗E\∂Sθ)∩C

ξ · νC dH2

−
∫

(∂Sθ\∂∗E)∩C
(λ− ξ · νC) dH2 +

∫
(∂∗E\∂Sθ)∩C

(λ− ξ · νC) dH2

≤ −
∫

(∂Sθ\∂∗E)∩C
(λ− ξ · νC) dH2 +

∫
(∂∗E\∂Sθ)∩C

(λ− ξ · νC) dH2 =: −I1 + I2 ,

where the last inequality follows from (67). Observe that by (vi)1 and by (61)

λ− ξ · νC ≥ 0 in (∂Sθ \ ∂∗E) ∩ C .

In particular, −I1 ≤ 0. On the other hand, by (vi)2

λ− ξ · νC ≤ 0 on (∂∗E \ ∂Sθ) ∩ C .

Thus, also I2 ≤ 0 and this concludes the proof of (60).
Assume now Jλ(E) = Jλ(Sθ). Then from (68) we have∫

(∂Sθ\∂∗E)∩C
(λ− ξ · νC) dH2 =

∫
(∂∗E\∂Sθ)∩C

(λ− ξ · νC) dH2 = 0 .

Thus, if the second inequality in (vi) is strict, we have

H2((∂∗E \ ∂Sθ) ∩ C) = 0 . (69)

In turn, again (68) implies that

ξ|W = νE H2-a.e. on ∂∗E ∩W . (70)

Observe now that by assumption for all (x′, t) ∈W ,

ξ|W (x′, t) · (x′, 0) ≥ 0 (71)

in W . Writing χE = χE(%, θ, t), where (%, θ, t) denotes the cylindrical coordinates, and setting
e% = (cos θ, sin θ, 0), we have that

D%χE = −νE · e%H2 ∂∗E .

Thus, thanks to (70) and (71), D%χE is a nonpositive measure in W . In turn, by (63) it follows
that the function χE(·, θ, t) is nonincreasing. This fact, together with (69) implies that χE is
identically zero in W , and thus E ⊂H . The conclusion then follows by Theorem 4.1.

Remark 5.2. A careful inspection of the first part of the proof of Lemma 5.1 yields the same
minimality property also in the case where Σ0 ∩ ∂Sθ 6= ∅, provided ξ is continuous along Σ0.
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In the constructions of Section 4 we used the foliating properties of solutions to the
equation

−
(

gg′√
1 + g′2

)′
+

√
1 + g′2 = Hg , (72)

where H is a fixed constant, when we vary both the initial point and the initial value of the
solution.

Note that the differential equation above can be rewritten as

− g′′

(1 + g′2)3/2
+

1

g
√

1 + g′2
= H .

Remark 5.3. Note that the differential equation in (72) is the Euler-Lagrange equation of
the functional

I(g; I) := 2π

∫
I
g

√
1 + g′2 dt−Hπ

∫
I
g2 dt . (73)

Moreover, if g ≥ 0, then

I(g; I) = P (Eg, {(x′, t) : t ∈ I})−H
∣∣Eg ∩ {(x′, t) : t ∈ I}

∣∣ , (74)

where Eg ⊂ R3 is the axially symmetric set generated by the rotation of the subgraph of g
around the vertical t-axis, and P (E,Ω) denotes the perimeter of E relative to the open set
Ω. It follows, in particular, that ∂Eg ∩ {(x′, t) : t ∈ I} has constant mean curvature equal to
H.

Lemma 5.4. Let H > 0, let f : R → (0,+∞) be a smooth function, and let b ∈ R be such
that

f ′(σ) 6= b for all σ ∈ R . (75)

Then, there for every open and bounded interval I = (α, β) there exists η̄ > 0 such that for
every σ ∈ I, the solution g(σ, ·) of the problem

−
(

gg′√
1 + g′2

)′
+

√
1 + g′2 = Hg

g > 0 in (σ − η̄, σ + η̄) ,

g(σ) = f(σ), g′(σ) = b ,

(76)

exists and is unique in (σ− η̄, σ+ η̄). Moreover, the graphs of the family (g(σ, ·)σ∈(α,β)) foliate
an open set containing {(σ, f(σ)) : σ ∈ (α, β)}.

Proof. Fix σ0 ∈ [α, β]. Since f(σ0) > 0, there exists t′ > 0 such that the solution g(σ0, ·)
to (76) exists and is unique in (σ0 − t′, σ0 + t′). We may now apply standard results on the
smooth dependence from the initial data to deduce that there exists 0 < η < t′, sufficiently
small, such that for every σ ∈ (σ0 − η, σ0 + η) the solution g(σ, ·) of (76) exists and is unique
in (σ0 − η, σ0 + η).

Consider the map Φ : (σ0 − η, σ0 + η)× (σ0 − η, σ0 + η)→ R2, Φ(t, σ) := (t, g(σ, t)). We
claim that, by taking η smaller if needed, Φ is injective. By the Inverse Function Theorem,
the claim follows by observing that

DΦ(σ0, σ0) =

(
1 0
b f ′(σ0)− b

)
,

29

5 Aug 2021 23:14:16 PDT
210805-Fusco Version 1 - Submitted to Ann. Inst. Henri Poincare, Anal. Non Lineaire



which is invertible thanks to (75). Therefore, the family (g(σ, ·))σ∈(σ0−η,σ0+η) foliates a neigh-
borhood of {(σ, f(σ) : σ ∈ (σ0 − η, σ0 + η)}. The conclusion then follows by a covering
argument.

The proofs of Theorems 4.8 and 4.9 are based on the following construction of rotationally
symmetric surfaces with constant mean curvature. Given H > 0, a > 0 and δ ∈ R, for every
b ∈ R we denote by gδa,b ∈ C2(t−δ;a,b, t

+
δ;a,b), with δ ∈ (t−δ;a,b, t

+
δ;a,b), the maximal solution to

−
(

gg′√
1 + g′2

)′
+

√
1 + g′2 = Hg in (t−δ;a,b, t

+
δ;a,b)

g > 0 in (t−δ;a,b, t
+
δ;a,b) ,

g(δ) = a, g′(δ) = b.

(77)

For θ ∈ (0, π), let

gθ(t) :=

√
4

H2
−
(
t+

2

H
cos θ

)2
, t ∈

(
− 2

H
(1 + cos θ),

2

H
(1− cos θ)

)
, (78)

and note that gθ describes the radial profile of the spherical cap (see (32))

Scos θ, 2
H

= B
(
− 2

H
cos θe3,

2

H

)
∩ {(x′, t) : t > 0} ,

and thus, in particular, solves the differential equation in (77).

Lemma 5.5. Fix H > 0 and let

D :=
{

(δ, θ) : θ ∈ [π2 , π) and δ ∈
(
− 2

H (1 + cos θ),− 2
H cos θ

)}
.

There exists a lower semicontinuous function t : D → (0,+∞), satisfying

− 2

H
cos θ < t(δ, θ) ≤ 2

H
(1− cos θ) (79)

with the following properties: for every θ ∈ [π2 , π) and for every δ < t0 < t1 < t(δ, θ) there
exists ε > 0 such that if b ∈ [g′θ(δ)− ε, g′θ(δ) + ε], and a = gθ(δ), then the solution gδa,b to (77)

exists and is strictly positive in [δ, t1] and the graphs of (gδa,b)b∈(g′θ(δ)−ε,g′θ(δ)+ε) foliate the open
set

U := {(t, u) : t ∈ (t0, t1), gδa,g′θ(δ)−ε(t) < u < gδa,g′θ(δ)+ε(t)} ,

and thus, in particular, an open neighborhood of the the graph of gθ |(t0,t1)
. Finally,

t
(

0,
π

2

)
=

2

H
, lim

(δ,θ)→(0,π
2

)
t(δ, θ) =

2

H
. (80)

Proof. Set J := (−2(1 + cos θ)/H, 2(1 − cos θ)/H). For θ ∈ [π2 , π) and I ⊂ J , we denote by
I ′′(gθ; I) the second variation of (73) evaluated at gθ, restricted to H1

0 (I).
Given a set E of finite perimeter and an open set Ω, we define

F(E; Ω) := P (E; Ω)−H|E ∩ Ω| .
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We now recall the second variation formula for the above functional: given a smooth set E
and a smooth vector field X with suppX ⊂⊂ Ω, and denoting by Φ(η, x) the associated flow,
which satisfies {

∂Φ
∂η = X(Φ) ,

Φ(0, x) = x ,

we have

d2

dη2
F(Φ(η,E); Ω)|η=0

=

∫
∂E

(
|∇τ (X · νE)|2 − |B∂E |2(X · νE)2

)
dH2 =: ∂2F(E; Ω)[X · νE ] ,

where B∂E is the second fundamental form and thus |B∂E |2 is equal to the sum of the squares
of the principal curvatures of ∂E. Indeed, this formula can be obtained by combining the
second variation formula for the perimeter functional (see for instance [1, Theorem 3.1], with
γ = 0), with the second variation formula for the volume (see for instance [5, Formula (2.30)].

For every t ∈ (δ, 2(1−cos θ)/H) and for every ϕ ∈ C∞c (δ, t) let X(x′, s) := ϕ(s)(x′/|x′|, 0),
s ∈ (δ, t). Then the associated flow is given by Φ(η, (x′, s)) = (x′, s) + ηϕ(s)(x′/|x′|, 0). In
turn, from (74) one can readily check that

I(gθ + ηϕ; (δ, t)) = F(Φ(η,Egθ);R
2 × (δ, t))

for every η ∈ R. Thus

I ′′(gθ; (δ, t))[ϕ] = ∂2F(Egθ ;R
2 × (δ, t))[X · νEgθ ] = ∂2F(Egθ ;R

2 × (δ, t))[ψ] (81)

where ψ(s) := ϕ(s)
√

1− (Hs/2 + cos θ)2. A straightforward calculation, using either (81) or
the explicit expression of I, shows that for any ϕ ∈ H1

0 (I) we have

I ′′(gθ; I)[ϕ] = 2π

∫
I

(
gθϕ

′2

(1 + g′2θ )3/2
+

2g′θϕϕ
′

(1 + g′2θ )1/2
−Hϕ2

)
ds

= 2π

∫
I

(
gθϕ

′2

(1 + g′2θ )3/2
−
[(

g′θ
(1 + g′2θ )1/2

)′
+H

]
ϕ2

)
ds (82)

= 2π

∫
I

(
2

H

[
1−

(sH
2

+ cos θ
)2]2

ϕ′2 − H

2
ϕ2

)
ds ,

where in the last equality we used (78). For (δ, θ) ∈
(
− 2

H (1 + cos θ),− 2
H cos θ

)
× [π2 , π) we

set

t(δ, θ) := sup
{
t ∈ (δ, 2(1− cos θ)/H) : I ′′(gθ; (δ, t))[ϕ] > 0 for all ϕ ∈ H1

0 (δ, t) \ {0}
}
. (83)

Observe that the above sup is well defined. Indeed, since δ > − 2
H (1 + cos θ), the coefficient

of ϕ′2 in the last integral in (82) is greater than a strictly positive constant c0(δ). Therefore,
by the Poincaré inequality on intervals

I ′′(gθ; (δ, t))[ϕ] ≥ 2π

∫ t

δ

(
c0(δ)ϕ′2 − H

2
ϕ2

)
ds ≥ 2π

∫ t

δ

(
4πc0(δ)

(t− δ)2
− H

2

)
ϕ2 ds > 0

provided t− δ is sufficiently small.
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Let (δn, θn)→ (δ, θ). If δ < t < t(δ, θ), then

min
{
I ′′(gθ; (δ, t))[ϕ] : ϕ ∈ H1

0 (δ, t), ‖ϕ‖L2 = 1
}

=: m > 0 . (84)

For every n we denote by ϕn a minimizer of the above problem, with δ, θ replaced by δn, θn,
respectively. Since {ϕn} is bounded in H1

0 (J), we may assume that, up to a (not relabelled)
subsequence, ϕn ⇀ ϕ in H1

0 (J), with ϕ ∈ H1
0 (δ, t) and ‖ϕ‖L2 = 1. Recalling the explicit

expression (82), and by standard arguments, one may check that

lim inf
n
I ′′(gθn ; (δn, t))[ϕn] ≥ I ′′(gθ; (δ, t))[ϕ] ≥ m, (85)

which implies that for n large enough t(δn, θn) ≥ t. This implies the lower semicontinuity of
t(·, ·).

It is well known that the smallest eigenvalue of the Laplace-Beltrami operator on the
hemisphere of radius R is given by 2/R2, see for instance the proof of [12, Prop. 2.1.13] 2.
Thus if E is a ball and Ω is an open set such that ∂E ∩ Ω is a proper subset of an open
hemisphere, then by the strict monotonicity with respect to set inclusion of the first eigenvalue
λ1(·) of the Laplace-Beltrami operator, we have that λ1(∂E∩Ω) > 2/R2. In turn, this implies
that for every ϕ ∈ H1

0 (∂E ∩ Ω),∫
∂E∩Ω

|∇τϕ|2 dH2 ≥ λ1

∫
∂E∩Ω

ϕ2 dH2 >
2

R2

∫
∂E∩Ω

ϕ2 dH2 ,

that is, ∂2F(E; Ω) is positive definite on H1
0 (∂E ∩ Ω). From this property and (81), it then

follows that if θ = π/2,
I ′′
(
gπ/2; (0, 2/H)

)
[ϕ] > 0

for all ϕ ∈ C∞c (0, 2/H) \ {0}. Recalling (83), this shows the first equality in (80), while the
second one now follows from the lower semicontinuity of t(·, ·). The strict stability of proper
subsets of hemispheres implies that I ′′

(
gθ; (δ,− 2

H cos θ)
)

is positive definite. Now denote by
m(t) the minimum in (84) (for δ and θ fixed). An argument entirely similar to the one used
to prove (85) shows that the function m(·) is lower semicontinuous. Hence, m(t) > 0 for t
sufficiently close to − 2

H cos θ, thus proving the first inequality in (79).
Observe now that since gθ > 0 in [δ, t(δ, θ)), for any fixed δ < t1 < t(δ, θ) there exists

ε > 0 such that the solutions gδa,b to (77) with a = gθ(δ) and b ∈ [g′θ(δ) − ε, g′θ(δ) + ε], are

defined and satisfy gδa,b > 0 in [δ, t1].
Recalling now that I ′′(gθ; (δ, t(δ, θ))) is positive semi-definite, by [10, Section 26-Theorem 2’]

there are no conjugate points in (δ, t(δ, θ)). Then, by well known properties we may conclude
that the family (gδa,b)b∈(g′θ(δ)−ε,g′θ(δ)+ε) is foliating, by taking ε smaller if needed. For the
reader’s convenience we recall briefly the argument. We start by showing that

f(t) :=
∂gδa,b(t)

∂b

∣∣
b=g′θ(δ)

6= 0 for all t ∈ (δ, t(δ, θ)). (86)

2One way to see this is to observe that the odd reflection with the respect to the horizontal plane of any
eigenfunction on the hemisphere Sπ/2 is an eigenfunction on the sphere. Thus the first eigenfunction is the
first spherical harmonic vanishing on the equator, that is, the function u(x′, t) = t,
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To this aim observe that f is a solution of the Euler-Lagrange equation of I ′′(gθ; (δ, t(δ, θ)))
in the interval (δ, t(δ, θ)), or equivalently, of the linearization of (77). Moreover, f(δ) = 0 and

f ′(δ) =
∂

∂b

(
(gδa,b)

′(δ)
)∣∣
b=g′θ(δ)

= 1 ,

and thus f 6= 0 in a right neighborhood of δ. Suppose now by contradiction that there
exists a point t̄ ∈ (δ, t(δ, θ)) at which f vanishes. But then by the previous observations it
follows that t̄ is a conjugate point, which is impossible. Once (86) is established, the foliating
property of the family (gδa,b)b∈(g′θ(δ)−ε,g′θ(δ)+ε) restricted to any interval I ⊂⊂ (δ, t(δ, θ)) for
ε sufficiently small follows from an application of the Implicit Function Theorem (see for
instance [3, page 79]).
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