Center for Nonlinear Analysis
CNA Home
People
Seminars
Publications
Workshops and Conferences
CNA Working Groups
CNA Comments Form
Summer Schools
Summer Undergraduate Institute
PIRE
Cooperation
Graduate Topics Courses
SIAM Chapter Seminar
Positions
Contact |
Publication 25-CNA-009
Crack Face Contact Modeling is Essential to Predict Crack-Parallel Stresses Maryam Hakimzadeh Noel J. Walkington Carlos Mora-Corral George Gazonas Kaushik Dayal In this study, we apply a phase-field fracture model, developed in our earlier work, that uses the crack direction to distinguish crack-parallel stresses from crack-normal stresses. This provides a transparent energetic formulation that drives cracks to grow in when crack faces open or slide past each other, while the cracks respond like the intact solid when the crack faces contact under normal compressive loads. We compare our approach against two widely used approaches, Spectral splitting and the Volumetric-Deviatoric splitting, and find that these predict unphysical crack growth and unphysical stress concentrations under loading conditions in which these should not occur. Specifically, we show that the splitting models predict spurious crack growth and stress concentration under pure crack-parallel normal stresses. However, our formulation, which resolves the crack-parallel stresses from the crack-normal stresses, predicts these correctly. Get the paper in its entirety as 25-CNA-009.pdf |