Center for Nonlinear Analysis
CNA Home
People
Seminars
Publications
Workshops and Conferences
CNA Working Groups
CNA Comments Form
Summer Schools
Summer Undergraduate Institute
PIRE
Cooperation
Graduate Topics Courses
SIAM Chapter Seminar
Positions
Contact |
Publication 24-CNA-008
Nonuniqueness in Defining the Polarization: Nonlocal Surface Charges and the Electrostatic, Energetic, and Transport Perspectives Shoham Sen Yang Wang Timothy Breitzman Kaushik Dayal This limit process shows that the electrostatic description requires not only the bulk polarization density, but also the surface charge density, as the effective macroscopic descriptors; that is, a nonlocal effective description. Other approaches to resolve this difficulty include the popular modern theory of polarization that completely sets aside the polarization as a fundamental quantity in favor of the change in polarization from an arbitrary reference value and then relates the change in polarization to the transport of charge (the “transport” definition); or, in the spirit of classical continuum mechanics, to define the polarization as the energy-conjugate to the electric field (the “energetic” definition). This work examines the relation between the classical electrostatic definition of polarization, and the transport and energy-conjugate definitions of polarization. We show the following: (1) The transport of charge does not correspond to the change in polarization in general; instead, one requires additional simplifying assumptions on the electrostatic definition of polarization for these approaches to give rise to the same macroscopic electric fields. Thus, the electrostatic definition encompasses the transport definition as a special case. (2) The energy-conjugate definition has both bulk and surface contributions; while traditional approaches neglect the surface contribution, we find that accounting for the nonlocal surface contributions is essential to be consistent with the classical definition and obtain the correct macroscopic electric fields. Get the paper in its entirety as 24-CNA-008.pdf |