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1 Introduction

Well established theories in the Calculus of Variations and in Partial Differential
Equations have been challenged in recent years by new phenomena in solid
physics and in materials sciences which demand innovative approaches and new
ideas. In this paper we address the study of the Jacobian determinant det Du
of fields u : 2 — R™ outside the traditional regularity space W1 (2; R?).

The primary motivation that led to this subject is threefold:

— applications of high-temperature superconducting magnetic materials have
had a tremendous impact in the development of a whole mathematical theory
based on Ginzburg-Landau model, and where vorticity plays a very important
role (see [15]). As pointed out by Jerrard and Soner in [40], the formation
of vortices is accompanied by highly localized defectiveness at points or along
rays, and the ability to extend and interpret the mechanism of change of volume
dictated by the Jacobian to the range p € (n — 1,n) may shed some light into
this theory;

— the formation of (radially symmetric) holes in rubber-like (nonlinear) elas-
tic materials is studied in the theory of cavitation, and its advance is heavily
hinged on the characterization of the distributional Jacobian determinant (see
(1); see also (39) below) for certain ranges of p < n. This issue has attracted
the attention of several mathematical researchers for the past twenty years, and
although some progress has been made, pioneered by John Ball [4], [5], and
followed by James and Spector [39], Miiller and Spector [53], Sivaloganathan
[57], by Marcellini [46], using an alternative (and closer to the point of view of
the present paper) approach, and many others, we believe that we have only
scratched the surface of a very rich field in the Calculus of Variations virtually
unexplored until recently;

— the relevance of the distributional Jacobian determinant in the study of
harmonic mappings with singularities (see [9]), and in the study of density
results of smooth functions in H'(B(0,1);5?), where B(0,1) C R3. Bethuel [6]
showed that this density result holds for u € H*(B(0,1);5?) if det Du = 0.

To fix the notations, we consider a vector-valued map v : @ C R* — R",
defined on an open set Q of R, for some n > 2. We denote by Du = Du (x)

the gradient of u at © = (x1,T2,... ,2Zn) € Q, i.e., the n x n matrix (Jacobian
matriz) of the partial derivatives of u = (u*,u?,... ,u™) and by
0 (ul,u?,...,u”
det Du (z) := (w0, u7)
6(2[31,.’132,... ,xn)

its determinant (Jacobian determinant).



If u € Wh™ (Q; R?), since |det Du (z)| < n~™/?|Du (x)|", then the Jacobian
determinant det Du is a function of class L' (£; R"™). In this case the set function

ECQ— m(E) ::/detDu(a:) dx
E

is a measure in Q, whose total variation |m| in Q is given by
|m]| () ::/ |det Du (z)| dz.
Q

When u ¢ W™ (Q; R*) it may still be possible to consider the distributional
Jacobian determinant

n - L o 2,.”’ n
Det Du := Z(_l)z+ Bawi (u e (u u”) 7%)) (1)

i=1 <5 L1, Tig 1 - - -

(or any other permutation in the set {u',u? ... ,u"}, with the sign of the
permutation), which coincides almost everywhere with the pointwise Jacobian
determinant det Du if u € W™ (; R"), but which may be different otherwise.
The definition of the distributional Jacobian determinant Det Du is based on
integration by parts of the formal expression in (1), after multiplication by a test
function. To render the definition mathematically precise it is then necessary
to make some assumptions on u. We may assume that u! (or, for symmetry
reasons, also the full vector u) is bounded and the gradient Du is of class L™?
(or, more generally, the (n — 1) x n matrix (Du?,... ,Du") is of class L"),
ie., u € L® (QR*) n WHr=1 (Q; R?). Another possibility is to require that
u € WbHP (Q; R") for some p > n?/(n + 1) (the strict inequality is useful for
compactness reasons); in fact, in this case by the Sobolev Imbedding Theorem
we L™ (©;R*) and the products in (1) are well defined in L' because 1/n? +
(n—=1)-(n+1)/n? = 1. Local summability assumptions are also allowed. In
this paper we assume that u € LS (;R*) N WH? (Q; R™) for some p > n — 1.

Since the fundamental work of Morrey [48], who treated weak continuity
properties of Det Du in (1) (see also Reshetnyak [56]), Det Du has played a
pivotal role in the calculus of variations, in addition to its well established one
in geometry. Ball pointed out in [4] some relevant applications of the Jacobian
determinant to nonlinear elasticity, and sharp weak continuity properties of the
Jacobian has been investigated in a series of papers by Miiller, starting with
[49]. More detailed description of the state of the art in this subject may be
found in Section 4.

In recent years, several attempts have been made to establish relations be-
tween the distribution Det Du and the “total variation” of the Jacobian de-
terminant det Du (z). One possible definition is based on the following limit
formula. Given u € L (Q;R?) N WP (Q;R?) for some p > n — 1, the total

loc

variation TV (u,Q) of the Jacobian determinant is defined by

TV (u,Q) = inf {lim inf / |det Duy, ()| dz : (2)
Q

h—+o0



up, = u weakly in WP (5 R™), up € WH™ (Q;R™)}.

Note that, a priori, definition (2) may depend on p and, more precisely, we should
use the notation TV, (u, ) instead of TV (u,). However, the representation
formulas for TV (u,Q) given in this paper turn out to be independent of p,
and, surprisingly, it can be shown that, for certain classes of functions u, weak
convergence in WP ({; R") may be equivalently replaced by strong convergence
in WHP (;R") (see (26)). Similar definitions may be proposed under other
summapbility assumptions on u.

This approach has been considered by Marcellini [45], Giaquinta, Modica
and Souc&ek [35], [36], Fonseca and Marcellini [27], Bouchitté, Fonseca and Maly
[8], among others. In particular, Marcellini [45] and Fonseca and Marcellini
[27] noticed that the total variation of the Jacobian determinant may have a
nonzero singular part, while Bouchitté, Fonseca and Maly [8] proved that this
singular part is a measure. Giaquinta, Modica and Souéek [35], [36] found that
the lower limit in (2) can be different from the total variation of the measure
Det Du. More comments and references are given in Section 4.

Notice that it has been first noted by Maly [41] and by Giaquinta, Mod-
ica and Soucek [35] (see also Jerrard and Soner [40]) that, for some maps
u € L®(Q;R*) n WHP (Q; R*) with p € (n — 1,n), it may happen that the
distribution Det Du is identically equal to zero while the total variation of the
Jacobian determinant is different from zero. Also, when Det Du is a measure,
it turns out that, in general, the total variation of the Jacobian determinant
det Du (x) is not the total variation of the measure Det Du. Some precise (from
a quantitative point of view) examples illustrating this phenomenon are pro-
posed in Section 10. In Section 9 we compute the total variation of a class of
singular maps u : @ — S"! C R", playing a central role in the analysis of
Jerrard and Soner [40], defined by

 w(@) —w()
) = e —w () ®)

where w : 1 — R" is a locally Lipschitz-continuous map, classically differen-
tiable at £ = 0 and such that det Dw (0) # 0. We find that the total variation
of the Jacobian determinant of u in Q (an open set of R" containing the origin)
is equal to the measure w, of the unit ball.

The aim of this paper is to give an explicit characterization of the total
variation TV (u, Q) of the Jacobian determinant det Du (z), defined in (2), for
some classes of functions u € L (G R") N WhH? (Q;R*) with p > n — 1, in
particular for those u which are locally Lipschitz-continuous away from a given
point zo € Q (and thus with the Jacobian determinant det Du possibly singular
only at zg).

Statements of the main results are given in the following Section 2. In Section
3 we relate the notion of total variation of the Jacobian determinant to the
topological degree. A relevant geometrical interpretation is given by Corollary

16 of Section 3. In particular, denoting by B; the unit ball of R" and by



§n~1 .= 9B, its boundary, we prove that, if v : S»! — S" ! is a map of
class C* onto S™ 1, locally invertible with local inverse of class C' at any point
of S"7!, and if u : B1\ {0} — S™! is defined by u (z) := v (‘”;—|>, then the
total variation T'V (u, By) of the Jacobian determinant of u may be expressed
in terms of the topological degree of the maps v and v, where v : By — Bj is
any Lipschitz-continuous extension of v to the unit ball B;. Precisely,

TV (u, B1) = wy, |degv| = wy, |deg ] . 4)

Note that formula (4) does not hold, in general, if the map v : S*~! — R” takes
values on a set v (S" 1) not diffeomorphic to S* ! (see Theorem 4 and the
examples of Section 10).

Section 4 is dedicated to explaining how the study of the total variation
TV (u, Q) fits squarely within the framework of relaxzation problems with non-
standard growth conditions. In Section 5 we present a thorough study of the
2—d case, which plays a very special role. In fact, in two dimensions we are able
to perform a deeper analysis and to find more general assumptions which allow
us to characterize fully the total variation TV (u, ). In particular, it is possible
to identify TV (u, Q) of maps u : By C R? — T, with values on a set T’ which is
the boundary of a simply connected domain D C R2, starshaped with respect to
a point ¢ in the interior of D (for example, when T' = S is the boundary of the
unit ball B;). We emphasize Lemma 23, which we call “the umbrella lemma”,
and which plays a crucial role in our argument, as explained in Section 5.

In Section 7 we move on to the general n—dimensional framework, and in
Section 8 we apply the results thus obtained to the study of relaxation of poly-
convex functionals. Indeed, we provide an explicit representation formula for
the related energy associated to the polyconvex integral functional

F(u,Q) = / g (M (Du)) de, (5)

where g : RV — [0,+00) is a conver function, M (Du) is the map with values
inRY, N=37, (;‘)2, defined by

M (Du) := (Du,adjs Du, ... ,adj,_1Du,det Du) ,

and where adj; Du denotes, for every j = 2,... ,n — 1, the matrix of all minors
j % j of Du.

Finally, in Section 9 we study in detail TV (u,Q) when v is as in (3). Ad-
ditional 2—dimensional and 3—dimensional examples are proposed in Section
10. The special, but representative, case analyzed in Section 6 concerns maps
u: By CR — v =+tU~y", were v is the “eight” curve, i.e., the union of
the two tangent circles y* = {(;vl,:vz) ER: (z1 F1)° + (12)° = 1} in R2. In
particular, we show (see Theorem 4 and Section 10) that in general formula (4),
which relates the total variation TV (u, Q) of the Jacobian determinant with
the topological degree, does not hold if the map v : B; C R?> — v takes values
on the “eight” curve 7.



2 Statement of the main results

In this section we state several representation formulas for the total variation
TV (u, Q) of the Jacobian determinant, defined in (2). We consider first the
2—d case in detail, and in the second part of this section we describe the general
n—dimensional case.

The reason why we focus specifically on the case n = 2 is twofold: the
assumptions needed are more general than in the case n > 2; we believe that
it is easier to follow the main ideas of this paper, by dissociating the technical
aspects from the methods.

In order to fix the notations, here we consider zg = 0 and Q C R? is an
open set containing the origin. With an obvious abuse of notation, we write
u(w) = u($17$2) = u(gaﬁ)a where (paﬁ)7 020,0< v < 2m, are the pola,r
coordinates in R*. We also denote by D,u the tangential derivative of u (in the
7 = (—sin¥, cos¥) direction), which is related to the (vector-valued) derivative
uy by the formula

Ou (0 cos ¥, gsin )
o= a0

= 0[—uy, sSinVY + uy, cos¥] = pD,u.

We denote by v : [0,27] — I’ C R? a Lipschitz-continuous map, with v (0) =
v (27), with components v (9) = (v (¢9),v? (), and with values on a curve
T D v ([0,2x]). We assume that I' can be parametrized in the following way

F={&+7r ) (cost,sind) : ¥ € [0,2n]}, (6)

where 7 (9) is a piecewise C'-function such that r (0) = r (27), and r () > 7o
for every ¥ € [0, 27] and for some r9 > 0. Condition (6) reduces to saying that
I is the boundary of a domain

D :={{+o(costsind): ¥ €[0,2n], 0 <o <7 (F)}, (7

starshaped with respect to a point £ in the interior of D. In Section 5 we prove
the following result.

Theorem 1 (General result in 2—d) Letu be a function of class WP (Q; R?)N
I/Vlf)’c00 (2\ {0}; R?) for somep € (1,2). Letv:[0,2n] = T, v (J) = (v (¥),0% (9)),

¥ € [0,2x], be a Lipschitz-continuous map, with v (0) = v (2m) and T as in (6),
and such that

i [lu (¢,7) = ()l (0,2m):82) = 0- ()

If the tangential derivative D,;u of u satisfies the bound

1 [ 2
sup 2_p/ |D;ul” dz = sup 2_p/ rt pdr/ lug (r,9)|P d9 < My (9)
0>0 0 B 0 0

0>0 O

e



for a positive constant My, then the total variation of u is given by

TV (u,Q) = /Q |det Du (z)| dz + %‘ | ) {v' (9) v () —v? (F) vy (¥)} dI| .

Note that, by (8), there exists 7 > 0 such that B, C Q and u € L*® (B,; R?).

Therefore in the statement of Theorem 1 we have in fact u € L2, (Q;R?) N

Wh? (Q; RN, (92\ {0} ; R?) for some p € (1,2). Moreover, the assumption
of Lipschitz-continuous of v can be replaced by the weaker assumption that

vewhp ((0, 2m) ;Rz); however we shall not discuss this latter case in details.

Consider the particular case in which the map u = u (9,%9) does not depend
on g, that is u = u (¥). Then, as a function of ¥, u = u (9) : [0,27] = R? is a
Lipschitz-continuous map and u (0) = u (27). Considered as a function of two
variables, i.e., u : Q = B; — R? constant with respect to g € (0,1], it turns out
that u € L™ (Q;R?) N W (R2) 0 W, (2 {0}; R?) for every p € [1,2),
but u ¢ W2 (Q;R?) unless u () is constant.

From the previous result, with u = v, we immediately obtain the following
consequence.

Corollary 2 (Radially independent maps in 2—d) LetT be as in (6), and
let u=v:[0,2n] = T be a Lipschitz-continuous map such that v (0) = v (27).
Then det Du(z) = 0 for almost every x € R2 and the total variation of the
Jacobian determinant is given by

2m
{v! (9) v (9) —v* (9) v5 (9)} B . (10)

1
0

We observe that formula (10) has a relevant geometrical meaning; in fact
the right hand side represents the “winding number” of the curve v = (vl, v2).
See Section 3 for a further discussion on the geometric interpretation of (10).

With the aim to compare the previous result with the n—dimensional results
given below, we present the following equivalent formulation of Corollary 2.

Corollary 3 (Analytic interpretation in 2—d) Let T be as in (6), and let
v :[0,2r] = T be a Lipschitz-continuous map such that v (0) = v(2w). Then
the total variation TV (u,Q) is given by

TV (u,Q) =

/ det Du (x) dz| , (11)
By

where U : B = R? is any Lipschitz-continuous extension of v to By.

Note the surprising fact that the integral in the right hand side of (11) (and
in (10) as well) appears with the absolute value outside the integral sign, and
not inside!



Another relevant 2—dimensional result is related to the “eight” curve in R2,
i.e., to the union 7y of the two circles y*,v~, of radius 1 with centers at (1,0)
and at (—1,0) respectively. Some explicit examples related to the “eight” curve
are given in Section 10. Below we present two estimates, an upper bound and a
lower bound, which will allow us to study the examples in Section 10. However,
we stress the fact that some cases related to the “eight” curve remain unsolved
(see Remark 5 below). The following Theorem is proved in Section 6.

Theorem 4 (The “eight” curve) Lety=~"U~y~ CR? be the union of the

two circles of radius 1 with centers at (1,0) and at (—1,0). Letwv : [0,27] — 7 be

a Lipschitz-continuous curve, with parametric representation v (9) = (v' (9) ,v% (9)),
¥ € [0,2n], such that v(0) = v(2m). Let (Ij);cy be a sequence of disjoint
open intervals (possibly empty) of [0,2w] such that the image v (I;) is con-
tained either in v* or in v, and v (9) = (0,0) when ¥ ¢ UjenI;. Then,
with u (z) := v (z/ |z|), the following upper estimate holds

1
JEN

[ ' @%@ - ) ) a0

J

. Q2

For the lower estimate, we denote by I;r, with the + sign, any previous interval

I; such that v (I;) C ", and by I,” any previous interval Iy such that v (I) C
~~. Then we also have

1
TV (u,By) > 3 Z/ﬁ {v'vf —v*vy} dI| +

JEN" S

Z /1— {v'vf — vy} dY

keN

(13)

Remark 5 If the curve v : [0,27] — v = vy U~~ admits only two intervals I;
and I, where respectively v (I;) C v+, v (I;) C v, then the above estimates
for TV (u,B1) are in fact equalities. The same happens if the intervals are
three, say It, I, and IJ; in fact this case can be reduced to the previous one
by periodicity. If the intervals are four, say It, I, I7 and I, , then we may
have a gap between the lower bound and the upper bound stated in Theorem 4,
unless the integral of viv3 — v2v} has the same sign, respectively in It , I and
in I, I, . These considerations are utilized to study some of the examples of
Section 10.

Moving to the n—dimensional case, we first establish by Theorem 6 a general
inequality between the total variation of the distributional determinant Det Du
(see (1)), that we denote by | Det Du|(f2), and the total variation TV (u, Q) if
the Jacobian, defined in (2). Note that, in the first half of the statement of
the next theorem, we do not assume that u € W,->° (Q\ {0} ; R*), while in the

loc

second half, we require that u € W,2™ (Q\ {0} ; R).



Theorem 6 (Comparison between | Det Du|(2) and TV (u,Q)) Letp > n—
1 and let u € L® (Q;RY) N WP (Q;R™). If TV (u,Q) < +oo, then TV (u,-)
and Det Du are finite Radon measures, det Du € L' (Q), and

TV(u,A)z/A|detDu(:c)|dx+)\s (4) (14)

Det Du (A) = / det Du (z) dz + ps (A) , (15)
A

for every open set A C Q, where s, ps, are finite Radon measures, singular

with respect to the Lebesgue measure L™, and |us| < Ag, i.e., for every open set
ACQ,

| Det Du| (A) < TV (u, A) . (16)

If, in addition, u € W,-" (Q\ {0}; R"), then A\, = Mo, ps = pdo, for some

loc

constants A > 0, p € R, with |u| < A, where & is the Dirac mass at the origin.

The proof of Theorem 6 is presented at the end of Section 4. We note
that one of the main contributions of this paper is the identification of the
defect constants X > 0, p € R. However, the arguments used in this work are
self contained and independent of the tools and thecniques needed to establish
Theorem 6.

Let us denote by B, the ball in R", n > 2, with center in 0 and radius r > 0.
In particular, By is the ball of radius r = 1 and 8B; = S™ ! is its boundary.

We call the attention of the reader to the fact that, in dealing with the
general n—dimensional case, we denote by v a map from S™~! into R?, while in
2—d v = v (¥) does not denote a map from S! into R?, but instead a periodic
function from [0, 27] into R?. Therefore, if ¥ is the corresponding map from S*
into R?, then we have v (¥) = v (cos¥, sin¥).

Let wg € S™! be fixed. Foreveryj € {1,2,... ,n—1}let 75 : S" 71\ {wo} —
0B by a vector field of class C' such that, for every z € S™~!\ {wo}, the set
of vectors {1 (W), 72 (W),...,Th—1 (w)} is an orthonormal basis for the tangent
plane to the surface B at the point w.

The following theorem provides a general representation formula for the total
variation of the distributional determinant |Det Du|(2). Note that, under the
assumption u € WI})’COO (Q\ {0}; R™), by formula (19) we give a representation of
the total variation of the singular measure s in (14).

Theorem 7 (Total variation of the distributional determinant) Letn >
2 and let Q be an open set containing the origin. Let u € WP (Q;R") N
Wik (Q\ {0};R*) for some p € (n—1,n). Letwv : 8By = S*! - R,

loc



v e Wb (§PLRY), v = (v!,0%,... ,v"), be a Lipschitz-continuous map such
that

lim+ max {|u (ow) — v (w)|: we S"1} =0. (17)

0—0

Let us assume that

sup

. / \Douf’ dz < M, (18)
>0 0" JB,

for a positive constant My. If det Du € L' () then Det Du is a Radon measure
and its the total variation |Det Du| is given by

Det Du| () = / \det Du ()| dz (19)
Q
1 " i1 o O et et ) B
+— 1)yt (w w) dH™ 1.
n /331#21( ) ( ) 6(71,T2,... 7’7’7,171) ( )

Moreover, if we denote by u : By — R™ any Lipschitz-continuous extension of
v to By, then

Det Du| () = / \det Du (z)| dz + | [ det Dii(z) da| . (20)
Q

By

By assumption (17) there exists r > 0 such that u € L*® (B,;R?). Thus, in
the statement of Theorem 7 (and in Theorem 10 below), we actually have that
u is a function of class L2, (Q; R?) NWL? (Q; R*) N W™ (Q\ {0} ; R?) for some
p€ (n—1,n).

Remark 8 A simple calculation shows that in 2—d the last term on the right
hand side of (19) reduces to

1

LTt o @) - 0o ) o

0

where v : [0,27] — R? is the asymptotic limit map in (8). Indeed, denoting by
v : 8! — R? the map related to v through the condition v () := ¥ (cosd,sin 1),
we have

dvt oo vt

9= 5o (—sind) + 525

cos, 1=1,2,

and, since the unit tangent vector T : [0,2w] — OBy can be represented by
7(0) = (—sind, cos ), we obtain
dvt  Ovt

—_— = =1, 2.
W oar’ T

10



With the notation w = (w—l, “”—2) = (cosd,sind) € OBy = S*, we finally have

2] [z]

:ﬂ {v! (9)v3 (9) —v* (9) vy (V) } dI = /:W {@%—f —@2%—21} dd

2
i+l g A0 1
= [, DU @ G a

Therefore (19) in 2—d becomes

2m
|Det Dul (Q / |det Du ()| dz + = 5 ‘ | {v'vj — vy} dY|,

and the conclusion of Theorem 1 now can be restated in the form

TV (u,Q) = |Det Du| () .

Remark 9 In the case of the “eight” curve studied by Theorem 4, with v :
[0,27r] > vy =7t U~y~ CR? and u (z) = v (z/|z|), we have

/ {v'vj —v?vy} AV
kEN
’ {v' () v () —v* () vy (9)} dﬁ‘ = |Det Du| (B1) . (21)

TV (u,B1) > %{ / {v'vy —v?vy} dI| +
JEN

1
>

0

Therefore, as in the general case (see Theorem 6 and (16) in particular), TV (u, By) >
|Det Du| (By). Moreover, in view of the inequalities in (21), we can easily find

an example such that the strict inequality TV (u, B1) > |Det Du| (B;) holds. See
Section 10.

Next we state the main result for the n—d case, analogous to Theorem 1.
The proof of the theorem may be found in Section 7.

Theorem 10 (General result in n—d) Let n > 2 and let Q be an open set
containing the origin. Let u € W1P (Q; R") N Wlf)’coo (Q\ {0} ;R™) for some p €
(n—1,n) and let v € WH> (S, R") satisfying (17) and (18). If det Du ¢
L' (Q) then TV (u,Q) = +oc. If det Du € L' (), then the total variation of
the distributional determinant |Det Du|(Q) is given by (19) and TV (u,Q) >
|Det Du| (2). Moreover, if the quantity

n i1 0 (vl v et em)
_1 +1 /Uz L] L] 9 ) 3 22
Z( ) O(T1,72,- - ,Tn—1) (22)

i=1

has constant sign H" 1 —almost everywhere on 8By, then

TV (u,Q) = |Det Dul () . (23)

11



In Section 9 we apply Theorem 10 to calculate explicitly the total variation
of the singular map u» : Q\ {0} - R*, u(z) = %, where w is a map
differentiable at = = 0, with det Dw (0) # 0, to obtain TV (u, Q) = |B1| = wy,.

Remark 11 We conjecture that formula (23) holds independently of the sign
condition (22) for a certain of subclass of mappings u with asymptotic limit v
at x = 0, in particular if v : S™ 1 — R” takes values in S?"'. Theorem 1
above asserts that this conjecture is true in the 2—dimensional case, and when
v (Sl) is the set T in (6), boundary of a starshaped set. With the Example 48
we propose a 3—d case where the conjecture is also true. However, if v (S”’l)
is not diffeomorphic to S"', as in the case of the “eight” curve considered in
Theorem 4 (see also the examples of Section 10), then the representation formula
for TV (v, By) should take into account the topology of v (S™~1).

As further applications of Theorem 10, now we consider radially independent
maps u : Q@ — R”, defined through a Lipschitz-continuous map v : S*~! — R?
by the position

u(z) = v (%) . VzeB\{0}.

Clearly u € W' (Q;R*) N W,o> (Q\ {0}; R") for every p € [1,n), but u ¢
WL (Q;R?) unless v is a constant function. We obtain immediately from

Theorem 10 the following result.

Corollary 12 (Radially independent maps) Let v : 0B = S* ! - R,
v = (vl,vz,... ,v"), be a Lipschitz-continuous map. For every open set )
containing the origin we consider the map u : @ — R", defined by u(z) =
v(z/|z]) for x € Q\{0}. For every p € (n—1,n) the total variation of the
Jacobian of u is given by

o (vt ... vt vt o)

n Z+1 Z ...
/3 Z(_l) v (w) 8(7’1,7’2,... ,Tnfl)

Bi =1

TV (u,9) :% (w) dH™1] |

(24)

provided the quantity (22) has constant sign H" 1 —almost everywhere on OB .

The following result is similarly to Corollary 3, valid in the 2—d case.

Corollary 13 (Analytic interpretation in n—d) Let v : S 1 — R" be a
Lipschitz-continuous map, let Q be an open set containing the origin, and let
u: Q= R™ be defined by u (z) := v (z/|z|) for x € Q\ {0}. Denote by u : B —
R™ the Lipschitz-continuous extension of v to By given by 4 (0) =0 and

i(z) = |z| v (ls%) . VzeB\{0}.
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If the Jacobian det D4 (z) has constant sign H™ ' —almost everywhere on By,
then
TV (u,Q) =

det D@ (z) dx| . (25)

B;

Remark 14 Let us assume that v : S* 1 — S 1 is a map of class C* onto
S™=1 locally invertible with C' local inverse at any point of S*~1. Ifu is defined
as before by 4 (z) = |z| - v (x/|z|), then also & : By — By is a map of class C*
and it is locally invertible with C' local inverse at any point of Bi\ {0}. Then
the assumption of Corollary 13 is satisfied. Indeed, det Du (z) # 0 for every
xz € B1\ {0} and, by continuity, det Du (x) has constant sign in B;\ {0}. We
also notice that, by (101) of Lemma 39, when n (t) =t we have

det Dl (z) = i(_l)iﬂ Vi (%) 9 (v,... ,vil,viﬂ,..). ;o) ( T ) ’

im1 |l’ 6(7‘1,7‘2,...,7'",1 m

therefore the sign assumption in Corollary 13 is equivalent to the sign assump-
tion of Theorem 10.

A final remark about the definition (2) of the total variation TV (u,Q) of
the Jacobian determinant det Du (z). As before, consider u € L (Q;R™) N
WbP (Q;R*) for some p > n — 1. The definition in (2) of TV (u, () is based on
the convergence of a generic sequence {up}, ey C W™ (€;R") to w in the weak
topology of WP (Q; R"). Instead, we could consider the strong norm topology
and give the following definition of TV*® (u, ):

TV (u,Q):inf{liminf / \det Dup, ()| de : (26)
Q

h—+o0

up, — u strongly in Wh? (Q; R") , up, € WH™ (Q;R™)}.
Clearly we have
TV (u,Q) <TV® (4,9Q), Yue L®(Q;R)NWHP (Q;R") . (27)

However it is interesting, and somewhat surprising, to observe that Theorems
1, 4 and 10 (as well as Corollaries 2 and 12) still hold if we replace TV (u, )
by TV? (u,). In particular, under the assumptions of Theorems 1 and 10 we
have indeed

TV (u, Q) =TV? (u,Q) , (28)

for every open set ) C R", and for every u € L*™ (;R*) N WP (Q; R*) with
p>n-—1.
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3 Geometrical interpretation

In this section we give a geometrical interpretation of the results stated in Sec-
tion 2, by means of the notion of topological degree of maps between manifolds.

We recall that if w : @ — R" is a Lipschitz-continuous map, then the
topological degree of the map w at a point y € R™ is

deg (w, Q,y) := Z sign (det Dw (z)) ,
zew—1(y)NA(w)

where A (w) = {z € Q: w is differentiable at z}. The degree of the map w in
the set 2, denoted by degw, is

1

degw := —/ E sign (det Dw ()) dy, (29)
|11] (Q)| w() cw—1(

zew~H(y)NA(w)

= i (lﬂ)| /(Q) Z sign (det Dw (x)) dy

(above we used the fact that, since w is a Lipschitz-continuous map, then the
measure of the sets 2\ A (w) and of its image w (?\ A (w)) are equal to zero). See
the books by Giaquinta, Modica and Soucek [36] and by Fonseca and Gangbo
[24] for more details.

It is well known that

/ det Dw (z) dx :/ deg (w,Q,y) dy,
Q w()

and thus
degw = 1 / det Dw (z) dx (30)
lw (Q)] Jo '
Using of the symbol # to denote the cardinality of the set, we have
/|detDw(w)|dw= #{z €N :w(z) =y} dy. (31)
Q w(2)

For our purposes it is also useful to recall the definition of degree of a map
v:8" 1 o 8§71 v onto S" 1. To this aim let us denote by T}, the tangential
plane to S”~! at the point w € S™~!. If v is Lipschitz-continuous, then for
H"'—ae. we S"! the differential dv,, : T, — T, exists. Similarly to the
Euclidian case (29), the degree of v is defined by (see Chapter 5 of the book by
Milnor [47])

1

NWy,

degv := / Z sign (det dv,,) dHy (32)
Sn—1

wev—1(7g)
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where, with an obvious abuse of notation, we denote by dv,, also the (n — 1) x
(n — 1) matrix representing the differential with respect to two fixed bases in
T, and T,(,,). Using again the area formula for maps between manifolds, as in
(30) we get

degv = / det dv, dH ' . (33)
S’n—l

Nwnp
Fix wo € 0B; and denote by 7; : S '\ {we} = R", for j € {1,2,...,n—1}, a
vector field of class C' such that, for every x € S"~ !\ {wo}, the set of vectors
{r (), 2 (x),...,7h_1 (z)} is an orthonormal basis for the tangent plane to

the surface S"~! at the point . The following representation formula (34) for
deg v holds.

Theorem 15 Let v : S"~! — S™ 1 be a Lipschitz-continuous map onto S™ 1.
Then, for H* 1—q.e. w € S, we have

" o (v, ... v ettLom)

=3 (1)t
det dv,, Z( )t (W) O(T1, T2, yTn-1)

i=1

() . (34)

Theorem 15 is proved below in this section. We deduce from Theorem 15
and Corollary 12 the following consequence.

Corollary 16 (Geometric interpretation) Let v : S"71 — S™~1 be a map
of class C' and onto, and let u : B1\ {0} — S™! be defined by u(x) :=
v(x/|z|). If dv, is not singular at any w € S, i.e., if v is locally invertible
with C* local inverse at any point of S"~ 1, then

TV (ua Bl) = Wn |degv| = Wn |deg :Jl > (35)

where v : By — R™ is any Lipschitz-continuous extension of v to Bj.

Remark 17 In two dimensions the total variation TV (u, By) can be expressed
in terms of the degree as in (35) under the sole assumption that v maps S* into
a simple curve enclosing a starshaped domain (see Corollary 2). However, as
shown in Section 10, this is not true anymore if v maps S' into a non-simple
curve, such as the “eight” curve.

Proof of Theorem 15. Fix w € S~ ! and denote by

{7'1,7'2,...,7'”,1}, {0'170'27---;0%71};
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two orthonormal bases for the tangent planes to T, and T, respectively.
With respect to these two bases the linear map dv,, : T, = Ty () is represented
by the (n — 1) x (n — 1) matrix whose coefficients are

(@)= (o250 @)

Therefore the matrix dv,, is the product of A and B, where A is the (n — 1) xn
matrix whose rows are 2% and B is the n x (n — 1) matrix whose columns are

o;. By (iii) of Lemma 41 we have

detdv, =) det X; (4) - det X; (B)

i=1
where

a(v,... vt vt
detX’i(A)Z ( )

and in view of (119)
det X;, (B) = (1) vi (v (w)) ,

where v; (v (w)) is the i-th component of the outward unit normal S™~1 at v (w),
i.e., v; (v (w)) = v¢ (w). This concludes the proof of (34). m

Proof of Corollary 16. From the previous theorem we deduce that, if dv,,
is not singular at w € S™1, then det dv,, # 0. Therefore, the right hand side of
(34) is different from zero and has constant sign, since by assumption the map
v is of class C'. The first equality in (35) follows from Theorem 15 and (24).
The second equality is consequence of (25) and of (30). =

We conclude by giving a geometrical interpretation of some of the estimates
given in this paper. In the following statement we use again of the symbol #
to denote the cardinality of a set.

Theorem 18 Let v : S~ ! — S*~! be a Lipschitz-continuous map and let u :
Bi\ {0} = S™ ! be defined by u (z) := v (z/ |z|). The total variation TV (u,B;)
of the Jacobian of u can be estimated by

TV (uvBl) 2 wn |degv| ’ (36)

TV (u,B;) < 1 / #{reS" " v(z)=w}dHI". (37)
n Jom,
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Proof. Inequality (36) follows from inequality TV (u, B1) > |Det Du|(By),
equality (19) of Theorem 7 on the representation of [Det Du|(By), and formula
(34) of Theorem 15.

To prove (37), we apply the estimate (108) and formula (31). Precisely, we
denote by v : By — R™ the extension of v defined by v (0) = 0 and

¥ (z) = |z| - v (Iz_l) . VzeB\{0}.
Let g5, — 01 and define

. QL v (z), if x € B,,
Up (x) = { u(a:) — (;1;/ |x|), if z€ Bl\BQh

Clearly up, — u in WP (Q; R*) and, by (31),

det D17 ()

TV (u, B1) < liminf |det Duy, (z)| dz = lim inf .
h

h—+oco B: h—+o0 th

dx

=/ |detD'17(x)|da::/ #{z€B:7(x) =y} dy,
B1 7(B1)

and, since v (B;) C By,

TV (u, By) §/B #{weS”l tv(z) = |z—|} dy

1
= / 0" tdo / #{resS"iv(zr)=w}dHI?
0 6B1

:—/ #{zeS" " v(z)=w}dH .
8B,

4 Det Du versus det Du

In this section we give a brief overview of relations between Det Du, det Du and
TV (u,). We recall that the Jacobian det Du is given by

1,2 n
9 (u',u?, ..., um)

det Du (x) := I

(38)

M
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where adj Du stands for the adjugate of Du, i.e., the transpose of the matrix of
cofactors of Du. It is clear that when u € VVll i (Q R") then det Du € Li, . ().
However, it is well known that, within some ranges of lower regularity for u, it
is still possible to introduce a new concept of determinant which agrees with
det Du when u € WL (Q; R™).

Consider the distributional Jacobian determinant, which, as usual, is denoted
by Det Du capitalized, and is given by

" i1 O o (u?,...,u")
Det Du:=Y  (—1)""" — (! i
et Du Z( 2 0x; (u O(x1,.--,2; i , Tn)

i1 sy Li—1yLi41y-- -

Xn: aiz ( (adj Du)’ ) . (39)

Note that Det Dwu is a distribution when
u € WhH? (Q;R"), adj Du € LI(Q; R"*™),

with 1/p + 1/¢ < 1+ 1/n (in particular, when u € W7 (;R?) for some
p > n?/(n+ 1)), or when u € L (QR*) N WL (s IR") (actually, it suf-
fices to require that u' € L2 (Q;R"), and that the vector field of deriva-
tives (Du?,Du®,...,Du") € L{fml (Q R(=1xn)) In the latter case, it is
clear that the products in (39) are in L .(Q). Also, if v € Wh? (Q;R™)
and adj Du € LI(Q; R**™) with 1/p+ 1/q < 14 1/n, then this integrability
property still holds by virtue of Holder’s inequality together with the fact that

1/q¢+1/(p*) < 1 and, due to the Sobolev Embedding Theorem, u € Lloc (; R™).

For smooth functions the Jacobian determinant det Du (z) and the distri-
butional Jacobian determinant Det Du coincide. In fact, if u € Wi ™ (Q;R?)
then using the fact that the adjugate is divergence free, it is easy to see that
(38) reduces to (39). Also, Miiller, Tang and Yan proved in [54] that if u €
Win=1(Q; R") and if adj Du € L™ (=1 (Q; R**") then Det Du = det Du and
it belongs to L' (). This relation may fail if u is not sufficiently regular. As an
example, consider (see [36])

u(x)::"a"+|m|"i, Q:= B,

]

where Bj, as in the previous sections, stands for the open ball in R™ centered
at zero and with radius one. Then u € W1P(By; R") for all p < n, det Du = 1
a.e. in By, but

Det Du = L"|B; + wy a™ do,

where L™ denotes the Lebesgue measure in R and w,, is the volume of the unit
ball B;. Similarly, as shown in [27], if u(z) := z/|z| then det Du = 0 a.e. in By
and Det Du = w,, dg.
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These examples suggest that, at least for some ranges of p, when Det Du
is a Radon measure then its absolutely continuous part with respect to the
n—dimensional Lebesgue measure reduces to det Du. Indeed, this holds when
u € WHP (; R") and adj Du € LI(Q; R**™) with 1/p+1/q < 1+1/n (see [50));
see also Theorem 6.

The presence of singular measures in Det Du is in perfect agreement with
recent experiments, which suggest that, in addition to bulk energy, surface con-
tributions and singular measures may also be energetically relevant, thus disfa-
voring the creation of extremely small cavities (see [16], [30] and [31]). These
considerations have motivated the search for a characterization of the singular
measures which may appear in the description of the distributional Jacobian
determinant. If we do not impose any geometrical or analytical restrictions on
the function w, then it is possible to attain Radon measures with support of
arbitrary Hausdorff dimension. Precisely, it was proven by Miiller [52] (see also
[50]) that, given a € (0,n), there exists a compact set K C By with Hausdorff
dimension «, and there exists u € WP (By;R?) N C°(By) for all p < n, such
that

Det Du = det Du L™| By + s, (40)

where pu; is a positive Radon measure, singular with respect to £", and such that
supp s = K. The situation is dramatically different if w € W"~1(Q, S"~1), as
it can be shown that if Det Du is a finite, signed, Radon measure then Det Du is
a finite integer combination of Dirac masses (see Brezis and Nirenberg [11], [12]).
The use of BMO and Hardy spaces allows one to obtain higher integrability
results along the lines of Miiller [49], [51], and Coifman, Lions, Meyers and
Semmes [17]. As an example, it can be shown that if u € W1 (Q; R") is such
that det Du > 0, then (see also Brezis, Fusco and Sbordone [10] and Iwaniec
and Sbordone [38]) det Dulog(2 + det Du) € Li ().

loc
As mentioned before, in this paper we assume that « is a function of class

WP (O R") N W™ (2\ {0} R")

loc

for some p € (n—1,n) and for an open set & C R™ containing the origin.
The definition of the total variation TV (u,Q) introduced in (2) follows the
approach commonly used for variational problems with non-standard growth
and coercivity conditions (see [1], [2], [8], [14], [25], [27], [43], [36], [45], [46]). The
aim of this paper is to characterize TV (u,Q). In [27] Fonseca and Marcellini
accomplished this for u (z) = z/|z|. Fonseca and Maly [25], and Bouchitté,
Fonseca and Maly [8] set up the problem into a broader context. Precisely, if
QxR — R is a Carathéodory function, then the effective (or relazed)
energy is defined as

Fp.q(u, ) := inf {lihminf f(z, Dup)dx : up € WhI, up —u in Wl’p} .
— 00 Q
(41)
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In the case, where f(z,€) := g(det&) and g :— [0,+00) is a convex function,
then (see [14], [21], [25])

Fon(w,0) 2 [ g(etDu(e) ds it p2n-1,
Q
and if p > n — 1 then (see [8])
Fym(u, Q) = / g (det Du (2)) dz + p1a(9),
Q

for some Radon measure pg, singular with respect to the Lebesgue measure
L™. For a general integrand f, and under the growth condition 0 < f(xz,§) <
C(1+ [£]9), with p > 2~Lg, we have

Fpau, Q) = hy L7[Q + A, (42)

where (see [1]) hy, < Qf(z, Du), and A, is a singular measure. If f = f(£) then
it can be shown that (see [8], [25])

hy = Qf(Du), (43)

where @ f stands for the quasiconvezification of f, precisely (see [18], [48])

Qf(€) := in { /( s, €+ De@) o0 €Y (Q;R")} .

This may no longer be true when f depends also on z and p < ¢ (although it
is still valid if f(z,-) is convex, see [1]). Indeed, Gangbo [29] constructed an
example where f(z,€) = xx () |det |, and h,, = f if and only if LN (0K) = 0.
Hence, in general, (43) fails and f**(x, Vu) < hy, is the only known lower bound
(see also [1], [8], [25], [27]; [43], [44]).

Further understanding of the total variation TV (u, Q) asks for mastery of
weak convergence of minors for p < n. Works by Ball [4], Dacorogna and Murat
[20], Giaquinta, Modica and Soucek [36], and Reshetnyak [56], established that

up = u in WH" (Q;R") =  det Du — det Du

in the sense of measures, where we recall that a sequence {u} of Radon mea-
sures is said to converge in the sense of measures to a Radon measure p in 2 if
for every ¢ € C. (Q; R) we have

/wduh%/wdu-
Q Q

Miiller [49] has shown that, if in addition det Duy, > 0, then det Duy, — det Du
weakly in L' (Q). Moreover, if up, — w in W5? (;R*) and {adjDuy} is
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bounded in L9 (Q;R‘“") with p > n—1, ¢ > n/(n — 1), one of these two
inequalities being strict, then

det Duyp, — det Du in the sense of measures.
Also, if up, € WH™ (Q; R?), up, — uwin WP (Q; R?) and p > n — 1, then
adjDup, — adjDu  in LP/" Y Vp>n—1. (44)

A complete characterization of weak convergence of the determinant has
been obtained by Fonseca, Leoni and Maly in [26], where it was shown that,
if the sequence {up} C Wb (Q; R") converges to a function u in L! (Q;R"),
if {up} is bounded in W1m=! (Q; R"), and if det Dup — u for some Radon
measure p, then

d—'u—detDu a.e.z €1 (45)
T ,  a.e. .
For related works we refer the reader to [2], [4], [14], [18], [19], [21], [28], [29],
[32], [36], [42], [48], [49], [54].

What can we then say about the singular measure u; in (40), its significance
and interpretation, and what are the relations, if any, between the total variation
of Det Du, i.e. | Det Du|(Q2), and TV (u,Q)? An answer is given by Theorem 6,
which contemplates a general framework where only integrability assumptions
are considered, and no structural properties of the function u are prescribed.
Next we present the proof of this result.

Proof of Theorem 6. Since TV (u, ) < +oc, by (42) and (43) TV (u,-) is
a finite Radon measure, and it admits the Radon-Nikodym decomposition (14).
In particular, it follows that det Du € L (Q).

Let § > 0 be fixed and consider a sequence {up}, oy C C (€;R™) such that
up = u in WHP (Q; R™), with p > n — 1, and

TV (1,Q) +6 > lim / \det Duy| dz . (46)
Q

h—+4oc0

We first observe that, without loss of generality, we may assume that the se-
quence of the first components {u}, } nen is bounded in L% (). Indeed, under

the notation M := ||u1 ||Oo, it suffices to consider the truncation
-M if ui (r) < —M
wp, (z) == uj () if —M<u(z)<M ,
M if w} (z)>M
and to set wy, := (w},ul,... ,u}), for every h € N. It is easy to verify that, as

h — 400, wy, converges to u in the weak topology of W (£2; R") and, since

|det Dwy| < |det Dug|,  a.e. z € Q,
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inequality (46) still holds with {un},cy replaced by {wn},cn-

Since TV (u,Q) < +o00, by (46) the sequence {det Dup},y is bounded
in L' (), therefore, up to a subsequence (not relabeled) det Du, —* [ as
h — +o00, where [z is a finite Radon measure. By (45) we have

Ji

dg—un =detDu, a.e.z€Q. (47)
Next we prove that the distribution Det Du coincides with 7 on C§ (Q) and
hence, by regularization and density, on CJ (). To prove this, for fixed ¢ €
C} (Q) we have

- . Op
— 1 : i
(Det Du, ) = —/Q ;,1 u (adj Du)} o, dz

= — lim /Q;u}b (adj Dup)} g;: dr = lim /Qdet Duyp odr = (i1, ) .

h—o0 h—o0

Here we have used the facts that, since up, — u in WY (Q; R"*) for p > n — 1,
then adj Duj, weakly converge to adj Du in LP/(»~1) and since the sequence
{44} pen 15 bounded in L% (Q) and converges as h — +oo to u' in LP (Q), it
also converges to u! in L7 (Q), for every ¢ < +00, in particular for ¢ = Ik("ﬁ,
the conjugate exponent of —£5. Therefore, in view of (47), we deduce the
Radon-Nikodym decomposition for Det Du as asserted in (15).

Let A be an open subset of 2 and let ¢ € C} (A; R) be such that ||¢f|, < 1.
By (46), a similar argument yields

L ) . Op
— 1 %
|{Det Du, )| = ‘/A ;:1 u"(adj Du)j oz, dz

= lim
h—o0

= lim
h—o0

" . Op
1 : 1
/A E uy, (adj Dug)} o dz

i=1

/ det Duyp, p dz
A

< 1imsup||g0||oo/ \det Dun| dz < TV (u, A) + 5.
k—oco A

It suffices to let § — 0T, and to take the supremum over all such functions ¢,
to conclude (16), i.e., |Det Du| (A) < TV (u, A).

Suppose now, in addition, that u € Wli’cn (Q\ {0};R™). Let A be an open
subset of  such that 0 ¢ A. We recall that for every sequence wp which
converges to u in the weak topology of WP (4;R") for some p > n — 1, with
u,up, € W,o™ (A;R™) for every h € N, we have (see [19]; see also Theorem 35)

loc

liminf/ |det Duy| dx > / |det Du| dz .
A A

h—+oc0
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Hence
TV (u, A) :/ |det Du| dz ,
A

whenever A is an open subset of Q and 0 ¢ A. Therefore we conclude that
supp As C {0}, and thus Ay = Ay for some constant A > 0, where g is the
Dirac measure at the origin.

On the other hand, in view of the inequality |Det Du|(4) < TV (u, A) in
(16), it follows that supp us C supp As C {0}, therefore us = pdy, for some
constant y € R, with |u| < A, where we have used (16).once more. ®

Remark 19 The result stated in Theorem 6 holds also under the assumption
that u € WHP (Q; R™) for some p > n?/(n + 1). Indeed, in this case, instead of
truncating the sequence {u}b} hen We use the fact that, by Kondrachov’s Com-

pact Embedding Theorem, up — u strongly in L"z, with n? being the conjugate
exponent of n?/(n* —1). Again, {Dup},cy weakly converges in LP (Q; R™*™)

and the sequence {adj Dup}, oy weakly converges in L7/ (n*=1),

5 The general 2—d case

Let n = 2. For every { = (¢',£%) € R?, £ # 0, we denote by Arg¢ the unique
angle in [—m,7) such that

¢ . &

cosArgé = 2 sinArgé = = .

€] 13
As before, we denote by B, the circle in R?> with center in 0 and radius » > 0.
Then B is the circle of radius 7 = 1 and 8B; = S! is its boundary. If a, 3 €
[0,27], @ < B, then S («, B) stands for the polar sector given by

S(a,B):={€=0(cosV,sind) e R*: o<1, ¥€apl}.

In the sequel v : [0,27] — R? is a Lipschitz-continuous closed curve, i.e.,
v (0) = v (2m), that we represent as v = (v*,v?) = (v! (9),v% (9)), with ¥ €
[0,27]. We shall denote by vy := (v},v3) the gradient of v, which exists for
almost every ¥ € [0,2x]. If v (J) # 0 for every ¢ € [0,2n], then we denote by
A, (9) the quantity

A, (9) == Argov (0) + /0 R OL (ltz (_t)1|)22 (030

There exists a simple relation between A, and Argwv, which is inferred from
the next lemma.
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Lemma 20 Ifv: [0,27] — R? is a Lipschitz-continuous curve such that v (9) #
0 for every ¥ € [0,2w], then, for every o, B € [0,27] with o < B, there exists
k € Z such that

Ay (B) — Ay (a) = Argv (B) — Argv (a) + 2k (48)

Proof. Assume first that v € C' ([0,27];R?) and that there exist at most
a finite number of angles 9; € [0, 27) such that either v! (¢;) = 0 or v (¥;) = 0.
Then, for every 9 # ¥; (since v! (1¥;) # 0) we have

d . d v?(9) o' (9) v (9) —v? (9) v (¥)
@Argv(ﬁ) = %arctan ) ? o) ¢

The result then follows by integrating this equality and recalling that, each
time that v () crosses the half line {(z,y) € R* : z <0, y =0}, and this may
happen at most a finite number of times (necessarily for ¥ equal to some ¥;,
where v? (¥;) = 0), the function Argwv (¥) has a jump of +27.

In the general case, we approximate v by a sequence {v; }j n Of curves of class
C* ([0,27]; R?) such that {v;} .y uniformly converges to v and {dv;/dd},
converges to dv/d¥ in LP ([0,2n]) for every p € [1,4+00). We may construct
the curves v; so that v; (9) # 0 for all ¥ € [0,2n] and either v! (9;) = 0
or v?(¥;) = 0 only for finitely many i. Moreover, if Argv () # —=, then
Arguv; (¥) — Argo (9), while, if Argv (¢¥) = —m, then, up to a subsequence,
Arguv; (¥) = Argv (¥) = —7 or Argw; (¢) — 7. Finally, the quantity

Byl — o2yl
Ay, (B) — Ay, (@) = / L/W dt
a |vj|
converges, as j — 400, to A, (8) — A, (). From the relation
Ay, (B) — Ay, (@) = Argw; (B) — Argv; (a) + 2k,

valid for every j € N and for some k; € Z, we see that the sequence k; is
bounded, since Argv; (8),Argv; (a) € [-m,m). Then, up to a subsequence, we
obtain the conclusion (48) as j — +o00. m

As in Section 2, we denote by I a curve in R? parametrized in the following
way

I:={{+r (V) (cosd,sind) : € [0,2n]}, (49)

where 7 () is a piecewise C! function such that r (0) = r (27), and r () > 7o
for every ¢ € [0,2n] and for some r9 > 0. Condition (49) means that I is the
Lipschitz-continuous boundary of a domain

D :={&+ p(cos¥,sind) : 9 €[0,2n], 0< o <7 (¥},
starshaped with respect to a point £ in the interior of D. In the sequel it is

understood that the function r (9) is extended to R by periodicity.
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Lemma 21 LetT be asin (49) and letv : [0,27] — T be a Lipschitz-continuous
map. If Arg (v (0) — &) = 0, then the curve v may be represented in the form

v() =€+ (Ay_e (¥)) (cos Ay_¢ (9),sin Ay_¢ (9)) (50)
for all 9 € [0, 27].

Proof. Since A,_¢ (0) = Arg(v(0) — &) = 0, by Lemma 20 for every ¥ €
[0,27] there exists k € Z such that A,_¢ () = Arg (v (¥) — £) + 2kn. Also, as
v (9) € T for all ¥, we have

r(Av—¢(9) =r(Arg(v(9) = &) = [v(I) = ¢ ,
and we obtain

r (Ay—g (1)) (cos Ay—g (¥) ,sin Ay ¢ (7))

= v (9) — & (cos Arg (v (F) — £) ,sin Arg (v (9) — &) = v (J) - &.

Remark 22 Under the assumptions of Lemma 21, from the representation for-
mula (50) for v (9) it follows that, if Ay—_¢ (@) = Ay—_e (B), then v () = v ().
Conversely, if v(a) = v(B), then there exists k € Z such that Ay_¢ (o) =
A, ¢ (B) + 2kw. However, notice that if T is the boundary of a simply con-
nected domain which is not starshaped with respect to &, then the conclusion of
Lemma 21 may not be true. In particular, the condition A, ¢ (o) = Ay—¢ (B)
may not imply that v (a) = v (B).

The next Lemma, 23 plays a central role in this section.

Lemma 23 (The “umbrella” lemma) Let T’ = {£ + 7 (¥) (cosd,sin¥)} and
let v : [0,27] = T be a Lipschitz-continuous map. If a, 8 € [0,27], a < 8, are
such that Ay_¢ (a) = Ay_¢ (B), then for every € > 0 there exists a Lipschitz-
continuous map w : S (a, ) — R2 satisfying the boundary conditions

w(g,a) =w(e,B) =&+eo(w(a) =§), Voel[0,1]
and such that
/ \det D (z)] da < . (52)
S(a75)
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Proof. We can assume, without loss of generality, that Arg (v (0) — &) = 0.
Fix h € N and set

Wh, (Qa 19) = ‘f +or ((ph (Q) 19)) (COS ®h (Qa 19) 7Sin ®h (Q; 19)) ) (53)

where, for every g € [0,1] and for every ¥ € [a, ],
o (0,9) = 0" Ay—¢ (9) + (1= 0") Av¢ () .

Since o (1,9) = Ay_¢ (9), @n (0,0) = 91 (2, 8) = Ay_g (a), by the representa-
tion formula (50) of Lemma 21 we obtain the validity of the boundary conditions
(51).

Now we evaluate the left hand side in (52). We observe that, for a generic
function u (z) = (u' (0,9) ,u? (0,9)), with the notation 2 39 = ub, %11‘9 =uf (i =
1,2), in general we have

up (0,9)  uy(0,9) ‘
det D == ’ 9o . 54
tDu@ =31 (0,0) d(o,9) (54)
For the function w;, we obtain
/ \det Duwp, ()| da:—/ dg/ M 4 .
S(a,8) )

Let us compute the partial derivatives of wy

85? =1 (ion) cos pp, + 022 [r' (1) cos on — 7 (o) sin o]
85‘;9'1 = 085‘:9’1 [r' (pn) cospp — T (n) sin pp]
afgi)h =7 (on) singn + 08% [ (o) sin p + 7 (@n) cos vp]
86;1;9h = 985‘;9}1 [r' (pn) singp + 7 (pn) cos pp]

and the Jacobian determinant of wy,

a(w)’lwwl%) 2 aﬂoh h+1,.2 '
W_ r (on) 5o 99 =0T (SOh)Av—g(ﬂ)-

Thus we obtain

1 B
det Dwy, (z dw:/ gh'HdQ/ r? Al (9)| d9 = ,
[, detDun @) do = [ [ e 0] @0 = 355

where we denote by ¢ the constant

— ? 2 Al 9)| d9
¢:=sup /a r? (pn) |4y _¢ ()] :

The conclusion follows by choosing h € N sufficiently large. m
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Remark 24 As we pointed out already, the previous Lemma 23 plays a central
role in our analysis. We informally call Lemma 23 as “the umbrella lemma”,
since the geometric representation of the graph of the map w : R2 — R2 con-
sidered in Lemma 23 is some sort of “umbrella” (under some mathematical
tolerance and human imagination!). In fact, let us consider for simplicity the
case where the image T of the map v is the unit circle [0,27] C R? centered
around € = 0. Then the graph of w is a subset of S': it “starts” from the center
& = 0 (the starting point of the “wumbrella-stick”, in correspondence to ¢ = 0)
and it “ends” for o = 1, at the surface {w (1,9) =v(¥): 9 € [a,[]} C 51,
which can be interpreted as the upper surface of the open umbrella, to protect
one from the rain. Moreover, by (52), like an umbrella, the total volume of
the image of w is small (large upper surface, small volume! In our 2—d case,
we have a 2—dimensional “picture” of an umbrella, with large upper length and
small area).

We refer to Figures 1, 2 and 3, where we represented the image of the map
wp, (0,9) in (53) under three particular choices of the parameters. Precisely,
for fixzed h € N we considered wy, : S (a,8) — By (i.e., v (pp (0,9)) in (53)
identically equal to 1 and £ = 0) given by

{ Wp, (Qa 19) = Q(COSQOh (Qa 19) aSin Ph (Qa 19)) (55)
on(0,0) =o"Ay (9) + (1= 0") Ay (@)

where Ay : [o, 8] = R is a function such that A, (a) = A, (8). The common
value of Ay at ¥ = a and 9 = 8 is the asymptotic value of the angle ¢ (0,9)
as o0 — 07 and it represents the angle which the umbrella-stick forms with the
x—azis. At o = 1 the angle ¢p (1,9) holds A, (¥); therefore the mazimum M
and the minimum m of A, (¥) represent the bounds for the angle py, (1,9) of the
image w (1,79) at the surface S' of the ball By. These pictures has been made
by Emanuele Paolini, starting from the analytic expression of w in (55). We
thank him for the beautiful job.

Lemma 25 Let f : [a,b] — R be a continuous function, piecewise strictly mono-
tone in [a,b] (with a finite number of monotonicity intervals) and such that
f(a) < f(b). Then there exists a partition a = ag < oy < ... < ay =b of [a,}]
such that, for every i = 1,2,... N, either f is strictly increasing in [a; 1, ],

or f(ai-1) = f ().

Proof. Let ag = a. If f is (strictly) decreasing in a right neighborhood of
ag, then we define

g :=max {d € [ap,b]: f(¥) = f ()} .

Since f is continuous, oy is well defined. Moreover, since f (1) = f (o) < f (D),
then a; < b and f is (strictly) increasing in a right neighborhood of ;. Next
we define

ag :=max {J € [ag,b]: f(¥) < f(b) and f is strictly increasing in [y, 9]} .
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Figure 1: A 2 — d image of the map w defined in (55), with h = 4, for a
particular (piecewise linear) function A, (). The angle which the umbrella-
stick forms with the z—axis is given by A, (a) = A, (8) = 7/2. The mazimun
M and the minimum m of A, (¢¥) = ¢(1,9), which give the bounds for the
angles of the image w (1,9) at the surface S* of the ball By, in this case are
equal to m = 7 /6, M = 57 /6, respectively. Note that the map is radially linear
when ¥ = o and ¥ = 8, where the angle of the image is equal to 7/2.

If @z = b then the lemma follows. Otherwise, if ay < b and f (az) = f (b), then
we set a3 = b and again the lemma follows. Finally, if as < b and f (a2) < f (b),
then f is strictly decreasing in a right neighborhood of as, and we may argue
as we did before starting from «p. If, instead, f is (strictly) increasing in a
right neighborhood of ag, then we may use the same argument as we did before
starting from aq.

Since the number of intervals of monotonicity is finite, after a finite number
of iterations we reach the conclusion. m

Lemma 26 Let v : [0,2n] — T be a Lipschitz-continuous map. Let o, €
[0,27], a < BB, be such that Ay_¢ (o) = Ap—g (B). If Ay—g¢ (9) is piecewise
strictly monotone in [a, 8] (with a finite number of monotonicity intervals) then

B
[ AW 0 =€) ) - (2 0) - &) vh @)} a0 = o.

Proof. Without loss of generality we assume that & = (0,0). Since 4, (¢)
is piecewise strictly monotone in [a, 3] and A4, (a) = A, (B), there exists a
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Figure 2: Another 2 — d image of the map w defined in (55), with h = 4, for a
different choise of the piecewise linear function A, (9). In this case we obtain
an asymmetric umbrella. Again A, (a) = A, (8) = 7/2, while in this case
m = —7/6, M = 57 /6. The map is not one-to-one: only the image points with
angles —m/6 and 57/6 may be assumed once; all the other points are hit at least
twice; the points with angle 7/2 are hit at least three times.

partition of the interval [@,8], a = ¥ < 91 < ... < ¥y = B, N > 2, such
that, for every ¢ = 1,2,... N, the real function A4, () is strictly increasing in
[9i—1,%] and is strictly decreasing in [¢;,%;4+1] (or viceversa). We will prove
the lemma by an induction argument based on the number N of these maximal
intervals of monotonicity.

Let us first assume that N = 2. Hence there exists ¥1 € (a,3) such that
A, (9) is strictly increasing in [a,1] and is strictly decreasing in [, 3], or
conversely. To fix the ideas, let us assume that A, () is strictly increasing in
[a,91]. For every (o,9) € S (a, ) let us define v (p,9) := pv (¥). If A, (V1) —
A, (@) < 2m, then ¥ restricted to the interior of S (o, ¥1) and S (¥4, ) is one-to-
one. Moreover the images v (S (a, 1)) and v (S (91, 8)) are equal. Therefore,
by the area formula,

/ \det D ()| dz = area (5 (S (a, 91)))
S(a,91)

= area (¥ (S (91, B))) =/Sw 14t DT )| de.
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Figure 3: Map w : S («, 8) — B in (55). Here we fixed h = 3, while the angle
which the umbrella-stick forms with the z—axis is equal to 4, (o) = 4, (8) = 0.
The bounds for the angle of the image w (1,%), at the surface S* of the unit ball
By, in this case are equal to m =0, M = 27 + 7 /2. The map is radially linear
when the angle A, (J) of the image is 0 (and this happens only if ¢ = a = (3,
when ¢ (1,9) = Ay (¢¥) = 0). The map w is not one-to-one: due to the overlaping
phenomenon, some points with ¢ close to 1 and 0 < ¢ < 7/2 are assumed at

least four times.
Since det Dv > 0 in S (a,%;) and det Dv < 0 in S (¢4, 8), we obtain
/ det Dv (z) dz = area (v (S (a,91)))
S(a,ﬂl)

= area (v (S (1, 0))) = _/sm 5 det Dv (z) dz.

By using again (54), we have

det Dv (p,9) = é
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Therefore, as claimed,

1 8
O:/S(a’mdetDv(m) dmZ/O ng/a {v' () v3 (9) — v (9) vy (V) } dI

1 rP
_ 5/ {v! (9) 02 (9) — v* (9) v} (9)} dv .
If 2kn < Ay (%) — Ay (@) < 2w (k+ 1) for some k > 1, then we denote by

¥ € (a,%1), 9" € (Y1, ) the points such that 4, (9') = A, (¥") = 2kxr. Again,
using the area formula, we have

/ \det D¥ (z)| do = / \det D (z)| do
S(a,91) S(a,9")

+/ |det Do (z)| dx = kareaD + area E,
S(9',91)

where D is the domain in (7) enclosed by I' and E is the domain represented in
polar coordinates by

E = {o(cos Ay (9) ,sin Ay (9)) : J € [, 9], 0< o <7 (9)}

— {o(cos A, (9) ,sin A, (9)) : 9 € [01,8"], 0< o <7 (D)} .

Therefore, we also have

/ \det D¥ (z)| dz = / \det DV (z)| d
S(%1,8) S(91,9")

+/ |det DY (z)| dx = areaE + karea D .
5(9",8)

Arguing as before we get the thesis (with N = 2)

B
% /a {v! ()02 (¥) — > (W) vy (9)} dY = /S - det D7 (z) dz

=/ \det D (z)| dw—/ \det D¥ ()| do = 0.
S(a,91) S(91,8)

By induction, we assume that the result is true if there are NV — 1 maximal
intervals of monotonicity for the function A4, (¢). Then we consider the case
where there are NV of such intervals, with endpoints a =g <9 < ... <9Iy =
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B. Without loss of generality, we can assume that A, (9) is strictly increasing
in [a,¥1] and is strictly decreasing in [¥1,32]. If A, (@) > A, (¥2), then there
exists vy € (¥1,92) such that A4, () = A, (a); since the thesis holds for the case
of two intervals [a, ¥1], [Y1,7], we obtain

v
/ {v'vj —v?vy} dd = 0; (57)

the thesis also holds for the N — 1 intervals [y, 2], [J2,93], ... ,[¥Nn—-1, 5], and
so we have

B
/ {v'vi — vy} d9 =0,
.

which, together with (57), yields the conclusion if 4, (a) > A, (¥2).

If A, (@) = A, (92), the same argument works with v = ¥, If A4, (a) <
A, (92) then there exists § € (a,¥:) such that A, (0) = A4, (J2) and, as before,
by considering the two intervals [d, 1], [1, 2], we have

92
/ {v'vj — vy} dd =0. (58)
5

Then we “modify” the function v (9) by “cutting out” the interval (4,2) from
[, B]; more precisely, we define in the interval [a + [¥2 — §], 3]

[0 =[92—6), if a+[da—0d<I< D,
ww)'_{v(ﬂ), if 9, <9< B

Then A, (¥) is piecewise strictly monotone in [a + [¢2 — 6], 8], with N —1
monotonicity intervals. By the induction assumption we have

B
0= / {w'wj — wlwy} d¥
a+[192—6]

5 B
:/ {v'vf — v?vy} d19+/ {v'vj — vy} dY,
a F2
which, together with (58), yields the conclusion. m

Lemma 27 Let v : [0,27] = [ be a Lipschitz-continuous map. Let Ay_¢ ()
be piecewise strictly monotone in [a,b] (with o finite number of monotonicity
intervals). For everye > 0 there exists a Lipschitz-continuous map w : B; — R?
such that w (1,9) = v (¥) for every ¥ € [0,2x], and

/ \det D ()| dm<6+% ‘/zﬂ {01 (9) 62 (9) — o (9) 0} (9))} df] .
B 0
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Proof. If A, ¢(0) = Ay_¢ (27) then the result follows from Lemma 23.
Otherwise, we may assume, without loss of generality, that A,_¢ (0) < A,—_¢ (27).
By Lemma 25 we can consider a partition of [0, 2] by means of points 0 = ap <
oy < ... < ayny = 27 such that, for every ¢ = 1,2,... N, either A,_¢ is strictly
increasing in [o;—1, 0], or Ay_¢ (@i—1) = Ay—¢ (e;). Denote by I the set of
indices

I:= {l S {1,2,.. N} : Av—f;’ (ai_l) = Av—f;" (Oéz)}

Given ¢ > 0, if i € I we denote by w; : S(a;_1,0;) — R? the Lipschitz-
continuous map provided by Lemma 23, satisfying the boundary conditions

{ w; (1,9) = v (¥9), Vi€ a1, ]
w; (Qa Ctz',l) = w; (QJ Oéi) = 6 +0 (U (a’ifl) - 6) ) VQ € [Oa 1]

and the bound

/ \det Dw; (z)| dz < = . (59)
S(ai—1,a)

We then define the Lipschitz-continuous map w : B; — R? by setting

_f Etow®@ -8, VIE[wmi1,), ifigl
w(&,ﬁ) _{ wz’(@;'ﬁ); Vﬁe[ai,ll,ai], ifiel ~

and for every ¢ € [0,1]. In particular, w satisfies the boundary condition
w(1,9) = v(¥). Moreover, if ¥ € [a;—1,0;] for some i ¢ I, in view of (56),
we have

|det Dw ()| = [det D [€ + ¢ (v (9) — )] (60)

= @) —&) i) — (W) —&&)vy @),

where we have used the fact that A, ¢ (9) is strictly increasing for ¥ € [a; 1, a;].
By (59) and (60) we obtain

/B \det D ()| dz = Z/S |det Dw; (z)| dz + 3 \det Dw ()| dz

ier Y S(ai—1,04) gl S(ai—1,04)

55-#<I)+2/ @dg/m {(0" (9) — €1) 02 (9) — (v (9) — €2) 0}, (9)} v
ig1 0 ai-1

[e7]

=e-#(I)+Z%/

i¢I @i—

{(v! (9) = &) vj (9) — (v* (9) =€) vy (9)} V.
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By Lemma, 26, for every i € I we have
[ A @ -e) 30 - (2 0) - &)k @)} o = o,

hence

/ \det D ()| dz
By

<eN+g [HO O - %0 - 07 0) - &) v @) a0

27
:e-N—i—% | {v' () v} (¥) —v? (I) vy (V) } dI.

Next we consider maps u = u (p,?¥) depending explicitly on g as well. We
assume first that « is a smooth map in the unit ball B; C R2.

Lemma 28 (The integral of the Jacobian for smooth maps) Letu € W™ (By;R?).
For every r € (0,1] we have

/ det Du (z) d —l/27r ) 22 ) — u? ) 2 ) L a9
. u (@) de = 3 ; u (r,9) 75 (1, u” (r,9) 55 (r, .

Proof. If first u € C? (By;R?), by the divergence theorem, we have for
every r € (0,1)

ou? Ou?
_ . 1 !
/BT det Du (z) dm—/B div <u 92y’ u 3331) dx

r

ou? Ou?
— 10U ¢ 10U o 1
_/a& {u 63:21/ u 63:11/ } dH" | (62)

where v = (v!,1?) is the exterior normal to 0B, and dH' = ds = rdJ is the
element of archlenght. A standard approximation argument yields formula (62)
for every u € W (By; R?).and for every r € (0,1) (since u € Wh*> (3B,; R?)
for for every r € (0,1) too).

With an obvious abuse of notation we write u in polar coordinates (g,4),
ie., u(x1,z2) = u(0,9). We have

dxy,  Opdxy 090z, Op 09 o ’
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Su_0udg  0udd _du_ . ducosy
dxy Opdxy 090xy Op oY p

Since on 9B, the exterior normal reduces to v = (1/1, 1/2) = (cos ¥, sin ), from

(62) we obtain

2 2 2 2 2 o
alyl - 8&1/2 = (% sind + ou” co;ﬂ) cost — (6i cost — %Slzﬁ) sin ¢

0xo ox1 op EX op 09
Ou? 1ou? ou? 1ou? 1 0u?
_6—ps1nﬁcos19+—a—19 0S ﬁ—a—ps1n1900519+56—ﬁsm ﬁ_EW'

Thus on 0B,, since dH'! = rdd, we get

_ 10u? 18u 1_/2” 16u
/BrdetDu(m)dm—/aBr{ 8;U2V 6.771 }dH =/, 59 dd .

For symmetric reasons, starting now from det Du (z) = — (u® - ug,) . +(u® -ug,)_
we also obtain

27 6U
/BrdetDu(:c) d:c—/o —u 8—19d19

and thus, for every value of a real parameter ),

2 27 1
/ det Du (z dm—)\/ 1‘9“ d19+(1—)\)/ —u2%d19
0

and, in particular, for A = 1/2, the conclusion in (61). =

Now we start to consider functions u of class W'» (Q; R?)NW,:>° (Q\ {0} ; R?)
for some p € (1,2).

Lemma 29 Let u be a map satisfying the assumptions of Theorem 1. There
exists a sequence pj — 0 such that

2 ou? oul
lim ul (05,9 05,9) —u? (0;,9 0 ,19} dy
{000 G @00~ @.0) G (@3,9)

j—+oo

- [Mro S o-rol ol e

Proof. First we use assumption (9). Recall that v € WP (Q;R?*) N
Wk

1o (2\ {0};R?) for some p € (1,2).. By Lemma 38 (valid in the general
n—dimensional case) there exists a sequence g; — 0 such that

()" / \Doul dH' < M.

ej
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Since

P

ou v,

% (Qjaﬁ)

27
(0;)" / \DoufP dH' = /
OB 0

ej

we deduce that { 2% (o;, )}] o 18 @ bounded sequence in L? (0, 27). By assump-
tion (8) {u (g;,)} ;e convergesto v (-) in L™ ((0,27) ; R?). Since { 2% (o, ')}jeN
remains bounded in L? ((0,2r) ; R?), then it converges to 5% in the weak topol-
ogy of L? ((0,27);R?) as j — +oo. We obtain the conclusion

27 6u2 6u1
]BTOO o {'U/ (01519) 619 (01719) U (9]319) 8'[9 (9]519)} d,ﬁ

- [ ro % o-rol ol w.

We are ready to give the proof of Theorem 1. We divide the proof into four
steps, and we will refer to the preliminary lemmas above and to Lemma 37,
valid in the general n—dimensional case.

Proof of Theorem 1. Step 1 (lower bound). Let u be a function of class
WL (Q;R?) N W02 (Q\ {0} ;R?) for some p € (1,2). Let us observe that, by
assumption (8), there exists 7 > 0 such that B, C Q and u € L™ (B,; R?). Let
0; = 0 be the sequence of the previous Lemma 29 and let j € N be sufficiently
large so that B,, C B,. For such values of j € N, we use the estimate (97) of

Lemma 37 to obtain

?

TV (u,Q) 2/ |det Du (z)| dz +
Q\B,,

/ det Du (x) dz
By,

where & : B,, — R? is any Lipschitz-continuous map such that @ (z) = u ()
on 0B,,. By formula (61) of Lemma 28 (valid on each ball B,,), since 4 = u,
0u /09 = du/dY on OB, , we have

TV (u,) > / |det Du (z)| dz
Q\B,,

1 [, Ou? ) Out
— i) — (05,9) — i) — (0,9) p dI| .
+‘2 ‘/0 {U (05,9) 909 (0,9) —u” (05,9) 909 (05, )}
Letting j — +o00, by Lemma 29 we obtain the lower bound

TV (u,Q) > / \det Du ()| dz (63)
Q
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Step 2 (upper bound - first part). To assert the opposite inequality in
(63), let us first assume that u is radially symmetric, i.e., u = v = v (¢) = u (),
and that it satisfies the assumptions of Lemma 27. By the conclusion of Lemma
27, given £ > 0 there exists a Lipschitz-continuous map w : B; — R? such that
w (1,9) = v (9) for every ¥ € [0, 27] and

/ |det Dw ()| dm<e+% ‘/ i {01 (9) 02 (9) — o* (9) 0} (9)} V] .
By 0

For every h € N we set

_ [ w(eh,9), if 0<p<1/h
un (0,9) '_{ v (9), if 9> 1/h

Then {up},cy converges to u in LP () and

/|Duh () — Du (x)|P dm:/ |hDw (oh,9)|? dx:h”*z/ |Dw (z)|° dx
Q Bi/n

By

and so, since 1 < p < 2, {Duy}, oy converges to Du strongly in LP (By; R**?)
and finally

/ |det Duy, (z)| dx :/ |h2 detDw(gh,ﬁ)| dz :/ |det Dw ()| dz
Q Bl/h Bl

< +1
E u—
2

27
{v' (9)v5 (9) —v* (9) vy (9)} dﬁ‘ .

0

Therefore, making use of the definition (26) of the total variation of the Jacobian
TV? (u, Q) in the strong topology, we can conclude that

1
TV? (u,Q) < 5

! {v' 9) v (9) —v* () vy (V) } dﬁ‘ .

0

This inequality, together with
TV (4, Q) < TV® (u,Q), VYVu€ L™ (R NWH? (Q;RY),

and with Step 1, yields the conclusion

1
TV (ua Q) = TVS (U‘:Q) = 5

| i {v' (@) v () — v () vy (I)} dﬁ‘ (64)

when u = v = v (¥) = u (9) satisfies the assumptions of Lemma 27.
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Step 3 (upper bound - second part). As in the previous Step 2, we still
assume that u = v = v (J) = u (J), but we no longer require that the conditions
of Lemma 27 are satisfied. Without loss of generality, we can assume that
Arg (v (0) — &) = 0 and thus, by Lemma 21, the map v (1) may be represented
as

v (9) =€+ 7 (Av—g (9)) (cos Ay—g (9) ,sin Ay ¢ (V) -

Construct a sequence { A (9) }, oy of piecewise affine functions, Lipschitz-continuous
with bounded Lipschitz constants, satisfying the conditions

A4 (0) =0, VEeN,

Al (9) #0, a.e. ¥ €[0,2n], Vk€EN,
A — A,U,g in C° ([0,27’(]) y

AL (9) = A, (9), a.e. ¥ € [0,27],

|4}, (9)| < Ly, ae.9€[0,2n], Vk €N,
and define
v (9) := &+ r (Ag (9)) (cos Ag (9) , sin Ay (1)) .

Then the map vy, () satisfies all the assumptions of the previous Step 2 and

v = v in C° ([0, 2)),
dv
i d_éc“Lw(o,zn) < Ly, VEkeN,
We prove that dd”—é“ ren converges to g—g for almost every ¥ € [0,2n], as k —

+00. To this aim, let us recall that
v,v5 1 [0,27] = T = {£ + 7 (9) (cosd,sind) : I € [0,2n]},

where r (9) is a piecewise C'-function, i.e., there exist a finite number of points
0<ap<ai<...<an < 2m,suchthat r (¥) is a function of class C* ([aj_1, a;])
for every j = 1,2,...,N. Define

E={9el0,2r]: 3j=1,2,... ,N: Ay_¢ (V) = a;} .
Then
ve@=0 and o' (9) =0, aedekE, (65)
and for almost every 9 € [0, 2] we have

dv k

Ik = 4, (9) {r' (A (9)) (cos Ay (9) ,sin Ay (9)) (66)

+ 7 (Ag (9)) (—sin A (9),cos Ak (9))} .
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As k — +oo, {r' (Ak ()} converges to r' (A, ¢) for every 9 ¢ E. Thus, by
(66), we have that {2 ren converges to 4y for almost every ¥ € [0,27] \E.
On the other hand, by (65), for almost every ¢ € E, {4, (19)}keN converges
to A;_g (9) = 0 and, since {r' (Ax (9))}cy is uniformly bounded, by (66) we
can conclude that ‘%;“
k — +o0.

Therefore {vy, (9) },cy converges to v (9) in the strong topology of W4 (By; R?)
for every ¢ > 1, as k — 400, and this implies that the map uy (9,9) := v, (9)
(independent of p), which belongs to WP (Bl; ]RQ) for every p € [1,2) converges
tou (0,9) = v (V), as k — +00, in the strong topology of WP (By; R?) for every
p € [1,2). From Step 2, and in particular from (64), we deduce that

TV (u,Q) < TV?® (u, Q) < liminf TV? (ug, Q) = lkimj_nf TV? (ug, Q)
—+o00

k—+oco

pen converges to 0 = g—:; for almost every ¥ € E, as

. 1 ka 2 Ovy,
= Jm { R 99 kaﬂ}‘w‘
1

m dv? dv!
(v sav
/0 {U dy v dg } dﬁ‘ )

By (63) of Step 1 we finally obtain

2
TV (u,Q) = TV?® (u,Q) ‘/ {v'vj — vy} dﬁ‘

Step 4 (upper bound - third part). Here we study the general case,
with u = u (g, ¥) explicitly depending on g too. The proof of this step, in n = 2
dimensions, is similar to the proof given in the n—dimensional case in Step 3 of
Section 7. However we are able to make some simplifications and, in particular,
we do not need the use of Lemma, 39. For this reason, and also to make the idea
of the proof clearer, we provide some details of the proof in this setting.

Using the argument of Lemma 36, for every u € L™ (Q; R2)nW'? (Q; R?) N
I/Vloc (Q\ {0};R?) with p > 1, it can be shown that admissible sequences for
TV? (u, ), defined in (26), may be required to assume prescribed boundary
values, precisely

TV? (u,Q) = inf {hm inf / |det Duy, (z)| dz : (67)

h—+oc0

up, — u strongly in WP (Q;R?), up € u+ Wy'™ (Q;]RZ)} )
Thus, for every & > 0, there exists a map w € v + W, (By;R?) such that

/ \det Dw (z)| dz < &+ TV* (v, By) . (68)
B
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In view of Lemma 38 (valid in the general n—dimensional case) there exists a
sequence (0n),cy converging to zero, such that

27
(gj)l’—l/ Dol dH? =/ luo (on, O)F dd < My, YheN  (69)
0

ej

Introduce the sequence of functions

. w(m’ﬁ)’ if 0<o<on(1l—on)
un (2,9) =y () v (9) + [1 — ma (0)] w (on,9), if o (1 —o0n) <o < on
u(e9), if on <o

where oy, = (gh)ffll’ and 7, is a cut-off function, ie., np(0) = 1if 0 <
0 < op(L—on), np(p) = 01if g < p < 1, np(p) is linear in the interval
[on (1 — on), on)- Notice that up, — w in LP (By;R?), as h — +o0, and that the
sequence of gradients (Duy),y converges in LP to Du. Indeed

/ |Dup, — Du|P dx < c1/ Dw (L>
Q B on (1 —on)

P P
+cl/ 7 dm+cl/ Jus (on, )" (Qh;,ﬁ” dzx
By \B,, (1-0,) || Bou\By, (1-0,) ||

c1 T T
T oy [ (51) = ()
Qho-h B@h\th(l—Uh) |.Z'| |$|

2
< 202" + e o / lug (o, 9)|” dI
0

p
dx

on(1-op)

P
dw+c1/ |Dul? dz
B

eh

2—p
Y
+co 02_1 [l (0n,9) = v (N[0 (0.27) + CI/B \Duf’ d,
h

°h

2-p

and this quantity goes to zero since o, = (gp,)?~*. Therefore, by (68) we get
TV?® (u,Q) < liminf / |det Duy, (z)| dx
Q

h—+oco

= / |det Dw (x)| dz + lim inf |det Duy, (z)| dz
B h—4o0 th\Beh(l—Uh)

+/ |det Du (z)| de < e+ TV?® (v,By) (70)
Q
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+ lim inf |det Duy, (z)| dx +/ |det Du (z)| dz .

horeo Bep\By, (1-04) @

We evaluate the last integral in the right hand side. For g, (1 —op) < 0 < 94
we have

duj(0,9)  up(0,%)
99

de
dup(e,9)  Buj(o,%)
50 99

det Duh =

| =

)

mh () [o! @) — ul (o, 9)]  mn () 2580 + [1 -y (0)] Lealen?)
]

1
| (o) [v? (@) —u2 (0n,®)]  mn(0) 2% "9’ I <@w9>

we have

/ |det Duy| dz
th \Bah(l—uh)

ohn 2w
<" [T -l
Uth Qh(l—a'h) 0

<cysup {|v(¥) —u(on,¥)|: ¥ €[0,27]}-

1A

By (69) there exists a new constant c3 such that

and thus, since |n}, (0)| <

v (9) ‘

Ou (gn, ) }
W) ‘ a9

oY

o9 o9

v (9) ‘ .

5U(Qhﬂ9)‘} Y

/ |det Dup| dx < ¢ sup {|v (¥) —u(p,9)|: ¥ €[0,2n]}

th \Beh(l—ah)

and thus, by assumption (8) and by (70), letting ¢ — 0 we obtain
TV (u,Q) < TV* (u,Q) < / \det Du| dz + TV (v, By) .
Q

This upper bound, together with the lower bound of Step 1, yields the conclu-
sion. m

6 The “eight” curve

Let us denote by v the image of the “eight” curve, i.e., the union of the two
circles vt and v~ of radius 1, respectively of center at (1,0) and at (—1,0).
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Below we will use some elementary representation formulas for v+ and ™.
Precisely, for v© we will use the representation formulas

’y+ = (£17£2) € R2 : é‘f +£3 - 261 = 0}; (71)

& = 2cos? Arg £
€7\ (0,0) = { g; = 2cosArg £ -sinArg £ (72)

With the aim to prove Theorem 4, we start with some preliminary results con-
cerning a map w with values in the circle yF.

Lemma 30 Let w : [0,27] — v be a Lipschitz-continuous curve such that
w(0) = (2,0). The real function R (9) defined by R (¥) := 0 if w(¥) = (0,0)
and by

w' (9) wj (9) — w? () wy ()

J) =
) Ok

» ifw(d) #(0,0), (73)

is bounded in [0,27] by a constant depending only on the Lipschitz constant of
w. Moreover, if

7wl (ud () — P () wh (0)
A,)= | fre dt (74)

then, for every a,f € [0,2n] such that w () # (0,0) and w(B8) # (0,0), there
exists k € 7. such that

Ay (B) = Aw (@) = Arg w (B) — Arg w () + k. (75)

Proof. Step 1 (boundedness of R (¥)). Let L be the Lipschitz constant
of w. If |w (9)| > 1, then there exists a constant ¢ such that

IR()| < cL. (76)

On the other hand, if |w (9)| < % then, since [w! (19)]2+ [w? (19)]2 —2w! (¥9) =0,

we deduce that |w (9)|° = 2w () and w' (9) = 1—4/1 — [w? (¥)]° . Taking the
derivative of both sides we obtain

w? (9) w (9)

wh (9) = .
1 —[w? ()]

Therefore, if w (¢¥) # (0,0), for almost every ¢ we also have

_ 0@ wi®) —w? @) wh () _ wi() _ w(®)wy ()
= jw (9)* R 2! (9)
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2 | (1_ V1 [w? (19)]2) V- )P

The derivative of the real function g (t) = 1 — /1 — ¢ satisfies the condition
g’ (t) > 1/2 for every t € [0,1); thus we have

5 2 1.5 2
1= 1= @) > 5 [ @)

_ W) |, [w? (9)]

We deduce that

RG] < 5 [w} (9)] (1+ ;> ,
L [u? (9)]

and again (76) holds for an appropriate constant ¢ since |w2 (19)| < % This
proves the first assertion of the lemma.

Step 2 (proof of (75) under special assumptions). To prove assertion
(75) we first make the further assumption that there exist N disjoint open
intervals (a;, 3;) such that

O=a1<Bi<ae<f2<...<any<fy=2m,

and w (¥) = (0,0) if and only if ¥ € [0,27]\ UX, (as,Bi). Fix o, 8 € (0,27)
such that w(a) # (0,0) and w(8) # (0,0). If a,8 € (a;,P;) for some i €
{1,2,..., N}, then, using an argument similar to that of the first part of Lemma
20, we have

Ay (B) — Ay (0) = Arg w (B) — Arg w (a) (77)
Otherwise, if there exists ¢ € {1,2,..., N} such that
o <a<fi<aigr <pB<PBit1, (78)
then we apply (77) to the interval (a, 8; — €) to obtain
Aw (Bi —€) — Ay (@) = Arg w (Bi — &) — Arg w () -

In the limit as ¢ — 07, since when w (9) € v\ {(0,0)} then Argw (¥) €
(=2, %), we obtain

Ay (B) = Au (@) = +5 — Arg w (@) | (79)

where the sign + holds if w? (9) > 0 as 9 — B;, and the sign — holds otherwise.
Similarly, we have
™

A (B) = Au (0i1) = Arg w (B) — (7)) (80)
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and, adding side by side (79) and (80), yields
Ay (B) — Ay (@) = Arg w (B) — Arg w (a) + k7,

where k € {—1,0,1}. The general case, when (78) is not necessarily satisfied,
follows from the previous case by iteration.

Step 3 (proof of (75)). Let w : [0,2n] — 4T be a Lipschitz-continuous
map. Let {; }]. n be a sequence of disjoint open intervals (possibly empty) such
that w () # (0,0) if and only if ¥ € UjenI;. For every h € N we define

L w (’19) lf ’19 € Uh:l‘[j
wp () = { (0,0) if 9 ¢ U, I

Then the sequence of Lipschitz constants Ly of wy is bounded. Moreover wy
converges uniformly to w in [0,27], as h — 400, and the corresponding se-
quence {Ry (9)},cy converge to R (99) almost everywhere in [0, 27]. Therefore,
integrating (73), we deduce that {A,, (¥)},cy converges to A, (¢) uniformly
in [0, 27].

Let o, 3 € [0,2n] be such that w(a) # (0,0) and w (B) # (0,0). For h large
enough we also have wy, (o) = w(a) # (0,0) and wy, (8) = w(B) # (0,0) and,
by the previous step,

Aup (8) = Auy () = Arg w (8) — Arg w () + kyr.

Since the sequence kj, is bounded, we can pass to the limit in a subsequence and
we arrive at the conclusion (75). m

Lemma 31 Under the same assumptions of the previous Lemma 30, for every
9 € [0,27] we have

w (¥) = 2cos Ay (V) (cos Ay, (V) ,sin 4y, () . (81)
Proof. Recall that w (0) = (2,0) and so Arg w (¢) = 0. By Lemma 30, if
w (¥9) # (0,0), then there exists ky € Z such that
Arg w(¥) = Ay (9) + ko .
By (72) we deduce the conclusion

wt (9) = 2cos? Arg w (9) = 2cos? Ay, (9)
w? (¥) =sin2 Arg w (¥) = sin2 A, () = 2sin A,, (9) - cos A, (V)

If w (¥9) = (0,0) and there exists a sequence ¥; — Jg such that w (9¥;) # (0,0)

for every ¢ € N, then (81) holds for ¥ = ¥;. Since A, (¥) is a continuous
function, (81) holds for ¥ = ¥4 as well.
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If w(Y9o) = (0,0) and a sequence ¢; — Y such that w (9;) # (0,0) for every
i € N does not exist, then there exists an interval (dg — 8,9 + 0), with § > 0,
such that w () is identically equal to (0,0) in (99 — §,9¢ + ¢). In this case let
us denote by (a, ) the largest interval containing ¢ with this property; since
R(9) = 0in (a,B) we have A, () = Ay (¥9). On the other hand (81) holds
for ¥ = a since (a, 8) is an extremal interval; hence

w (%) = (0,0) = w () = 2cos8 Ay, (@) (cos Ay, (@) ,8in Ay (@)

= 2cos Ay (Po) (cos Ay (Vo) ,sin A, (Po)) -

The next lemma is similar to the “umbrella” Lemma 23, with the main
difference that here the starting point of the “wmbrella-stick” is placed at a
boundary point of the circle y+.

Lemma 32 (The “umbrella” lemma for the “eight” curve) Letw : [0,27] —

vt be a Lipschitz-continuous curve. Assume that there exist o, € [0,27],
a < B, such that Ay (@) = Ay (B). Then, for every e > 0, there exists a
Lipschitz-continuous map w : S (o, B) — R2 satisfying the boundary conditions

{ w(l,9) =w®), VIE][ar,p]
W (0,@) = ow(a), Vee€l0,1]
w(0,8) = ow(B), Vee€l0,1]

(note that w (o) = w (B)) and such that

/ |det Dw (z)| dx < €.

Proof. For fixed h € N we set
wh (0,9) := 2pcospn (0, 9) (cos pp (0,9) ,sin gy (0,9)) ,
where
on (0,9) = 0" Ay (9) + (1 - ") Ay (a) -

Let us test the boundary conditions of w (g,). By Lemma 31, for every 9 €
[, 8] we have

wp (1, 19)—2cosA (9) (cos Ay (9 ) sin A, (1))
= (wy (9),wp (9)) = w(
and, for every p € [0,1],
Wp, (0, @) = 2pcos Ay, (@) (cos Ay (@) ,sin Ay (@)
= o (w}, (@), w}, () = ow (@) -
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Similarly @y, (g,8) = ow (B) for every p € [0,1]. Using an argument similar to
the one used in Lemma 23, we can see that (we do not denote in the matrix the
dependence on h)

det Dy, (z) = Eg’ﬁg %ggg’g — 4g" cos® o (0,0) AL, (9) .

| =

_ wt (@) wd (9) —w? () w) (9)
w (9)]?

is bounded; thus there exists a constant ¢ such that

1
c

det Dwy, (x dmgc/ o't do=—,
L., et D @) 0 -

and this concludes the proof of our lemma. =

Lemma 33 Let w : [0,27] — vt be a Lipschitz-continuous map. If a, €
[0,27], @ < B, are such that Ay (&) = Ay (B), and if the function A, (9)
is piecewise strictly monotone in [, 3] (with a finite number of monotonicity
intervals), then

B
/ {w' (9) wj (¥) —w® (W) wy (I)} dd = 0.
Proof. This result can be proved just as in Lemma 26. m

Lemma 34 Let u : [0,27] = v = v" U~~ be a Lipschitz-continuous map.
Assume that there exist N disjoint open intervals I; C [0,27] such that u (I;)
is contained either in v+ or in v~ for every j =1,2,..., N, and u (¥) = (0,0)
when ¥ ¢ Ué-vle - Assume, in addition, that the function

¥ — u' (9) u% (19) — u? (9) u119 () (82)

has piecewise constant sign in [0,2w]. Then, for every € > 0, there exists
a Lipschitz-continuous map w : B1 — R? satisfying the boundary condition
w (1,9) = u (¥) for every ¥ € [0,27], and such that

N
/31 \det D ()| dm<e+%; (e ) 9) — w? (D) b ()} 9] (89)
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Proof. Fix j € {1,2,...,N} and assume that u (I;) C v*. We follow
the method of proof of Lemma 27, using Lemma 32 (in place of Lemma 23)
and Lemma 33 (in place of Lemma 26). Setting I; := («;j, 3;), we construct a
Lipschitz-continuous map @; : S (ay, 8;) — R? satisfying the boundary condi-
tions

w; (1,9) = u (9), VY€ [aj, 5]
{ ﬁi (Q:aj):-g'u(aj):((]:()): VQE[Oa]-] (84)
wi (0, 85) = e-u(B;) =(0,0), Vee[0,1]

and the estimate

L, 1P @l e < g | [ ot )0 @)= @) )}

(85)

A similar conclusion holds if, instead, we have u (I;) C y~. Then the result
follows by taking @ : B; — R? defined by

~ — ﬁ(9719)7 Vﬁe(a,ﬂ)=[
w (0,9) := { 0,0) Vo ¢ U, I

Proof of Theorem 4. Step 1 (lower bound - first part). Let v :
[0,27] = v =+t U~~ be a Lipschitz-continuous map. With u (z) := v (z/ |z|)
then u € L® (By; R)NW'? (By; R2)nWh> (B )\ {0} ; R?) for every p € (1,2).
By (90) (lower bound obtained in Lemma 36 in the general n—dimensional case)
we have

TV (u,By) > det Du (x) dz

7

B

where @ : B; — R? is any Lipschitz-continuous map which assumes the bound-
ary value & = uw on 9B; (e.g., u(z) = |z| v(z/|z|) = |z| u(z) for x € B\ {0}
and @ (0) = 0). By formula (61) of Lemma 28 (valid on B, for every r € (0,1]),
since & = u, u/09 = Ou /Y on OB, we have

27

TV (u, B)) > ‘% {v! (9) 02 (9) — v (9) v ()} dﬁ‘ . (86)

0
As in the statement of Theorem 4, we denote by (I;) jen @ sequence of disjoint
open intervals in [0, 27] (possibly empty) such that the image v (I;) is contained
either in 4+ or in 4=, and v (9) = (0,0) when ¥ ¢ UjenI;. Then we can write
(86) equivalently

TV (u,B1) 2 5 |3 OB @h @) 6
JEN “Hi
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Step 2 (lower bound - second part). Let § > 0 and let {u, = (uf,,u}) }heN
be a sequence in W2 (By; R?) converging to u in the weak topology of W'? (By; R?),
€ (1,2), and such that

TV (u,B1) +6 > lim |det Duy, (z)| dz .
h—)-‘rOO B1
Let uf := (|up|,u2) € Wh? (By; R?), which converges to ut = (|u'|,u?) in the
weak topology of W'? (By; R?) as h — +o0. Since |det Dujf (z)| = |det Du, (z)]
for almost every xz € By, we obtain

TV (u,B1) +4 > lim |det Duy, (z)| dz
h—+o0 B

= lim |det Duf (z)| dz > TV (u',By) .
By

h—+oc

The total variation of the map ut : B — 7 can be obtained using the formula
(10), with ut = (|u!|,u?) = (Jv'|,v?); therefore, as § — 0+ we have

@ pd |
/0 {|| L bao)

Recall that v! (9) > 0 if ¥ € I;, where v (I;) C v (and analogously v! (9) < 0
if v(I;) C v, while v! (9) = 0 if 9 ¢ Ujen;). Again, as in the statement
of Theorem 4, we denote by I;r, with the 4 sign, any interval I; such that
v(I;) CvT, and by I, any interval Ij, such that v (Iy) C y~. Thus

TV (u,By) > TV (ut,By) = %

TV (u, By) >— Z/ {v'vj —v?vy} dd — Z/ {v'vj —v’vy} dd|. (88)

JEN kEN

Step 3 (lower bound - conclusion). Using the results of the previous
Steps 1 and 2, in particular (87) and (88), we have

l\?l>—‘

TV ('LL Bl

Z/ {v'vj U2Uzl9}d19i2/ {v'vi — vy} dd|.

keN

Since maxy |a £ b| = |a| + |b|, we finally obtain the lower bound (13).
Step 4 (upper bound). Assume first that u : [0,27] = v = yT Uy~

is a Lipschitz-continuous map satisfying the further assumptions of Lemma 34.
In particular, we assume that there exist N disjoint open intervals I; C [0, 2]
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such that u (I;) is contained either in v or in 7~ for every j = 1,2,...,N,
and u (9) = (0,0) when ¢ ¢ UN.,I;. We also assume that the function ¥ —
ul (9) ud (¥9) — u? (9) ul (V) has piecewise constant sign in [0,2n]. Then, for
every € > 0, there exists a Lipschitz-continuous map @ : B; — R? satisfying the
boundary condition w (1,9) = u (9) for ¥ € [0, 2], and (83). For every h € N
we define
u (9), if 1/h<p<1,

un (,9) = { @((Q)h,ﬂ), if O/S 0<1/h

As in Step 2 of the proof of Theorem 1, uj, converges to u strongly in W7 (By; R?)
for every p € (1,2), as h — +oo. Finally, by (83),

/ \det Duy ()| d:cz/ |h2detDw(gh,19)|dw:/ \det D (0,)| do
B Bi/n B,

)

N
<6+%Z {ut (9) ud () — u? (9) uy ()} d
j=1 "1

and thus we obtain the conclusion (12) in this case, i.e.,

/ {u'uf —wPuy} dd
I

N

1
TV (u,B1) < TV? (u, By) < 5 2
=

Step 5 (upper bound again). Consider first the case where u : [0, 27] — ~
satisfies the conditions of the previous Step 4, with the possible exception that
the function ¥ — u' (9) u3 (9) — w? (9) u} (¥) has piecewise constant sign in
[0,27]. Assume further that there exist N disjoint open intervals I; C [0, 27]
such that u (I;) is contained either in v or in 7~ for every j = 1,2,...,N,
and u (¥) = (0,0) when ¢ ¢ UX. I;. We proceed in a way similar to that
of Step 3 of the proof of Theorem 1. We consider one of such intervals I;
such that u(I;) C ' and, without loss of generality, we can assume that
u(0) = (2,0) € v*. By Lemma 31, the map u (¥) can be represented in the
form

u (%) = 2cos Ay, () (cos Ay (U) ,sin Ay (9))

for 9 € I;. As in Step 3 of the proof of Theorem 1, we may find a sequence
() k) pens With uj g = I; = R*, such that, as k = +o0,

{ ujr = u in C°(I;),

d:ﬁ;’“ — 94 strongly in L7 (I;) Vg¢>1

Moreover uj (9) = u (9) for ¥ € dI;, and uj ,du? ,/dd — u?  duj, /dY has
piecewise constant sign in I;. Then the map w; j () satisfies all the assumptions
of the previous Step 4. We define

L Uj k (19) . if 9€ Ij
uk (9) = { (0,0), if 9 ¢ U;I;
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Clearly the maps uy () converge to u in the strong topology of W1? (Bl; RZ)
for every p € [1,2), as k — 400, and from Step 4 we obtain the upper bound
(12) under our assumptions, i.e.,

TV (u,By) <TV?®(u,By) <liminf TV? (u, By) (89)

k—+o00

du? du?t
1 k 2 N
/1]. {“J‘y’“ 2 kg }dﬁ

L du? 2 du
—Z { —5 dﬁ}dﬁ

Finally, when the intervals I; are infinitely many, the upper bound (12) is de-
duced from the previous case of finitely many intervals I; (j =1,2,... ,N), by
approximating u with

N

=1

w9, 1f19€U I
“N(ﬁ)'—{(o,o), if 9 ¢ U

Indeed, applying (89) to each uy and passing to the limit as N — +oo, we
obtain

TV (u,By) <TV?® (u,B;) < liminf TV? (un, By)
N—+0c0

N oo
1 du? dut 1 du? sdu
< 1 peu” s au- _ 1 / poeu”
Nirfodz /I{“ a " dﬂ}dﬂ 2; . {“ aw " dﬁ}dﬁ

7 The n—dimensional case

In this section we prove Theorem 10. We first recall a lower semicontinuity
result, valid for polyconver integrands (and for quasiconver integrands as well),
related to the weak topology of WP (Q; R") for some p below the critical ex-
ponent n. These may be called non-standard lower semicontinuity results, as
opposed to the classical setting of lower semicontinuity results in the weak topol-
ogy of WP (Q; R*) when p is equal to the growth exponent of the integrand f
(see Morrey [48], Acerbi and Fusco [3], Marcellini [44]). We refer to polyconvex
integrals as in Theorem 35 below, of the type

/Qf(Du) dr, with 0< f(€) <c(1+|Ef) .
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In the case considered here, the integrand f (¢) := |det &| < n~ ™2 |Du (z)|" has
growth exponent equal to n, while we need to consider the weak topology of
WP (Q; R*) for some p < n.

Theorem 35 has been proved by Marcellini [44], [45] for p > n?/ (n + 1) and
by Dacorogna and Marcellini [19] for p > n —1 (p > 1 if n = 2). A limiting
case, with p = n—1, has been considered under different assumptions by Acerbi
and Dal Maso [2], Celada and Dal Maso [14], Dal Maso and Sbordone [21] and
by Fusco and Hutchinson [28]. The relazation in this context has been first
considered by Fonseca and Marcellini [27].

Precisely the following theorem holds (we limit ourselves to quote here the
polyconvex case, related to maps u : @ C R® — R™ with m = n). Given a map
u:Q — R", we denote by M (Du) the vector-valued map

M (Du) = (Du,adjsDu, . .. ,adj, 1Du,det Du) € RY

where, for j = 2,... ,n — 1, adj; Du denotes the matrix of all minors j x j of

Duyand N =377, (Z‘)2 (in particular N =5 if n = 2).

Theorem 35 (Lower semicontinuity below the critical exponent) Let ()
be an open set of R*. Let g : RV — R be a nonnegative convex function. Then

lim inf g (M (Duy)) dxz > / g (M (Du)) dx,
h—>+oo Q Q

for every sequence uj, which converge to u in the weak topology of WP (Q; R?)

for some p>n — 1, with u,up € I/Vlf)’" (; R™) for every h € N.

C

The following Lemmas 36, 37 and 38, are also used in the 2—dimensional
Section 5. The first result stated in Lemma 36 gives a lower bound for the total
variation. It is a variant of Lemma 5.1 (see also Lemma 2.3) by Marcellini [45],
who considered the general quasiconvezr case with the exponent p below the
critical growth exponent n, precisely n?/ (n +1) < p < n.

Lemma 36 (Lower bound - first estimate) Letu € L (Q; R*)NW1? (Q;R*)N
WL (Q\ {0};R™) for some p € (n—1,n). The following estimate holds

loc

TV (u,Q) > ; (90)

/ det Du (x) dz
Q

whenever u : Q0 — R™ is a Lipschitz-continuous map which agrees with u on the
boundary of Q, i.e., u(z) = u(x) on ON.

Proof. For fixed p € (n—1,n), § > 0, consider a sequence {up},y in
Wbhn (Q; R") that converges to u in the weak topology of WP (Q; R"), and
such that

lim / \det Dup, (z)] do < TV (u, Q) + 5. (91)
Q

h—+o0

o1



Let M := [|ul|p=(qrn € R Truncate each up into wy, = (wh,wi,... wy)
whose components are given by

. -M if uj, (z) < —M
w) (x) == uj (z) if —M<u(z)<M , Vj=01,...,n
M if wy (z)>M

Clearly {up},cy still converges to u, as h — +o0, in the weak topology of
WP (Q;R*) and the L®°—norm |[wh|| e g~y is uniformly bounded as h € N.
Moreover, since

wp, (x) # up, (2) = det Dwy, (z) =0,

we obtain |det Dwp, (z)| < |det Dup, (x)| for almost every = € 2, and

lim inf / |det Dwy, (z)] dz < lim / |det Duy, (z)| de < TV (u,Q) +4.
Q h—+o0 Q

h—4o0

Therefore, without loss of generality, passing to a subsequence, we can assume
that the limit relation (91) holds, together with the uniform bound

Sup |[unlpe(grny = M < +00. (92)
heN

Let Qo be an open set compactly contained in Q and let R := dist (Q9, Q) /2,
with 0 € y. For every k € N set

R
Qi::{.’EEQ:diSt(.T7Qo)<%}, Vi=12,...,k
For every i = 1,2,...,k, consider a Lipschitz continuous cut-off scalar function

@i : Q — [0,1], defined by

1 if £e€Q; 4
pi(x) =4 0< <1, |Dg;| <& if z€Q\Qy
0 if zeQ\Q

Again, for every i = 1,2,... ,k, and for h € N, define

wh,i (%) == (1 = i () u (2) + @i (z) un (x) .

Then wy,; (z) = u (x) for every x € Q\Q;, and in particular for every x € Q\Qy.
Since u () is a smooth map in Q\Qy and since wy; () and u (z) are smooth
maps in Q, which coincide with u (z) on the boundary 912, using the fact that
the integral of the Jacobian depends only on the trace at the boundary, we have

/det Du(z) dx
Q

/ det Dwy, ; (z) dz
Q

< / \det Duwn; ()] da
Q

=/ \det Duy, ()| dac+/ \det Dwp.; ()] dx+/ \det Du ()] dz .
Qi1 Qi \Qi—1 Q\Q;

i
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Letting h — +o00, taking into account the limit relation (91), summing up the
above relation with respect to ¢ = 1,2,... ,k, and dividing both sides by k, we
obtain

<TV (u,Q) + 8 (93)

/det Du(z) dz
Q

k

+llimsup Z/ |det Dwp, ; ()] da:+/ |det Du (z)| d= .
E hovoo = Janei, 2\ Q0

We estimate the second integral in the right hand side. To this aim, we recall
the inequality (2.9) of Marcellini [44], valid for every quasiconvex function f (&)
with g € [1,+00) growth: there exists a positive constant ¢ such that, for every

&,
F@-fml<e (1+1g + ") 1€l (94)

When applied to the quasiconvex function f(§) := |det{|, since |deté| <
n~—"/2 |¢|", from the previous inequality with ¢ = n we deduce that

ldet é] = |det || < (141" + ") le =l (95)
As Dwp; (x) = D[(1 — @i (@) u (z) + @i () up (2)], in Q;\Q;—1 we have

|Dwh,; (z) — @i (z) Dun (z)| < |Dgi (z)| - [un (z) — u (2)]

E+1
+[1 =i (2)] - [Du(z)] <

lun (z) —u ()| + [Du (2)| .
From (95) with £ := Dwy, ; (z) and 1 := @; (z) Dup, (z) we obtain

| |det Dwp,; (z)| — |det @; (z) Dup, ()] ]
<c (1 + | Dwpi ()" + |pi (z) Dup, ($)|nfl) |Dwp i (z) — @i (x) Dup, ()]

k+1
R

<c(1+|Dwni (@)™ + D (@)™ [ jun () — u (2)| + |Du (2)|

Set My := [|Dul|peo(o\qq;rnxn € R Then, since p > n — 1, for the second
integral in the right hand side of (93) we have the following bound

/ \det Dwp; (2)] d < / \det i (2) Dup (z)| dz
Qi \Qi—1 Qi\Qi—1
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+c/ {(1 + |Dwn.; (z)|" ' + |Dun (w)l”’l) :
Qi \Qi-1

‘[k+1

7 lup, () —u (z)] +M1] } dx

< / \det ¢; () Dup ()| dz
Q:\Q;_1

n—1

P

+C{/ (1+ | Dwpi (z)|" ' + [Duy, (ﬂv)|Trl)m dar}
Qi\Qi—l

p—(n—-1)

' {/Qi\gi_l [ﬁ lup (z) —u ()] + Ml] oD d.z'} ’

The sequences {un}),cy and {wn}),cy converge to u in the weak topology of
WP (Q;R") and the LP—norm of their gradients remains bounded. Up to a
subsequence, as h — 400, the difference {u (z) — u (2)},y converges almost
everywhere to zero. By taking into account the uniform bound (92), we can go
to the limit as h — 400 and we obtain

k

limsup / \det Dwp.; (z)| da (96)
h—+o0 i=1 Qi\Q;-1
k
. p—(n—1)
< hmsupZ/ |det ; (z) Dup, (x)| dz + ¢1 - My |QU\Qi1| 7
h—+o00 i=1 Qi \Qi_1
k
. n p—(n—1)
ShmsupZ/ (s (2)|" - |det, Dup (2)] dz + e My [\ 1|5
h—+oc0 i=1 Q;\Qi_1
p—(n—1)
< limsup / \det Dup ()| da + er kM, [Q2\Qo| ™5
h—)-‘rOO Q\QO

p—(n—1)

=TV (u,Q) + 6 + kM [Q\Qo| 7

From (93) and (96) we deduce that

<TV (u,Q)+ 06

/ det D (z) dz
Q
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p—(n—1)

1
+— {TV (u, Q) + 0+ c1kMy |[Q\Qo| 7 } +/ |det Du (z)| dz .
k Q\Qo

Letting k — +o0, Q9 — Q and § — 0, we conclude

<TV (u,Q) .

/ det D4 (z) dx
Q

Lemma 37 (Lower bound - second estimate) Let u be a function of class
L (O R™) N W2 (; R™) N WL (Q\ {0} ; R™) for some p € (n—1,n). For

loc

every r > 0 such that B, C Q the following estimate holds

TV(u,Q)Z/ \det Du (z)| dz +
Q\B,

/ det Du (z) dz
B,

; (97)

where u : B, — R™ is any Lipschitz-continuous map which coincides with u on
the boundary of B, i.e., u (x) = u(x) on OB,.

Proof. Fix § > 0 and consider a sequence {up}, oy in W™ (Q; R™) which
converges to u in the weak topology of W (Q; R"*) for some p € (n — 1,n) and
such that (91) holds. For every r > 0 such that B, C Q we have

TV (u, Q)+ 0 > lim / |det Duy, ()| d=
h—+o00 Q

> lim inf |det Duy, ()| dz + liminf |det Duy, (z)| dx
h—+o0 Q\B.,, h—+oc0 B,

> lim inf / |det Duy, (z)| dz + TV (u, B,) .
Q\B,

h—+oc0

We estimate the term TV (u,B,) with (90). Moreover, since u,u; belong to
Wbn (Q\B,; R") for every h € N (and uj, converge to u in the weak topology
of WP (Q\B,; R™) for p > n — 1), we can apply the lower semicontinuity result
below the critical exponent stated in Theorem 35. We reach the conclusion (97)
asd -0t m

Lemma 38 Let u € WH? (By;R*) N W'l})’coo (B1\ {0} ; R™) for some p € [1,n).
If

1

on P

/ |Drul? de < My
BQ

95



for every o € (0,1) and for some positive constant My, then there exists a
constant ¢ (n,p) and a sequence p; — 0 such that

1
m/ |D ul” dH™ ' < c(n,p) M.
- 3

J Be;

Proof. For every j > 2 we have

1/j M,
/ dg/ Dol dH 1 g/ Dol do < -2 (98
1/(25) 9B, Biy; Jnr
Therefore there exist g; € (%, %) such that
M,
/ \Dyuff dE™ < 2 s (99)
8By, Jnr

in fact, if (99) does not hold, then for every g € (%, %) we should have

M
Dyl dint > Mo
) Jn—p—l

and thus

/i 3My 1 M,
/ d@/ |D‘ru|p dHn_l > = — 21 57 > %7
1/(24) 8B, e 2 gnP

which is in contradiction with (98). Since % < < %, we deduce that g; — 0,

1 n 1 n—p—1 . . . 1 n—p-1 An—p—1 .
and that (5 < oj if p>n—1, while (3 < (205) if

p <n— 1. From (99) we finally have

3M,

jn—p—l

S c (nap) MO Q]n"ipil )

/ |DyulP dH™ ! <
8By,

where ¢ (n,p) =3ifpen—1,n),c(n,p)=3-2"?lifpe[l,n—1). m

We denote a generic element of the surface of the unit ball 8B, = S"!
by w. Let wy € S"! be fixed. For every j € {1,2,...,n—1} let 7; :
Sn=1 — {we} — S™! by a vector field of class C' such that, for every z €
Sn=1 — {wo}, the set of vectors {r (w),72 (W),...,7Tn—1 (w)} is an orthonor-
mal basis for the tangent plane to the surface S?~! at the point w. Without
loss of generality (up to a change of sign to one of the vectors) we can as-
sume that 7 (W), (W),...,Tn_1 (w) have the property that, if we denote by
v (w) the exterior normal unit vector to S™~! at w, then the system of vectors
{v(w),nn (W),...,Tn-1(w)} is a positively oriented basis of R”. Le.,

V(AT (WA ... ATh—1 (W) =e1 Aea A...Aey
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or, equivalently, that the determinant of the matrix whose column vectors are
the components of v (w),71 (W),...,Tn—1 (w) with respect to ey, ez,... e, is
equal to 1.

Ifv:S" ! 5 R, ve Whe (S"5R"), v = (v',0?%,... ™), is a Lipschitz-
continuous map, we denote by D, v the vector of R*~! whose components are
D;v,Dpv,...,D V.

Tn—1

Lemma 39 Let v € Wh> ("1, R"), n € C*' ([0,1]), with n(0) = 0 and let
w(z) =n(z|) v (le) For almost every x € B; we have

: 2 \[*, 7 (s z\ [
1Dw @) = | (Jal) v (—)‘ A ‘DTU (&) oo
] B E
! n—1
x
n ) ) L el it m
_Z(_l)zlvz<£)6(’l}; T A ,v)<£>-
i=1 |.’L‘| 6(7—177—27- .- 7Tn—1) |IE|
Moreover, if n(t) =t for every t € [0,1], then
/ det Dw (z) dx (102)
By

1 n i—1 4 6(1}1,... ,Uiil,?}i+1,... ,’Un) 1
= - -1 v (w w) dH™ 1.
n~/831;( ) («) O(r1,72,- -, Tn—1) (@)

Proof. Since v : S" ! — R" is a Lipschitz-continuous map, then D,v (w)
exists (in the classical sense) H" 1 almost everywhere on S™"~! and the map
x = v (x/ |z|) is classically differentiable for almost every z € B;y. Let = # 0 be
a point of By where v (z/ |z|) is differentiable; since the vectors

x x
v=v , =Tt\—),---s Tn-1=Tp—-1 |71,
| | || ||

form a basis of R”, for every i =1,2,... ,n we have

Z 87'] EA

Duw' (z) =

oz (e S av (2 Ja)
‘"("”””(|x|> |w|§ or;
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and thus we obtain (100). Moreover, Dw (z) is equal to the matrix whose
columns are {Dw! (z),Dw?(z),... ,Dw™ (z)}. If we express each column of
Dw (z) as linear combination of the elements of the basis {v, 7, ... ,7,—1}, since

w(z) =n(z|) v ( ) we obtain the matrix

n (z) ot (&) 0 (al) o* () o (Jal) o ()
n(z]) 8! ( =z n(z]) 8% ( = n{z)) 8v" ( =z
Dw (18) = lz|  O0m |Z|) lz] 371 ( ~’E|) [EICE ( T )

n(lz)) oot (1) n(lz]) 802 (1) n(lz)) §u™ (L)
[zl 0rn-1 \ 2] lel  0rn—1 \I2l) =~ |2l 0mn—1 \ 2]
Thus the determinant of the matrix Dw (), computed by developing the first

row, is given by (101). By integrating over B; both sides of (101), with 7 (¢) =
! n—1
for every t € [0, 1], since W =1, we obtain

det Dw (z) dx

B
" L 8 (vh,... wiml it . yn
[ St (2) 20 ") (%) 0
B1 i || 5(71772,--- ) Tn—1) ||
L o (vh,... v ott  on)
dg/ z 1 z( ) ’ ’ ) ) ) ( ) dHn 1
/ aBg; |.’L'| 6(7—1;7—2a"' JTﬂfl) | |

3(7’1,7'2,... yTn—1)

” (o, e L n
=/ n— ldg/ l lvz (w) (U v v ) (w) dHn—l
9B1 j—1

o (vt ..., vt o)

Lemma 40 Let 2 be an open set containing the origin. Let us assume that,
for somepe€ (n—1,n), u € WH? (Q; R*) N Wlf)f" (Q\ {0} ; R") satisfies

sup
o>0 O"7P

/ |Drul? dz < My
BE

or a positive constant My. Let v € Who° (§7~1-R™) be such that
p ;

lim+ max {|u (ow) —v (W)|: w € IB} =

0—0
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Then there exists a sequence gj — 0 such that

lim det Dw; (x) dz = / det Dw (z) dx, (103)
J—+o0 B B

where w; (z) == |z| u (gjﬁ) and w () = |z| v (\i_l)

Proof. Let p; be the real sequence converging to zero of Lemma 38. By

assumption w; (z) := |z| u [0;% ) converges to w (z) := |z| v ( 1% ) uniformly
J Ia] E

in By. Let us prove that w; weakly converge in W'? (By; R") to w. In fact, by

(100) of Lemma 39 we have
T T
el D il
! ("f |x|) ™ ("J |:c|)

and thus the LP norm of Dw; remains bounded. In fact, by Lemma 38,

2 2

|Dw; (z)|” = +0;

p
/ |Dw; ()P dz < ¢ + czg;)/ D.u (jS) dz
B B |'7"|
P ! z \ [P n—1
=c1 + 05 dr D;u{ 0j— dH
0 9B, |z|

1 ,.n-1
r _
=c1+029§/ T dr/ |Dru (y)|” dH}! 1
0 J

ej

C
=o+—r / |Dru(y)ff dHy ' = e1+ — ¢(n,p) Mo.
n 8B,, n

n—p—1
J

By (101) we also have, with a = p/ (n — 1),

X T
u (Qm) Dru ("m)
1

< 049?("_1)0}_”/ |Dru(y)” dHy ' = ¢y /8 |Dru (y)|” dHy ™,

ej J ej

a(n—1)

dx
(104)

a

/ |det Dw; (z)|* dz < c;,»g;-x(n_l) /
By

B;

which is bounded, again by Lemma 38. Therefore, since @ > 1, to obtain the
conclusion (103) it is sufficient to prove that

lim pdet Dw; (x) dz = / pdet Dw (x) dz, Yo e Cy(By) .
Jj—+oo B By
(105)
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Since p > n — 1, we apply Reshetnyak’s [56] weak continuity result on the
matrix adjn,—1Dw; of minors (n — 1) x (n — 1) of Dw;, which weakly converge
in L7=T to the corresponding matrix adj,_1 Dw of minors of Dw (see 44). By
the uniform convergence of w; to w, for every ¢ € C} (B1) we get the conclusion

L0 (s, ... wh)

; d
! a(mla'z.?;"')xn) g

lim pdet Dwjdr = lim —/ w
Jj—+oo B J—+oo B

9 (p,w?, ... ,w") /
1 ’ ’ ’
= — w dz = det Dw dx .
/B1 0(x1,22,...,2n) BISO

Proof of Theorem 7. Let u € LS, (O R2)NW P (Q; R")ﬂWlt’coo (Q\ {0};R")
for some p € (n —1,n). Let {e4},y be a sequence converging to zero and con-
sider the convolution up := u * 1, of u with a smooth mollifier ne,. For every
h €N, up, € C* (Qp;R?), where Qp, = {z € Q: dist (z,00) > e1,}. Moreover,
for every Q' cc Q\ {0}, up, — u uniformly in ', Duy, () — Du(z) for every
z € Q\E, where E is a Borel set of zero measure, and the sequence {up},y is
Lipschitz-continuos in Q', with a Lipschitz constant independent of h. Denote
by Ny the set of real numbers given by

No:={¢>0: H* ' (8B,nE) >0} .

If B, CC Q then we have
o:|EmB,,|=/ H"'(0B,NE) do,
0

and thus the one-dimensional Lebesgue measure of Ny is equal to zero. We
can repeat the proof of Lemma 40 to reach the same conclusion for a sequence
{Qj}jeN - (07T)7 {gj}jeN NNy = g, 05 — 0.

Since up — v uniformly on By, , Drup (z) = D,u (z) H* ' —almost everywhere
on B,,, and the sequence {up}, .y is Lipschitz-continuos on B,; with a Lipschitz
constant independent of h, then D;u, — D,u in L7 (0B,,) for every q¢ > 1.
Fixed ¢ € C§ () and denoting by v = v (z) = (v',v?,... ,v™) the exterior
normal unit vector to 0B,;, we have

2 n 2 n
/ ult’)(cp,u,...,u ) Qe — Tim ula(go,uh,...,uh) e
Q\B,,

6(.’171,.’[72,... ,:L'n) h—+o0 Q\B,, h@(xl,xg,... ,.’L‘n)

" lm / Soa(u}l,u%,...,ug) i
h—+o00 Q\BEJ‘ 8(.’13'1,(13‘2,... ,xn)

3 i1, L1y -

" - o (ud,ul,... ,up) v
+/ ul _1yi-! ho Ypo - > U a1
BBQJ. hZ( ) Soa(ml:" ;mn)



=— / pdet Dudx
O\By;

n )
i 0 (u2,ud,... ,u") v
—/ u Y (1) ( ) dH™ .
ang P 6(1’17... s Li—1, Lidly--- ,.Z'n)

By the analytic expression (119) of v, together with (iii) of Lemma 41, with the

notation w; (z) := |z| u (gjﬁ), we obtain

2 n
/ w2l ) (106)
Q\B,,

6(1'1,1132,... ,.Z‘n)

9 (u2,u?, ... un
:—/ apdetDudx—/ uly (u?,u u) dH™ !
a\B,,

ang 6(7‘1,7‘2,... ,,Tnfl)
0 (w?,w?,... ,w"
:—/ cpdetDuda:—/ wip (0;w) (w7 ) /) dH™ !
O\ By, 8B 8(71772;--- aaTnfl)

=— / pdet Dudx
OQ\By;

o (w3, wi,... wh) vl

_/aBl wielew) 3 (0T 5

dHn—l
T 1, Tidly -+ 5 Tn)

1 T 2 n
0 (chp (Qjm) WS, ,wj)
=— pdet Dudz — dz
Q\B,, By d(z1,72,... ,2n)

:—/ godetDuda:—/ cp(gji) det Dw; dz
Q\ By, By |.’L'|

X .

_/ W 3(@(9;‘%),11)]2-,... ,w;l) ,
B

J O(x1,%2,... ,Tp)

As j — 400 the quantity ¢ (Qjﬁ) converges to ¢ (0) uniformly in B;. Then,
by the bound (104) and by (105), we obtain

lim ; ® (w%) det Dw; (x) dz = / ¢ (0)det Dw (z) dz .

j—4o0 By
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Moreover, as in the proof of Lemma 40, the sequence {|Dwj|};.y is bounded in
L?P (By) and

6(90(931)/“}235“]”) || D |1
/w; o) > ™ ) i Sclgj/ Tl 1D\~ 4y < e,
B, O(x1,22,-.- ,%n) By |z

which converges to zero as j — +o00. Therefore, since det Du € L! (2), letting
j — 400 in (106) we obtain

0 (v, 2,..., n
/ul ((pu U ) dw:—/gpdetDudw—w(O) det Dwdzr,
Q (9(:[;1,.2;'2,... ,.’L’n) Q By

with w(z) = |z| v (ﬁ), ie.,
Det Du = det Du + mgdq where mg = det Dwdzx .
By

Then, the total variation |Det Du| () of Det Du is equal to
|Det Du| (Q) = / |det Du| dx + |mo ,
Q

which agrees with the conclusion (20). =

Proof of Theorem 10. Step 1 (lower bound). We first notice that, by
virtue of (17), there exists » > 0 such that u € L>® (B,; R"). Let p € (n — 1,n).
Let g; — 0 be the sequence of the Lemma 38, and consider j € N sufficiently
large so that B,; C B, C Q. By the estimate (97) of Lemma 37 we have

TV (u,Q) > / \det Du (z)| dz + , (107)

O\B,,;

/ det Du (x) dz
B,,

where @ : B,; — R" is any Lipschitz-continuous map which assumes the bound-

ary value u (z) = u (z) on 0B,,. In particular, we consider the extension & = w;
given by w; (z) := ‘;”4 u (gj \;_I)’ and, using a change of variables, we have
2
/ det Dw; (z) dz = det Dw; () dz,
By; B,

where w; (z) := |z| u (gj |;—|) Letting j — 400 in (107), by Lemma 40 we get

TV (u,Q) > liminf |det Du (z)| dz + lim
J—+oo Q\ng Jj—+oo

/ det Dw; (x) dz
B,,
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)

:/ |det Du (z)| dz + lim
Q

j—+oo

/ det Dw; (z) dz
By

det Dw (z) dz
B,

)

=/ |det Du (z)| dz +
Q

where w (z) := |z] v (\i_l) We represent det Dw () using (102) of Lemma 39,
and we obtain the lower bound

TV (u,Q) > / \det Du(z)| dz + | [ det Dw (z) do
Q

- / \det Du ()| dz
Q

B

1
4+ -
n

- 0 (v, ., vt vttt L o)

i—1 4 n—1
~/BB1 ;(_1) v (w) 8(7’1,7’2,... ,Tn_l) (w) dH

Step 2 (upper bound in the radially symmetric case). Here we
assume that u (z) := v (z/ |z]). Let g be a sequence of positive numbers con-
verging to zero as h — +oo and let h € N be sufficiently large so that B,, C (1.
As before, we use the notation w (z) := |z|v (z/ |z|), and we define

?—Jv(ﬁ) :gihw(x):w(;—h), if z € B,,,
u(x) :v(i), if x € Q\B,,

|2]

up () ==

Then {up}) ey converges to u in in the strong norm topology of W1» (Q; R™).
Therefore we can use the definition (26) of TV? (u, Q) and, since det Du (z) =0
in Q\B,, we have

1
TV? (u,Q) < liminf ‘—n det Dw (i> ‘ dz
h—+o00 B,, | @h Oh

det Dw (z) dx
B

; (108)

:/ |det Dw ()| dz =
B

where the last equality follows from the fact that, by assumption, det Dw (x)
has constant sign in B;. In fact, by (101) of Lemma 39, with 7 (|z|) = |z|, we
have

- i1 )\ O, uT et ) g
detDUJ(x):Z(_l) Y (m) a(T17T27-- ) m ’

i—=1 -3 Tn—1

and thus, by the sign condition (22), the left hand side has constant sign as
well as the right hand side. Therefore, from Step 1 and from (108), when
u(z) :=v(z/|z|) we get

TV (u,Q) = TV® (u,Q) = TV (v, By)
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" i1 i, O o en)
_1 i+1 Ug, w ) I ) ) b w dHn,1
/351 z:zl( ) ( ) 6(7'1,7'2,... ,Tn_l) ( )

We explicitly observe that, as a consequence of what we have shown in Steps
1 and 2, we have achieved the proof of Theorem 12 in the radially symmetric
case; moreover, the representation formula for TV (v, Q) is independent of the
open set {1 containing the origin.

n

Step 3 (upper bound in the general case). By Lemma 38 there exists
a sequence (0r), ¢, converging to zero as h — 400, and such that

1
F/ |D,ul? dH™ ' < c(n,p) My. (109)

h 8B,,
For every h € N, we denote by o}, a real sequence in (0,1) to be chosen later
(see (112)). For every h = 1,2,..., let n, (9) be a cut-off function such that
(@) =11f0< o< op(1—0n),mn(0) =0if op < 0 <1, n(p) is linear in
the interval [gp (1 — op), 0n]- Fix € > 0. From Step 2 there exists a Lipschitz-
continuous map w : B; — R™ such that w (z) := v (‘i—‘) on a neighborhood of
0B and

/ |det Dw (z)| de < TV (v,B1) + €. (110)
By
Then, with the notation w := z/ |z|, we define
w(m), if 0 <z < on (1 —on)
un ()= (Je) v @) + [1 = mn (|2)] v (enw),  if on (1= on) < |2] < e
u(z), ifz € Q\B,,
(111)

We first prove that {up },y converges to u in the strong topology of W' (€; R™).
In fact

/|uh—u|p d:z::/ lup, — ul? d:zsgc/ ‘w (L)
Q B, By, (1) on (1 —op)

h eh
P
+c/ { } dm+c/ |u(z)|? dz
Bep\By, (1-0) B

(@) el e,

< 0 {I10lm o1y + W0 omyy + I (01) =0 @ oy } 4 [ u@)P da,

°h

p
dx

P

+

which goes to zero as h — +o0, since g, — 0 and ||u (gpw) — v (w)||’L’oo(aBl) — 0.
Moreover, by (100) of Lemma 39, we have
x
Dy | ——
(Qh (1- Uh))

/ |Dup, — Du|f dx < cl/
Q B

p
dx

en(1=op)
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P

D p
| D7) de

+01/ d-’l7+01/
th\Beh(l_”h) |$| th\th(l_"h)
c1 T T
ol «(ong) -+ ()
On9h JB,, \B || |z|
1

<cop P(1- ah)”fp/ |Dw (z)|P dz + cz/ W dz
By

Bop\By, (1-0y) w

xr
DTU (Qh m)

P
dw+01/ |Dul’ dz
B

eh

en(1-0op)

Oh T P
+02/ dr/ D.u (gh—) dgn1
on(l—0on) 8B, |.CL'|
op *
rer By fu(0n) = 0 @) oy + 1 [ 1Dul? do

p
Oy, Bey,

<oty + Ly /a D) amy
h op

n—p
0
s 2y flu (1) =0 @l o5, + 1 /B \Duf? d

Op op

By the bound (109) we obtain

/ |Dup, — Dul” dz < ¢ (w,v, Mo) o), *
Q

n—p
0
+o 2 u (o) =0 @) momy +er [ IDul da
h eh

and this quantity goes to zero as h — 400 if we assume that

n—p

on = 0f (112)

(we use here the fact that p < n). Therefore, as h — +00, up converges to
u in the strong norm topology of W1 (Q;R"). Thus, by (110) and by the
lower semicontinuity of T'V?® (u,) with respect to the strong convergence in
WP (Q; R"), we have

TV (1,9) <TV* (u,9) < lminf / \det Dun, ()| dz

h—+o0

65



S/ |det Dw (x)| dz +/ |det Du (z)| dx +1’}minf |det Duy, ()| dz
B Q

e Bon \Byy, (151,
<TV (v,B1)+e+ / |det Du ()| dz + lim inf / |det Duy, (z)| d= .
Q h—+o00 Béh\th(l—ah)
If we prove that
lim |det Duy, (z)| dz =0, (113)

h—+4o0 Bé’h\th(l—ah)

then, letting € — 07 we reach the upper bound
TV (u,Q) <TV® (u,Q) < TV (v,B1) + /Q |det Du (z)| d=
which, together to the lower bound in Step 1, yields the conclusion
TV (u,Q) =TV? (u, Q) =TV (v,B1) + /Q |det Du (z)| dz .

Therefore it remains to prove (113). To this aim, arguing as in the proof
of (101), we can evaluate det Duy, (x) by taking first the derivative of u; with
respect to the radial direction, and then the tangential derivatives. We get

/ \det Dup, (z)| do < —= / { " <Qh£) o (i) ‘ _
By, \B, (,_ @hOh JB, \B, (,_ || |z|
h\Pep(1-ap) h\Zep (1-0y)

[ <o (o)l ]}

C1
< u(opw) — U (W)||7 o .
anoy (@) =0 (@l o8,)

1 no
. {02/ n—1 d-fc + g,’rlb_’; /
BQh\th(l—ah) |$| On oB

<cs ”u (Qhw) -V (w)”Lw(aBl) {02 +~/{~)

n—1

+

@h

|Du" dH”l}

|Dyul™ " dH”—l} )

eh

Finally, since by (109) we also have

o

n—1

p

_ 1
|Dyu*"" dH™ ! SC4{R_7IJ_1/ |Dul? dH"—l} <es,
oy

°h °h
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then, from the above inequality, we deduce that
/ [det Dun (@)] da < cs Ju (en) = v @)lgmom
Bep\By,, (1-0y)

which converges to zero as h — +o00. Thus (113) is proved. m

We conclude this section with some algebraic results used in the paper. We
introduce some notations. Denote M™*™ by the family of m X n matrices. If
A is an n x n matrix (A € M™*"), X; ; (A) is the matrix obtained from A by
deleting the i—th row and the j—th column of A. If S is an (n — 1) X n matrix
(S € M(n=1)xn) X . (S) stands for the matrix obtained from S by deleting the
j—th column of S. If T is an n x (n — 1) matrix (T € M™* (1) then X; (T)
is the matrix obtained from T by deleting the ¢—th row of T'.

Some of the properties stated in the next lemma are known; we quote for
instance the book by Cartan [13] as a reference.

Lemma 41 (Algebraic lemma) The following properties hold:
(i) Let £&,n € R™ and let B € M™ ™. If A;; = &m; and A = (4;;) € M™™,

then
n . .
det (A+ B) = Y (=1)"7 &nj det (X; ; (B)) + det (B) .
ij=1
(i) Let T € M™ (1) be a matriz whose column vectors {T1,72,... ,Tn_1}

form an orthonormal basis of R™. Then

n

> [det (X;, (T)))* = 1.

i=1

(iii) Let S € M(~Dx" gnd T € M™* (=1, Then

det (S-T) = Zn:det (X,i (9)) -det (X; (T)) .
i=1

Proof. Let A = (4;;) = (&n;) € M™ ™ and let {a1,a2,...,a,} be the
column vectors of A. Let {b1,bs,...,b,} be the column vectors of B € M™*™.
Since rank (A) = 1 we have

a;Na; =0, Vi,j=1,2,... ,n. (114)
We also have

det(A+B)=((al—l—bl)/\(a2+b2)/\.../\(an+bn),61/\62/\.../\en) .
(115)
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By (114) we obtain

(a1+b1)/\(a2+b2)/\.../\(an+bn)
=ai1 AbsA...ANby,+biANasA...ANb, +...

++b1Ab2AAbn,ll\an—kbl/\bz/\/\bn

=Y (=D ai AL A Abiy Abigr A Aby) + b Aby AL Aby.
i=1
Therefore, in view of (115) we have

det (A+B) =Y (=1)""(ai Aby A...Abiy Abipr A Abpes Aea A Aep)

i=1

+ det (B) = i(—ni—l det (C;) + det (B) , (116)

i=1

where C; € M™*™ is the matrix whose first column is a; and the other columns
are {b1,...,bi—1,bir1,...,bn}. Recall that the columns of the matrix B €
M™ ™ are {by,ba,... ,by}. Therefore, if we represent the determinant of the
square matrix C; by expanding it with respect to the first column, we get

det (Cz) = Z (—1)j_1 Aij det (Xz"j (B)) s (117)
j=1
which, together with (116), yields the proof of (7).
In order to prove (4) we consider the column vectors {71,72,... ,7n—1} of

the given matrix T € M™*(™=1). Since by assumption (7;,7;) = &;; for every
1.7 =1,2,...,n—1, we have

(MATRA. . ANTh1, I AT2 A ... A Tp_1) = det ((Ti,’rj))ij

n

D ldet (X, (M) = A2 A AT |?
=1
= <7‘1 ANTaN... NTp—1,T1 ANT2 A .../\Tnfl) = det (<Ti’7_j>)ij =detId =1.

Finally, let us prove (). Denote by {o1,02,...,0n_1} the row vectors of
the matrix S € M{"~1xn and by {m,72,... ,Tn—1} the column vectors of the
matrix T € M™* (=1, We have (see for example [13])

det(S-T) =det((a,~,Tj))ij = <O’1 NoaN...NOp—1,71 N T2 /\.../\Tnfl) .
(118)
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Since we also have
n

01/\02/\...Aan_1:Z(—l)i_ldet(X,i(S)) 61/\.../\€i_1/\€i+1/\.../\€n,

i=1

n

T1 /\Tz/\.../\Tn_l :Z(—l)zildeﬁ(){i7 (T)) 61/\.../\6,'_1 /\€i+1/\.../\€n,
i=1

and thus

(GL A AOp_ 1, I A e  ATp) = Xn: (=1)* 2 det (X ; (S)) det (X, (T)),

which, together with (118), yields the conclusion (iii). m

As in Section 2, fixed wg € 0By, for every j € {1,2,... ,n — 1} we consider a
vector field 7; : 8B1\ {wo} = R™ of class C* such that, for every z € 9B\ {wo},
the set of vectors {m (z), 72 (2),... ,7m—1 (2)} is an orthonormal basis for the
tangent plane to the surface OB at the point z. For every « € 8B\ {wo} we
denote by T (z) the n x (n — 1) matrix whose columns are given by the vectors

{m (z),72 (x),...,Th—1 (z)}. Consider the vector
v (@)= 3 (=1)* det (X;, (T (2))) e (119)
i=1
Up to a change of sign to one of the vectors 71 () ,72 (2),... ,7h—1 (z), we can

assume that, at every € 0B1\ {wo}, v (z) represent the exterior normal unit
vector to dBy. That v (z) is a normal unit vector to the surface dB; follows
from the following result.

Lemma 42 (On the normal unit vector) For everyz € 0B1\ {wo} the vec-
tor v (z) has norm equal to 1 and it is orthogonal to the vectors 1 (z),72 (),
c 3 Tn—1 (.’E), 7;.6.,

{ lv(2)| =1, V€ dB\{wo};
(v(z),r(x))=0, Yz€IB\{wo}, Vi=1,2,...,n—1

Proof. In fact, |v (z)| = 1 by condition (ii) of the previous Lemma 41. Also,
for every j € {1,2,...,n — 1}, we have

n

(v (@),7 () = Y (=1)™* det (X, (T () (ei,75 () = det (C)

i=1
where C'is the n x n matrix whose column vectors are 7 (z) , 72 () ,... ,Th—1 (Z)
and 7; (x); precisely

C= (Tl (x)ﬂ-? (.’L’), y Tn—1 (.73),7']' (ZL')) )

which has determinant equal to zero. m
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8 Relaxation in the general polyconvex case

As mentioned in Section 4, the characterization of TV (u,{) may be viewed
within a broader context, namely as part of a program to search for the de-
scription and identification of the defect measure obtained through relaxation
of energies when there is a gap between the space of coercivity and the space
guaranteeing apriori continuity. Indeed, TV (u, Q) is a particular case of a func-
tional of the type Fp 4(u, Q) in (41).

Here formally we may consider

F (u,Q) := inf {liminf /Qg(M (Duyp, (z))) dx - (120)

h—+o0

up, — u weakly in WP (s R™), up € WhH™ (Q;R™)}.

Then F (u, ) is the relazed functional of the integral functional

F (u,Q) == /Q g (M (Du)) de,

where u : 2 — R". The vector-valued map M (Du) of minors of Du is given by
M (Du) := (Du, adjyDu, ... ,adj,_Du,det Du) € RV,

where, for j = 2,... ,n—1, adj; Du denotes the matrix of all minors j x j of Du

and N =37, (?)2 (in particular N = 5 if n = 2). Finally g : RY — [0, +00)

is a convex function satisfying the growth conditions

Joo [det §] < g (M (€)) < L(1+[€]7) + goo |det £] (121)

for some constants L > 0, go, > 0, for all matrices £ € R*"*™ and for some
exponent p € [1,n).
A particularly important case of F (u,(2) is the area integral

(u, ) /\/1+|M (Duw)[* de, (122)

which in the 2 — d setting reduces to

Au,9) :/Q\/1+|Du @)|? + |det Du (2)[? dz . (123)

It has been shown in [8] that, if p > n — 1, then F (u,-) is a Radon measure
and, for every open set A C (,

F(u,A) = g (M (Du)) L™ A+ ps (4)

where i is a finite Radon measure, singular with respect to the Lebesgue mea-
sure £™. A longtime question has been to identify the singular measure ;.
In Theorem 43 we achieve this for the class of maps u € Wlicoo (Q\ {0};R")
considered in Section 2. Precisely, using Theorem 1 in 2—d and Theorem 10 for

the general n—d case, we can prove the following relaxation result.
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Theorem 43 (Relaxation in n—d) Let Q be an open set of R*, n > 2, con-
taining the origin. Let u € W12 (Q;R*) N W2 (Q\ {0} ; R?) for some p €

loc
(n — 1,n), such that, for a positive constant My,

sup

n_p/ \Duf? do < M.
>0 0 B,

Letv:0B, = S" 1 - R*, v € Wi (S”’l;R"), be a Lipschitz-continuous

map such that
x x
ulo— | —v|—= :wGB\{O}}ZO.
( |x|> <|x|>‘ '

Moreover, if n = 2 we assume that the map v has values in the set I' defined in
(6); while, if n > 3, then we assume that the quantity

i(—l)“‘l via(vl,... L, ot )

6(T1,7'2,... ,Tn_l)

lim max
o—0Tt

=1

has constant sign H =1 _glmost everywhere on 8B, . Then the relaxed functional
F (u,Q), defined in (120) with g : RN — [0, +00) satisfying (121), is given by

F(u,9) = / o (M (Du (2))) dz + g TV (0, By)

where the total variation TV (v, By) of v is given in (24).

Proof. Step 1 (lower bound). Consider a sequence {up},y of class
W1 (Q; R") converging to u in the weak topology of WP (; R"), as h — +00.
Let o € (0,1) be fixed. By Theorem 35, on the lower semicontinuity below the
critical exponent, using the bound on the left hand side of (121), we have

liminf F (up, Q) > liminf / g (M (Duy, (z))) dz
Q\B,

h— 400 h—~+o0

+ lim inf goo/ |det Duy, (z)| dx
h—+o0

e

> [ g (Du(e)) do+ guTV (0 B1)
Q\B,
Letting ¢ — 0 we deduce the lower bound

F(u,Q) > / g(M (Du (2))) dz + gooTV (v, By) .

71



Step 2 (upper bound). For every € > 0 there exists a Lipschitz-continuous
map w : By — R” satisfying

/ |det Dw ()| dz < e + TV (v, By) (124)
By

and such that w = v on 9B;. Indeed, if n = 2 we use (67), while if n > 3 we
use (110). By Lemma 38 there exists a sequence (gp),cy, converging to zero as
h — +00, and such that

1

n_p_l/ |D ul? dH™ < c(n,p) My.
3 8By,

n=p
For every h € N we set oy, := o/ ™", and we define uj, (x) as in (111). As in Step
3 of the proof of Theorem 10, we can show that

lim |Dup|? dz = lim |det Duy, (z)| dz =0
hroo B"h\BEh(l—"h) heo Beh\Béh(l—"h)

(125)

and, by also using the inequality on the right hand side of (121), we can prove
the upper bound

T (u,9) < liminf F(uh,n)g/Qg(M(Du(x))) dz

h—+o0

+ lim inf {L (1 + |Dun|’) + goo |det Duy|} dz
h—+o0 Beh\th(l—ah)

+goo/ |det Dw ()| dz .
B
By (124) and (125), letting € go to zero, we conclude that

F(u,0) < / g (M (Du (2))) de + gouTV (v, By) .
Q

9 A relevant n—dimensional class of maps
The singular map u : R\ {0} — R", defined for z # 0 by

: (126)



belongs to the class WP (By; R*) N I/Vlf)’coo (Q\ {0}; R") for every p € [1,n), but
u ¢ WL (By; R™). In this case a formula for the total variation TV (u, ) was
already known. Indeed, (127) below has been first given in 1986 by Marcellini
[45] (see also Fonseca and Marcellini [27]). In this section we generalize the
formula to more general maps.

To deduce (127) using the tools developed in this work, write u (z) =
v (x/|z|), where the map v : 8B; — R is the identity on dB; = S"~!. The
map v(z) = |z| - v(z/|z|) = z is the smooth extension of u according with
Corollary 13. Clearly Dv (x) = Id is the identity matriz and det Dv (x) = 1.
Therefore, if 2 is any open set of R” containing the origin, Corollary 13 gives

TV(£39>=
||

Next we generalize the structure (126) and we consider a class of maps re-
cently studied by Jerrard and Soner [40]. Consider a function w € C' (Q;R?)
(or, more generally, a locally Lipschitz-continuous map w : @ — R" classi-
cally differentiable at x = 0) such that det Dw (0) # 0. Let Q be an open set
containing the origin and define u : Q\ {0} — R" by

_ w(@) —w(0)
" @ —w Ol

Note that the condition det Dw (0) # 0 ensures the existence of 7 > 0 such that
w(z) # w(0) for every z € B,\ {0}, and in the sequel we limit ourselves to
open sets 2 C B, containing the origin.

First we show that, without loss of generality, we may assume that Dw (0) =
Id is the identity matriz. Indeed, by assumption, the gradient Dw (0) of w at
z = 0 is a nonsingular matrix n x n; let us denote by A := Dw (0) this matrix,
and by A1 its inverse matrix. Define on Q\ {0}

_w (A~tz) —w(0)
lw(A~1z) —w (0)]”

det Dv (z) dx
By

= dx = |B1| = wp - (127)
By

(128)

z(z):==u (A7) vz e Q\{0}.

Let {un}pen be a sequence in Wh™ (Q;R") which converges, as h — +oc,
to u weakly in WP ((; R"). Then zj (z) := up (A™'z) converges weakly in

WLP (Q;R") to 2z (z) = u (A 'z). Since

/ |det Dz, (z)| dx :/ |det Duh(Afla:)| . |det A*1| dx
A(Q) A(Q)

=/ \det Duy, (z)| de,
Q

we deduce that TV (z, A (2)) = TV (u,2). We also have
[Dw (A_la:)]zzo =Dw(0)- A~ =1Id,
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where Id is the identity matrix. Therefore, the above computations show that,
without loss of generality, to evaluate the total variation TV (u, Q) of the Jaco-
bian determinant we may assume that

A=Dw(0)=1Id. (129)

Under (129), with u given in (128), we define v : 9B; — R" by v (y) := v,
for every y € 0B;. We have

lim max {|u (ey) —v ()| : = € Bi\{0}} =0. (130)

Indeed, since w is differentiable at z = 0, we obtain

o(e)
w (oy) —w (0) = oy +o(o) y+ o

u -V = =y =7 -9,
(ev) = v i) = e +o(@l " et

w (oy) — w (0)]

which converges to zero as ¢ — 0. Thus assertion (130) is proved.
Moreover, for every « € B,\ {0} with B, compactly contained in , if we
denote by L the Lipschitz constant of w in B,, we have

Du@|

lw () —w (0)] ~

for a constant ¢;. Since A = Dw (0) = Id, then

|Du (z)| < e

|w () —w (0)]’

0 () = w (O)] = |Dw ©) -+ o((a])| = [z + o (Ja])| > |z}

for every x € B,, with gy sufficiently small; thus

L _2al
lw(z) —w (0)] = ||

[Du(z)| < 1

Also, for every p < n, we have

1 c 1
sup T/ |Dul” dz < sup n—i/ — dz
0<e<oo 0" 7 JB, 0<e<eo 0" 7 JB, ||

0

C2 - Wn —1— C2 - Wn
< sup — /r" =pdr = .
0<e<eo "7 Jo n—p

Therefore the assumptions (17), (18) are satisfied, and we can apply Theorem
10, when v : S"~! — S7~! ig the identity map. Since |u(z)| = 1 for every
z € Q\ {0}, then det Du (z) = 0 in 2\ {0}, and hence, by (127) we finally get

e L w@-u()
TV (u,Q) =TV (m,ﬂ) = Wn, with u (z) := m
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10 Some 2— and 3—dimensional examples
We start with a simple application of the general 2—d result of Theorem 1.
Example 44 Let u () := v (x/|z|), where v : [0,27] — S* is the map

v (9) = (cos g (9) ,sing (9)),

with g : [0,27] = R Lipschitz-continuous function such that g (2w) = g (0)+2km,
for some k € Z. Since v' (9)v2 (9) — v? () v} (I) = ¢’ (¥) , by Theorem 1 we

obtain
1 27I' ,
S g @) do| = kix
21Jo

Note that here g is not necessarily a monotone function and that TV (u,By) =

TV (U,Bl) =

‘ dﬁ‘ with the absolute value sign outside the integral sign, and not

mszde as could have been expected. On the other hand, if w (x) = |z|u (x) is the
md’ially linear Lipschitz-continuous extension of v, we have instead TV (w, By) =

sl 19’ (9)] db.

2 0

We propose below some examples related to the “eight” curve, i.e., to the
union v of the two circles v, v~ of radius 1 with centers at (1,0) and at (—1,0)
respectively. We consider a Lipschitz-continuous closed curve v : [0,27] — v,
with parametric representation v (9) = (v (9),v? (¢)) and with v (0) = v (2n).
As in Section 2, we denote by {I;r}j and by {I; }, sequences of disjoint open
intervals of [0,2x] such that v (I;) C vt and v(Ix) C v~ (and v (9) = (0,0)
when 9 ¢ (U;I}7) U (UpI;)). With u(z) := v (2/|x]), we stated in Theorem 4
the following upper and lower estimates

TV (u, By) 22

JEN

vp (9) —v* (9) v ()} dv (131)

Z/ {v'vf — v} @

keN

1
TV (u,B1) > 3 Z/ {v'vi — v} d9| +
jeEN
(132)

We notice that, if the curve v : [0,27] = v = v U+~ admits only two
intervals I;" and I, where v (I}) C 7%, v(I3;) C v respectively, then the
above estimates for TV (u, B;) are in fact equalities, and

} . (133)

TV(’LL,Bl) = % {

{v'vj — vy} dY
I

+/ {v'vf — vy} dY
Iy
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Moreover, the total variation of the distributional determinant |Det Du| (By) is
given by

|Det Du| (B;) = ‘/QW {U — 02 (9) v (19)} dy| . (134)

Using these estimates we can now address the next examples.

Example 45 Let h,k € Z, and let v : [0,2n] — v be the curve whose image
turns |h| times in v~ and |k| times in v, according to the parametric repre-
sentation
o(9) = { (—1,0) + (cos 2hd,sin2hY) if0<VI<m
) (1,0) — (cos 2k, sin 2k19) ifn <9 <2rx

Since

vlo2 — 2l = 2h (1 —cos2hrd), f0<d<mw
9 P 2k(cos2kd —1), ifr<d<2m

then, with u(z) := v (z/|z|), by the representation formulas (133), (134) we
have

{ TV (u, B1) = (|h| + [k]) 7 Y h,k € Z. (135)

|Det Du| (By) = |h — k|7

Example 46 We consider the map

V(@) = { (—=1,0) + (cos20,sin29) f0<I<m

(1,0) + (—cos2¥,sin29) ifr <9 <21 ’ (136)

and we extend it by periodicity from [0,2x] to R. Then we define vp(9) := v(hd),
for a given parameter h € Z. The image of vy, is contained in yv* and v~ in
correspondence with two sets of disjoint open intervals of [0,2n] which, with
the notations introduced above, we denote by I;r and I, respectively. Then
v(I;) CyT and v (1) C vy~ . With up (z) := vy (z/ |z]), by (131) and (132) we
obtain

1
TV (un, B1) = Z/+{ 190 2867;;}%
I

09

{ 10v 261},%}(119

2h (cos2h¥ — 1) dod

=2|h|7w

1 1
3 zj:/ﬁZh(l—cothﬂ) di| + 5
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In this situation we have

{ TV (un, By) = 2 |h|

Det Dup|(B)) =0 ° "PREZ

Example 47 The map v : [0,27] — 7 defined by

(=1,0) + (cos4d,sin4d), f0< V¥ <7w/2
(1,0) + (—cosdd,sindd), ifn/2<¢<w
(=1,0) + (cos4d,sin4d), ifnm <9 < 3w/2
(1,0) + (—cos4¥,sin4d), if3n/2 <9 <2rm

o(9) == (137)

spans v~ twice counter-clockwise, and vt twice clockwise. It is a particular case
of the previous Example 46 and, with the usual notation u (z) := v (z/|z|), we
have TV (u, B1) = 47 and |Det Du| (By) = 0.

Consider now the map v : [0,27] — v defined by

(=1,0) + (cos 419, sin 49), if0<9<7/2

_av . ) (1,0) + (— cos49,sin 449), ifm/2<d¥<m

U0 =9 (C1)0) + (cosdd, —sindd), ifr<d<3rj2 0 (139
(

1,0) + (—cos4d, —sin4y), if3n/2<9<2n

which spans v~ twice, the first time counter-clockwise and the second time clock-
wise; while vt is spanned first clockwise and then counter-clockwise. Then
again, with @ (x) := v (z/ |z|), the estimate (131) yields TV (u, By) < 4w, while
(132) gives TV (u,B,) > 0 = |Det Du| (B;). Therefore, this is an example
where there is a gap between the estimates (131) and (132).

The last example related to T was already considered by Maly [41] and by
Giagquinta, Modica and Soucek [35], who proved that the graph of @ cannot be
approximated in area by the graphs of smooth maps.

Finally, we notice that, if one defines the total variation in (2) by us-
ing strong convergence as in (26), then Jerrard and Soner [40] observed that
TV* (u, By) is greater than or equal to 4w. In Section 6 (see in particular Step
3 of the proof of Theorem 4) we proved that TV (uw,B1) < TV*® (u,By) < 4.
Therefore we have that TV (w,B1) < TV? (u, B1) = 4w, and it is not known if
in the left hand side the equality sign holds in this case.

We finally consider a 3—dimensional example.

Example 48 Let us consider the map v : S2 — S2 C R® defined, in spherical
coordinates, by

vt = cos g (9) siny
v(9,7) ;= v? =sing(¥)siny
v3 = cos )

7



for ¥ € [0,2x], ¢ € [0, 7], where g : [0,27] — [0, 2] is a Lipschitz-continuous
function such that

g9(2m) —g(0) = 2kx

for some k € Z. By formula (101) we can see that, if w is a generic point of
S?, represented in the form w = (cos¥sinp, sin¥sinp, cosvp), then we have

d (v?,v?) d (v',v?) d (v?,v')

3
6(7—1;7—2) 6(7—1;7—2) (w)+v (W) 6(7—177—2)

v (W w) —v? (w w) =g ).
Thus, if the function g is monotone, then the sign assumption (22) is satisfied
and, by Theorem 10, we obtain

TV (v, B) = & g (2m) ~ g 0)] = 7 K] (139

which, as expected, is equal to the absolute value |k| of the topological degree of
the map times the volume w3 = %7‘(’ of the unit ball in R3.

However, formula (189) also holds if the function g is not monotone, i.e.,
if the sign assumption (22) is not satisfied. To assert this fact (that we do not
want to prove in all details), we can follow the argument used in Section 5 to
prove Theorem 1. In particular, if for some o, B, with 0 < a < f < 27, we
have g (a) = g (8), then for every e > 0 we can construct a Lipschitz-continuous

map w : Sa5 — R such that w (x) := |z|v (|ﬁ—|) if x € 084,38 and

/ \det Dw (z)| da < ¢ |
Sa,p

where Sy, p is the subset of By of points = (pcos¥siny, psindsine, pcosyp),
with)0< o<1, a<d9<p3,0<9y <7w. The map w can be defined similarly to
the one used in the proof of the “umbrella” Lemma 23, setting

w(0,9,9) = 0 (cos (o, 9) sin s, sinp (o, 9) sin , cos ) ,

where ¢ (0,9) = o"g (9) + (1 — o") g (), with h sufficiently large.
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