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AbstratIn this paper we give a partial answer to a onjeture of De Giorgi,namely we prove that in dimension two the regular part of the disontinu-ity set of a loal minimizer of the homogeneous Mumford-Shah funtionalis analyti with the exeption of at most a ountable number of isolatedpoints.

1 IntrodutionThis paper is onerned with the analytiity of the disontinuity set of loalminimizers of a lass of free disontinuity problems in dimension two. Morepreisely we onsider the funtionalF (u) := Z
 f (ru) dx1 dx2 + �H1 (S (u) \ 
) (1)de�ned on the spae SBV (
) of speial funtions of bounded variation. Here
 � R 2 is a bounded open set, S (u) is the jump set of u, and f : R 2 ! [0;1)a stritly onvex, analyti funtion suh that0 � f (�) � C (1 + j�jp) ; p > 1;for some onstant C > 0:
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The prototype problem is given by the homogeneous Mumford-Shah fun-tional F (u) := Z
 jruj2 dx1 dx2 + �H1 (S (u) \
) (2)whih was introdued in [36℄ in onnetion with a variational approah to ImageSegmentation.The existene of absolute minimizers of the non-homogeneous Mumford-Shah funtionalFg (u) := Z
 jruj2 dx+ � Z
 ju� gj2 dx+ �H1 (S (u) \ 
) (3)was proved by Ambrosio [2, 3℄ in arbitrary dimensions.A ruial observation in the study of regularity of minimizers of (3) is that ifg is bounded they are quasi-minima for (2). Moreover, as observed in [6℄, typialblow-up arguments in regularity theory relate the loal behavior of minimizersof the non-homogeneous funtional (3) to the one of the homogeneous funtional(2). Thus it is important to study (2).The �rst regularity results are due to De Giorgi, Carriero and Leai [19℄ whoproved that the disontinuity set of loal minimizers of (3) is essentially losed,that is H1 ��S (u) n S (u)� \
� = 0: The same result has been extended byFonsea and Fuso [21℄ to energies of the formZ
 f (ru) dx+ �HN�1 (S (u) \ 
)under suitable hypotheses on f and more reently by Fuso, Mingione andTrombetti [23℄ to integrands f = f (x; u;ru) :Partial regularity for (2) was studied by Ambrosio, Fuso and Pallara (see[8, 5, 6℄) who showed that if u is a quasi-minimizer of (2) then there exists anHN�1-null set � � S (u) \ 
; relatively losed in 
 suh that �S (u) n �� \ 
is a C1; 14 hypersurfae. The same authors in [7℄ later proved higher regularity,and, in partiular, that if g 2 C1 (A) for some open set A � 
 and S (u)\A isa C1; hypersurfae, then S (u) \A is atually a C1 hypersurfae.It should also be noted that there is an extensive literature for the regu-larity of (3) in the two dimensional ase N = 2; we quote here the results ofBonnet [10℄, Dal Maso, Morel and Solimini [14℄, David and Semmes [15℄, Leger[28℄, Maddalena and Solimini [30, 31, 33℄ and refer to [6℄ for a more detailedbibliography.Regarding the analytiity of the disontinuity set, the following onjeturewas made by De Giorgi:Conjeture (De Giorgi ) If u is a loal minimizer of the funtional (2) andS (u) \A is a C1; manifold for some open set A; then S (u) \A is analyti.We refer to [6℄ for more details. In this setion we give a partial answer tothis onjeture, namely we prove the following.2



Theorem 1 Assume that N = 2 and let u be a loal minimizer of the funtional(1) in 
: Assume that S (u)\A is a C1; urve for some open set A � 
; thenS (u) \ A is analyti with the exeption of at most a ountable set of isolatedpoints.A similar result atually holds for more general funtionals of the form (1)(see Setion 4 below for more details). The main tool in the proof is the hodo-graph transform whih was �rst used to study the regularity of the free boundaryfor ellipti systems by Kinderlehrer, Nirenberg and Spruk [25℄. For a detailedexposition of the method we refer to the monograph of Kinderlehrer and Stam-pahia [24℄.The exeptional set in our result is given byE := �(x1; x2) 2 S (u) \A : �u+�� (x1; x2) = �u��� (x1; x2) = 0� ;where u+ and u� are the approximate upper and lower limit of u (see [6℄ formore details on SBV funtions), and � is the tangent vetor to the jump set.To our knowledge there is no boundary analytiity results without some kind ofnon degeneray ondition.Our argument works only in the two dimensional ase and does not applywhen lower order terms appear in the funtional. Thus proving De Giorgionjeture in the higher dimensional ase seems to require di�erent methods.Besides the intrinsi interest of the result, Theorem 1 provides a justi�ationto the analytiity assumption in [34℄ where it was shown, using the alibrationmethod introdued by Alberti, Bouhitt�e and Dal Maso in [1℄, that if u isharmoni outside an analyti urve � and satis�es the neessary ondition on ���ru+��2 � ��ru���2 = K on �;where K is the urvature, then u is a loal minimizer of the Mumford-Shahfuntional in a neighborhood of �:Finally, we refer to [22℄ and [24℄ (see also the reent paper [9℄) for an extensivebibliography on related regularity results for free boundary problems.
2 PreliminariesLet V and Y be two topologial vetor spaes and denote by V � and Y � theirrespetive dual spaes. We denote by h�; �iV and h�; �iY the duality pairing. Let� : V ! Y be a ontinuous, linear operator and denote by �� its transpose.Given two onvex funtionalsI : V ! (�1;1℄ ; H : Y ! (�1;1℄we onsider the minimization problem (P)infv2V [I (v) +H (� (v))℄ :
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We de�ne the dual problem (P�) assupz�2Y � [�I� (��z�)�H� (�z�)℄ ;where I� and H� are the polar funtions of I and H respetively, that isI� (v�) := supv2V fhv�; viV � I (v)g ;H� (z�) := supz2Y fhz�; ziY �H (z)g :In what follows the operator � denotes the subdi�erential. The following resultmay be found in [20℄.Theorem 2 Let V and V �; and Y and Y � be two pairs of topologial vetorspaes, let � : V ! Y be a ontinuous, linear operator. Consider two onvexfuntionals I : V ! (�1;1℄ ; H : Y ! (�1;1℄ :Assume that there exists v0 2 V suh thatI (v0) <1; H (� (v0)) <1;H being ontinuous at � (v0) : Theninfv2V [I (v) +H (� (v))℄ = supz�2Y � [�I� (��z�)�H� (�z�)℄ ;and (P�) admits at least a solution z�:Moreover, if v is a solution of (P) and z� is a solution of (P�) then��z� 2 �I (v) ; �z� 2 �H (� (v)) ;or, equivalently,I (v) + I� (��z�)� h��z�; vi = 0; H (� (v)) +H� (�z�) + hz�;�vi = 0:We now present, without proofs, some lassial results on the analytiity ofsolutions of ellipti systems. For more details we refer to the monographs ofKinderlehrer and Stampahia [24℄ and of Morrey [35℄.In what follows let 
 � RN be an open set and set.D = (D1; : : : ; DN ) ; Dj = 1i ��yj 1 � j � N:Let Lkj (y;D) ; 1 � j; k � n; be linear di�erential operators with ontinuousomplex valued oeÆients. Consider the system of partial di�erential equationsin the dependent variables u1; : : : ; unnXj=1Lkj (y;D)uj (y) = fk (y) in 
; 1 � k � n: (4)
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To eah equation we assign an integer weight sk � 0 and to eah dependentvariable an integer weight tk � 0 suh thatorder Lkj (y;D) � sk + tj in 
; 1 � k � n;maxk sk = 0;where we use the onvention that Lkj (y;D) � 0 if sk + tj < 0: If we writeLkj (y;D) = Xj�j�sk+tj a�kj (y)D�;
then the prinipal part of Lkj (y;D) is de�ned byL0kj (y;D) = Xj�j=sk+tj a�kj (y)D�:
We say that the system (4) is ellipti ifrank (L0kj(y; �)) = n for eah � 2 RN n f0g and y 2 
; (5)and for eah pair of independent vetors �; � 2 RN and y 2 
 the polynomialp(z) = detL0kj(y; � + z�) (6)has exatly � = 12 deg p roots with positive imaginary part and � = 12 deg proots with negative imaginary part.A general system of equationsFk �y;u(y); Du(y); : : : ; D`u(y)� = 0 in 
; 1 � k � n; (7)where u =(u1; : : : ; un) and Dm stands for the set of all partial derivatives oforder m, is ellipti along the solution u if the variational equationsnXj=1Lkj (y;D)uj (y) := ddtFk �y;u(y) + tu; D(u(y) + tu); : : : ; D`(u(y) + tu)�����t=0 = 0(8)onstitute an ellipti system as de�ned above.Let Bhj (y;D), 1 � h � �, 1 � j � n, be linear di�erential operator withontinuous oeÆients and assume that a portion of the boundary �
 is on-tained in the hyperplane yN = 0: We say that the set of boundary onditionsnXj=1Bhj (y;D)uj (y) = gh(y) on S � �
 \ fyN = 0g ; 1 � h � �
is oerive for the system (4) if

5



(i) the system (4) is ellipti and2� = nXj=1(sj + tj) � 0
is even;(ii) there exist integers rh; 1 � h � �; suh that order Bhj (y;D) � rh+ tj onS;(iii) for every y0 2 S the homogeneous boundary value problemnXj=1L0kj (y0; D)uj (y) = 0 in RN+ ; 1 � k � n;nXj=1B0hj (y0; D)uj (y) = 0 on yN = 0; 1 � h � �;
where B0hj is the part of Bhj of order rh+tj ; admits no nontrivial boundedexponential solutions of the formuj (y) = ei�0y0'j(yN ); 1 � j � n, �0 2 RN�1 ;where as usual y0 = (y1; : : : ; yN�1) :A set of (nonlinear) boundary onditions	h (y;u(y); Du(y); : : : ; Dsu(y)) = 0 on S; 1 � h � �;is oerive for the system (7) along the solution u if there exist weights r1; : : : ; r�suh that the set of linearized boundary onditionsnXj=1Bhj (y;D)uj (y) := ddt	k (y;u(y) + tu; D(u(y) + tu); : : : ; Ds(u(y) + tu))����t=0 = 0(9)in S is oerive for the linearized system (8) on S:Theorem 3 Let U be a neighborhood of 0 in RN+ and S = �U \ fyN = 0g :Assume that u is a solution of the ellipti and oerive systemFk �y;u(y); Du(y); : : : ; D`u(y)� = 0 in U; 1 � k � n;	h (y;u(y); Du(y); : : : ; Dsu(y)) = 0 on S; 1 � h � �;with weights sk; tj ; rh; 1 � j; k � n; 1 � h � �:Suppose also that Fk and 	h are analyti. If uj2 Cth+r0;� (U [ S), for some� > 0 and where r0 = maxh (0; 1 + rh) ; then the uj are analyti in U [ S;1 � j � n: 6



To test elliptiity and oeriveness of a system it is atually suÆient toverify it at one point. Indeed we have the followingTheorem 4 Let U be a neighborhood of 0 in RN+ and S = �U \ fyN = 0g :Assume that 0 is an interior point of S and that u is a solution of the systemFk �y;u(y); Du(y); : : : ; D`u(y)� = 0 in U; 1 � k � n; (10)	h (y;u(y); Du(y); : : : ; Dsu(y)) = 0 on S; 1 � h � �; (11)with weights sk; tj ; rh; 1 � j; k � n; 1 � h � �:Suppose also that Fk and 	h are analyti. If uj2 Cth+r0 (U [ S), wherer0 = maxh (0; 1 + rh) ; and if the variational equations (8) and (9) are elliptiand oerive at y = 0; then the systems (10) and (11) are respetively elliptiand oerive in a neighborhood (U [ S) \B (0; ") ; for some " > 0:
3 DualityTheorem 5 Let 
 � R 2 be a simply onneted open bounded set with Lipshitzboundary. Let f : R 2 ! [0;1) be a stritly onvex funtion of lass C1 �R 2�suh that 0 � f (�) � C (1 + j�jp) ; p > 1:Let u 2W 1;p (
) be a weak solution of the Dirihlet problem� div (rf (ru)) = 0 in 
;rf (ru) � � = 0 on � � �
;where � is a onneted, relatively losed subset of �
 with positive length. Thenthe problem � div (rg (rw)) = 0 in 
;w = 0 on �;where g (�) := f� ��?� ;admits a unique weak solution w 2W 1;q (
) ; 1p + 1q = 1; suh thatrw = (rf (ru))? :Proof. Consider the linear funtional� :W 1;p (
)! Lp �
; R 2�v 7! rv
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and the onvex funtionalsI :W 1;p (
)! f0;1g ; H : Lp �
; R 2�! [0;1)de�ned byI (v) := � 0 if v = u on �
 n �;1 otherwise, H (z) := Z
 f (z) dx:By the onvexity assumption of f it is lear that u is a solution of the mini-mization problem (P)infv2W 1;p(
);v=u on �
n�Z
 f (rv) dx = infv2W 1;p(
) [I (v) +H (�v)℄ :
The dual problem (P�) is given bysupz�2Lq(
;R2) [�I� (��z�)�H� (�z�)℄ :It is well-known that H� (z�) = Z
 f� (z�) dx;while I� (��z�) = supv2W 1;p(
) fh��z�; vi � I (v)g = supv2W 1;p(
);v=u on �
n� h��z�; vi= hz�;�ui+ suph2W 1;p(
);h=0 on �
n� hz�;�hi :Sine hz�;�hi = Z
 z� � rh dx = � Z
 h div z� dx+ Z� h z� � � dH1;where we have used the Divergene Theorem and the fat that h = 0 on �
 n�;we haveI� (��z�) = � hz�;�ui if div z� = 0 in 
 and z� � � = 0 on �;1 otherwise. :Therefore problem (P�) redues to

sup(� Z�
n� u z� � � dH1 � Z
 f� (�z�) dx : z� 2 Lq (div; 
) ; (12)div z� = 0 in 
 and z� � � = 0 on �g;
8



where Lq (div; 
) := �z� 2 Lq �
; R 2� : div z� 2 Lq (
)	 :Note that the normal trae z� � � is well-de�ned in Lq (div; 
) (see e.g. [27℄).Using the fat that in R 2 divergene-free vetor �elds are rotated gradients,namely using the hange of variablesz� = � (rw)? ; w = 0 on �we may now rewrite problem (P�) assup(Z�
n� ur�w dH1 � Z
 f� �(rw)?� dx : w 2W 1;q (
) ; and w = 0 on �) ;(13)where r� denotes the tangential gradient.By Theorem 2, withV :=W 1;p (
) ; Y = Lp �
; R 2� ;there exists a solution z� 2 Lq (div; 
) of the dual problem (12) withH (� (u)) +H� (�z�) + hz�;�ui = 0;that is Z
 (f (ru) + f� (�z�) + z� � ru) dx = 0:Sine, by Young's inequalityf (ru) + f� (�z�) + z� � ru � 0we dedue that f (ru) + f� (�z�) + z� � ru = 0L2 a.e. in 
; whih is equivalent to�z� = rf (ru)If we now onsider the funtion w 2 W 1;q (
) suh that z� = � (rw)? andw = 0 on �; it follows that rw = (rf (ru))? ;and, sine w is a solution of (13), we have� div (rg (rw)) = 0 in 
;w = 0 on �;where g (�) := f� ��?� :Note that the funtion g is still of lass C1 in its domain (see e.g. [38℄). Thisonludes the proof. 9



4 Free disontinuity problemsConsider the funtionalF (u) := Z
 f (ru) dx1 dx2 + �H1 (S (u) \ 
)de�ned on the spae SBV (
) of speial funtions of bounded variation (see [6℄for more details). Here 
 � R 2 is a bounded open set and f : R 2 ! [0;1) :In this setion we prove the following resultTheorem 6 Assume that f : R 2 ! [0;1) is a stritly onvex, analyti funtionsuh that 0 � f (�) � C (1 + j�jp) ; p > 1;for some onstant C > 0: Let u 2 SBV (
) be a loal minimizer of the funtionalF: Assume that there exists an open set A � 
 suh that S (u) \ A is a C2manifold whih divides A into two simply onneted omponents and that u isof lass C2 up to the boundary in A n S (u). Suppose also that��ru+��+ ��ru��� 6= 0 in S (u) \A: (14)Then S (u) \A is analyti.Proof. Fix a point P 2 S (u) \A suh that���ru+��+ ��ru���� (P ) 6= 0.Without loss of generality we may assume that P = (0; 0) ;� (0; 0) = (0; 1) ;and ru+ (0; 0) 6= (0; 0) .Let � := S (u) \A:From the loal minimality and from the regularity assumptions on u and � itfollows that u is a solution of the Dirihlet problem� div (rf (ru)) = 0 in A n �;rf (ru) � � = 0 on �:Moreover a simple variation argument shows thatf �ru+�� f �ru�� = K on �; (15)
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where K is the urvature.By Theorem 5 applied on eah onneted omponent, the problem� div (rg (rw)) = 0 in A n �;w = 0 on �; (16)where g (�) := f� ��?� ;admits a unique weak solution w 2W 1;q (A n �) ; 1p + 1q = 1; suh thatrw = (rf (ru))? : (17)Observe that sine f is stritly onvex and analyti rf is invertible and itsinverse is still analyti. Heneg (�) = f� ��?� = �? � (rf)�1 ��?�� f �(rf)�1 ��?��is still analyti and stritly onvex. Denote by A+ and A� the two onnetedomponents of A n S (u) and by w+ and w� the restrition of w in A+ and A�respetively. Note that w� 2 C2 �A�� by (17), and so (16) and (15) beomeg�1�1 �rw+�w+x1x1 + 2g�1�2 �rw+�w+x1x2 + g�2�2 �rw+�w+x2x2 = 0 in A+;(18)g�1�1 �rw��w�x1x1 + 2g�1�2 �rw��w�x1x2 + g�2�2 �rw��w�x2x2 = 0 in A�;(19)w+ = w� = 0; h �rw+�� h �rw�� = K on �; (20)where h (�) := f �(rf)�1 ��?�� :We onsider the transformationA+ ! U+(x1; x2) 7! (y1; y2) := �x1; w+ (x1; x2)� :We laim that it is loally invertible in a neighborhood of (0; 0) : Indeeddet� 1 w+x1 (0; 0)0 w+x2 (0; 0) � = w+x2 (0; 0) 6= 0:Write the inverse funtion as(y1; y2) 7! (x1; x2) =: (y1;  (y1; y2)) :
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Straightforward alulations yieldw+x1 = � y1 y2 ; w+x2 = 1 y2 ; (21)while w+x1x1 = � y1y1 y2 + 2 y1 2y2  y1y2 �  2y1 3y2  y2y2 ;w+x1x2 = � y1y2 2y2 +  y1 3y2  y2y2 ;w+x2x2 = � y2y2 3y2 :Note that sine w+ = w� = 0 on � we have that the tangential derivative ofw+ and w� are zero on � and sine � (0; 0) = (0; 1) it follows that w+x1 (0; 0) = 0and in turn  y1 (0; 0) = 0: (22)Hene (18) transforms intog�1�1 �� y1 y2 ; 1 y2 � � y1y1 y2 + 2 y1 2y2  y1y2 �  2y1 3y2  y2y2!+ 2g�1�2 �� y1 y2 ; 1 y2 ��� y1y2 2y2 +  y1 3y2  y2y2� (23)+ g�2�2 �� y1 y2 ; 1 y2 ��� y2y2 3y2 � = 0 in U+:Next we onsider the hange of variablesU+ ! A�(y1; y2) 7! (x1; x2) := (y1;  (y1; y2)� Cy2) ;with C > 0 to be hosen.We laim that for C suÆiently large this transformation is loally invertiblein a neighborhood of (0; 0) : Indeeddet� 1 0 y1 (0; 0)  y2 (0; 0)� C � =  y2 (0; 0)� C < 0for C >  y2 (0; 0) : Let� (y1; y2) := w� (y1;  (y1; y2)� Cy2) (24)and A (y1; y2) :=  y2 (y1; y2)� C:12



We have w�x1 = �y1 �  y1�y2A ; w�x2 = �y2A ; (25)whilew�x1x1 = ��y2A  y1y1 + 2�y2 y1A2  y1y2 + 2�y2 2y1A3  y2y2 + 1� 2  y1A �  2y1A2 !!�y1y1� 2  y1A �  2y1A2 !�y1y2 �  2y1A2 �y2y2 ;w�x1x2 = � 1A �  y1A2 ��y1y2 + �y2 y1A3  y2y2 � �y2A2  y1y2 ;w�x2x2 = �y2y2A2 � �y2A3  y2y2 :Hene (19) redues tog�1�1 ��y1 �  y1�y2A ; �y2A �"��y2A  y1y1 + 2�y2 y1A2  y1y2 + 2�y2 2y1A3  y2y2
+ 1� 2  y1A �  2y1A2 !!�y1y1 � 2  y1A �  2y1A2 !�y1y2 �  2y1A2 �y2y2# (26)+ 2g�1�2 ��y1 �  y1�y2A ; �y2A ��� 1A �  y1A2 ��y1y2 + �y2 y1A3  y2y2 � �y2A2  y1y2�+ g�2�2 ��y1 �  y1�y2A ; �y2A ���y2y2A2 � �y2A3  y2y2� = 0:Set � := 1A (0; 0) ; � := w+x2 (0; 0) ;  := w�x2 (0; 0) ;a := g�1�1 (0; �) ; b := g�1�2 (0; �) ;  := g�2�2 (0; �)and note that by the strit onvexity ondition we haveb2 � a < 0 (27)To apply Theorem 4 we hoose s1 = s2 := 0 and t1 = t2 := 2: Then the prinipalparts of the linearized equations of (23) and (26) at (0; 0) are given respetivelyby �� �a y1y1 + 2b� y1y2 + �2 y2y2�and a ��y1y1 �  y1y1�+ 2b� ��y1y2 �  y1y2�+ �2 ��y2y2 �  y2y2� :
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To hek ondition (5) for eah � 2 R 2 n f(0; 0)g ; we omputedet �L0kj((0; 0) ; �)�= det� �� �a�21 + 2b��1�2 + �2�22� 0� �a�21 + 2b��1�2 + �2�22� a�21 + 2b��1�2 + �2�22 �= �� �a�21 + 2b��1�2 + �2�22� �a�21 + 2b��1�2 + �2�22�whih di�ers from zero by ondition (27).Next for eah pair of independent vetors �; � 2 R 2 the polynomialp(z) = detL0kj((0; 0) ; � + z�)= �� ha (�1 + z�1)2 + 2b� (�1 + z�1) (�2 + z�2) + �2 (�2 + z�2)2i� ha (�1 + z�1)2 + 2b� (�1 + z�1) (�2 + z�2) + �2 (�2 + z�2)2iwhih has roots
z1;2 := �a�1�1 � b��1�2 � b��1�2 � �2�2�2 �q(�1�2 � �1�2)2 �2 (b2 � a)2b��1�2 + a�21 + �2�22 ;
z3;4 := �a�1�1 � b��1�2 � b��2�1 � �2�2�2 +q(�1�2 � �2�1)2 �2 (b2 � a)2b��1�2 + a�21 + �2�22where the denominator does not vanish sine � 6= 0 and by (27): Sine �; � 2 R 2are independent vetors and again by (27) we have that(�1�2 � �1�2)2 �2 �b2 � a� < 0;(�1�2 � �2�1)2 �2 �b2 � a� < 0;and hene p(z) has exatly 2 = 12 deg p roots with positive imaginary part and2 = 12 deg p roots with negative imaginary part.Thus we have shown that the system is ellipti. We now show the oerivityof the boundary onditions. Sine the urve � is parametrized by x2 =  (y1; 0)near (0; 0) ; it is easy to see that the urvature redues toK =  y1y1 (y1; 0)�1 +  2y1 (y1; 0)�3=2 :Hene, using (21) and (21), ondition (20) redues toh�� y1 (y1; 0) y2 (y1; 0) ; 1 y2 (y1; 0)�� h��y1 (y1; 0)�  y1 (y1; 0)�y2 (y1; 0)A (y1; 0) ; �y2 (y1; 0)A (y1; 0) �(28)=  y1y1 (y1; 0)�1 +  2y1 (y1; 0)�3=2 :14



Moreover, sine w� = 0 on �; we have that � (y1; 0) = w� (y1;  (y1; 0)) = 0 onS � fy2 = 0g and in turn �y1y1 (y1; 0) = 0 on S: (29)Choosing r1 = r2 := 0 the prinipal part of the linearized equations of (28).and(29) at (0; 0) beome respetively y1y1 (y1; 0)and �y1y1 (y1; 0) :To hek oerivity we must show that the only bounded solutions of the ho-mogeneous boundary value problema y1y1 + 2b� y1y2 + �2 y2y2 = 0a ��y1y1 �  y1y1�+ 2b� ��y1y2 �  y1y2�+ �2 ��y2y2 �  y2y2� = 0 on R 2+(30) y1y1 (y1; 0) = 0�y1y1 (y1; 0) = 0 on R (31)of the form� (y1; y2) ; � (y1; y2)� = �ei�y1'1(y2 ); ei�y1'2(y2 )� ; � 2 Rare onstant. If � = 0 then from (30) it follows that '001 = '002 = 0 and so '1 and'2 must be onstant (in order to bounded). If � 6= 0 then from (31) we have'1(0) = 0 and from the �rst equation in (30)�a�2'1 + 2b�i�'01 + �2'001 = 0:The general solution is
'1 (y2) = 1 exp"y2 �ib� + �pa� b2� !#� 1 exp"y2 �ib� � �pa� b2� !#
whih is bounded only if 1 = 0: Hene the seond equation in (30) redues toa�y1y1 + 2b��y1y2 + �2�y2y2 = 0and thus the same reasoning shows that '2 must be zero.Thus all the hypotheses of Theorem 4 are satis�ed and therefore we mayapply Theorem 3 to onlude that � and  are analyti. Sine the urve � isparametrized by x2 =  (y1; 0) near (0; 0) the proof is onluded.
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Remark 7 (i) The same tehniques may also be applied to more general fun-tionals of the formF (u) := Z
 f (x;ru) dx1 dx2 + ZS(u)\
 � (x; �) dH1:We leave the details to the interested reader. However it is not lear how toadapt the proof to inlude funtionals of the typeF (u) := Z
 f (x; u;ru) dx1 dx2 + ZS(u)\
 � (x; [u℄ ; �) dH1:(ii) If in plae of (14) we assume that��ru+�� ; ��ru��� 6= 0 in S (u) \A;then Theorem 6 ontinues to hold if we assume that f is analyti in R 2 n f0g :This last ondition is satis�ed in partiular byf (�) := 1p j�jp ; p > 1:As a orollary we may now prove Theorem 1.Proof of Theorem 1. By the results in [6℄ we may assume that S (u) \ A isa C1 onneted urve. Fix a point (x1; x2) 2 S (u) \A suh thateither �u+�� (x1; x2) 6= 0 or �u��� (x1; x2) 6= 0: (32)By Theorem 6 it follows that S (u)\A is analyti in a neighborhood of (x1; x2) :Thus to onlude the proof it remains to show that the setE := �(x1; x2) 2 S (u) \A : �u+�� (x1; x2) = �u��� (x1; x2) = 0�onsists of isolated points. Indeed �x (x1; x2) 2 E and let B ((x1; x2) ; ") � Abe so small that S (u)\B ((x1; x2) ; ") divides B ((x1; x2) ; ") into two onnetedopen regions B+ ((x1; x2) ; ") and B� ((x1; x2) ; ") : Let � : B+ ((x1; x2) ; ") !D+ := � (B+ ((x1; x2) ; ")) be an (invertible) onformal mapping of lass C1up to the boundary suh thatD0 := � (S (u) \B ((x1; x2) ; ")) � �(y1; y2) 2 R 2 : y2 = 0	 ;D+ � �(y1; y2) 2 R 2 : y2 > 0	 ;(see e.g. Theorem 3.6 in [37℄). The funtion v+ (y1; y2) := u ���1 (y1; y2)� isharmoni inD+; with �v+�y2 (y1; y2) = 0 onD0: LetD� := �(y1; y2) 2 R 2 : (y1;�y2) 2 D+	and extend v+ to D� by reetion. It is lear that v+ is harmoni in D =D+ [D� [D0 and so its ritial points are isolated. This implies that (x1; x2)is isolated in E and ompletes the proof.16
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