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Abstract

This paper continues the study of the asymptotic development of order
2 by I'-convergence of the Cahn—Hilliard functional with Dirichlet bound-
ary conditions initiated in [7]. While in the first paper, the Dirichlet data
are assumed to be well separated from one of the two wells, here this is
no longer the case. In the case where there are no interfaces, it is shown
that there is a transition layer near the boundary of the domain.

1 Introduction

In a recent paper [7] we began the study of the second-order asymptotic devel-
opment via I'-convergence of the Cahn-Hilliard functional

F.(u) := /Q(W(u) +&2|Vul?)dz, we HY(Q), (1.1)

subject to the Dirichlet boundary condition
tru =g, on O (1.2)



Here W : R — [0, 00) is a double-well potential with
W= ({0}) = {a,b}, (1.3)

Q C RY is an open, bounded set with a smooth boundary, N > 2, and ¢. €
HY?(09).

We recall that, given a metric space X and a family of functions F, : X —
[—o00,00] for € > 0, the asymptotic development of order n via T'-convergence,
written as

Fo=FO 4+ eF® 4. 4 " F 4 o(em), (1.4)
holds if we can find functions F*) : X — [~00,00], i = 0,...,n, such that the
functions - ‘

o o Fe ) ity PO

e

are well-defined and the family {]—"g(i)}E I-converges to F(*) as e — 01 (see [1]
and [2]). In many cases, the powers £* in the asymptotic development (1.4)

may be replaced by more general scales, where 59 >0foralli=1,...,m and
e >0, (550) =1 and aél) = (552)/6571) —0ase—=0Tforalli=1,...,m, and
the asymptotic expansion takes the form:

Fo=FO 4 sMFM . 4 s Fm Lo,
where the functions ]-'E(i) are defined by

~FY infy FO

o0

]:E(i) :

The first order asymptotic development of (1.1), (1.2) was studied by Owen,
Rubinstein, and Sternberg [14] (see also [6] and [9]), who proved that the family
of functionals

FO(u) = Jo AW (u) +e|Vul?)dz  if ue HY(Q), tru = g. on 09,
) =9 otherwise in L(12),

I'-converges as € — 07 in L'(Q) to

FO () = { CwP({u=0}9Q) + [,odw(tru,g) dHN"! ifue BV(Q; {fl, b}),
00 otherwise in L' (Q),
(1.5)
where P({u = b}; Q) is the perimeter of the set {u = b} in Q, g — g in L*(09Q),
dw is the geodesic distance determined, to be precise, by W:

2|[PW2(p)dp| if r € {a,b} or s € {a,b},
00 otherwise,

dy (1, 5) = { (L6)

and .
Cw ::2/ W2(p) dp. (1.7)



In [7], we studied the second-order asymptotic expansion of (1.1), (1.2) under
the hypothesis that the boundary data g. : @ — R stay away from one of the
two wells a, b:

a<a-<g(z)<b (1.8)

for all z € Q, all ¢ € (0,1), and some constant «_. If the constant a_ is
sufficiently close to b, the only minimizer of (1) is the constant function b (see
[7, Proposition 2.5]). Hence, it is natural to assume that

ug =b is the unique minimizer of F). (1.9)
Under this hypothesis, we define

fél) (u) — min F)
€

fs(z)(u) =
= 1W Vul? | d 1 dw (b, g) dHN 1
=)= (u) + |Vul b w (b, 9)

Q

(1.10)

if u e HY(Q) and tru = g. on 99, and Fi¥ (u) := 0o otherwise in L(1).
The main result in [7] is the following theorem.

Theorem 1.1 Let Q C RYN be an open, bounded, connected set with a boundary
of class C*¢ | 0 < d < 1. Assume that W satisfies (2.1)-(2.4) and that g. €
H(09Q) is such that

(€|log6\)1/2/ IV, 9. PdHN " = o(1) as e — 0%,
o0

and
lge(x) — g(z)| < Ce7, x €09,

for all e € (0,1) and for some constants C > 0 and v > 1. Suppose also that
(1.9) holds. Then

FO (u) = /8 () /O h 22 (20 (8)) 2 ) ()5 ds dHN "N (y)  (1.11)

if u="b and F®(u) = co otherwise in L' (Q), where k is the mean curvature
of 92 and zg,) is the solution to the Cauchy problem

zl, = W2 (2),
{ 0 —a (1.12)

with a = g(y).

Here, V. denotes the tangential gradient.
In the present paper, we relax the bound from below in (1.8) and allow g.
to take the value a,
0 < g.(z) <, (1.13)



while still assuming (1.9). We observe that this scenario can only happen if
{g =a} C{x <0} (see Theorem 4.1). If we assume that

{g=a} C {x <0}, (1.14)
then the rescaling (1.10) should be replaced by

(1) : 1
FO ) = T2 00— min 7O

1.15
e|loge] (1.15)

1 1 1
= 7/ “W(u) +e|Vul* ) do — ——— [ dw(b,g) dHN?
elloge| Jo \ e ellogel| Jon

if ue H(Q) and tru = g. on 91, and F& (u) := oo otherwise in L(€).
The main result of this paper is the following theorem.

Theorem 1.2 Let Q C RY be an open, bounded, connected set with boundary
of class C*? |0 < d < 1. Assume that W satisfies (2.1)-(2.4) and that g. satisfy
(1.13), (1.14), (2.14)-(2.16). Suppose also that (1.9) holds. Then

Cw -1
7 = SR gy "0

if u="b and F® (u) = oo otherwise in L' (Q). Here, F? is defined in (1.15),
K s the mean curvature of O, and Cw is the constant defined in (1.7).

In particular, if uc € HY(Q) is a minimizer of (1.1) subject to the Dirichlet
boundary condition (1.2), then

/(W(u5)+€2|Vu5|2)dac:5/ dw (b, g) dHN 1 (1.16)
Q o0
C
2 w N—-1 2
+e |10g5|—21/2(W//(a))1/2 /am{g:a}fﬁ(y) dH™ " (y) + o(e”|logel).

When the Dirichlet boundary conditions (1.2) are replaced by the mass con-
straint

/ u(z) de =m, (1.17)
Q

the first-order asymptotic expansion of the Cahn-Hilliard functional (1.1) was
characterized in [3], [8], [13], [12], [15], while the second order asymptotic expan-
sion was first proved by the third author and Murray in [10], [11] in dimension
N > 2 (see also [4]).

As in [10], [11], our proof relies on the asymptotic development of order two
by I'-convergence of the weighted one-dimensional functional

T
G.(v) ::/O (W (o) + 20/ (£)2)w(t) dt, ve H ), (1.18)
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subject to the Dirichlet boundary conditions
v(0) = ae, o(T) = B, (1.19)
where w is a smooth positive weight, and
a<ag, . <b. (1.20)

The key difference in our proof of the I-liminf inequality is that in [10], [11], the
authors utilized a rearrangement technique based on the isoperimetric function
to reduce the functional (1.1) to the one-dimensional weighted problem. This
approach, however, seems to be difficult to implement in this new context except
under trivial boundary conditions. Instead, we adopt techniques from Sternberg
and Zumbrum [16] and Caffarelli and Cordoba [5] to analyze the behavior of
minimizers of (1.1) and (1.2) near the boundaryy, leveraging slicing arguments
in our study.

This paper is organized as follows. In Section 3, we characterize the asymp-
totic development of order two by I'-convergence of the weighted one-dimensional
family of functionals G. defined in (1.18). Section 4 explores qualitative prop-
erties of critical points and minimizers of the functional 1.1. Finally, in Section
5, we prove Theorem 1.2.

2 Preliminaries

We assume that the double-well potential W : R — [0, 0o) satisfies the following
hypotheses:

W is of class C%*°(R), o € (0,1), and has precisely two zeros

. 21)

at a and b, with a < b,

W"(a) >0, W"(b) >0, (2.2)
lim W'(s) = —oc0, lim W'(s) = oo,

S——00 S§—00

W' has exactly 3 zeros at a,b,c with a < c <b, W"(c) <0, (2.4)

Let

b b
a<a_ <min{c,a } gmax{c,a;_} <p-<b. (2.5)
Remark 2.1 Since W € C*(R), W(a) = W'(a) =0, W(b) = W’(b) =0, and
W' (a), W"(b) > 0, there exists a constant o > 0 depending on a_ and S_ such
that

1

o?(b—s)? <W(s) < ;(b —8)? foralla_ <s<b+1, (2.6)
1

(s —a)> < W(s) < ﬁ(s—a)2 foralla—1<s<pj_. (2.7)



Proposition 2.2 Fora < 8 < f_, we have

B 1
lim 2 (+W()'72 o = ! (2.8)
e 50+ |log €| 21/2(W"(a))t/2’ '
while for a < a < b,
b 1
lim Jo w3 _ 1
=0+ |log €| 21/2(W"(b))1/2

In particular, there exists a constant C > 0 depending only on W such that

b
/a W ds < Clloge]| (2.9)

for all 0 < € < g, where g9 > 0 depends only W.

Proof. Step 1: Given ¢y > 0, we estimate

A 1
.A.z/a (= + co(s — a)2)1/2 ds.

Consider the change of variables %t = s — a, so that %dt =ds. Then
€o €o

1 (B—a)cy!?/'/? 1 1 VIR,
A= /0 (7dt: log(t + (&2 + 1)1/2)] (P e /e

e/ 1+ 2)Y/? 2
1
= 73 108 ((5 —a)cy? /e % + (B — a)?co /e + 1)1/2>
Co

1 1 1/2
:W|log€\+?10g ((ﬂ*a)co/ +((57a)200+5)1/2),
0 0

Step 2: By (2.1) and (2.2), given 0 < 1 << 1, we can find 0 < §,, < a_ —a
such that

%(1 —mW"(a)(s —a)®> <W(s) < S (1+m)W"(a)(s - a)®

| =

for all @ < s < a + d,. Hence,

1 1 1

< < 2.10)
(e+ci(s—a)2)? = (E+WE))Y2 7 (e 4 ey(s — a)?)'/? (
for all @ < s < a + J,,, where
1 1 1 1
1 = 5(1 +n)W"'a), ca= 5(1 —n)W"(a). (2.11)



Write

B 1 a+6y, 1 B 1
[ erwame= L et L, e

Since mings, gy W = wo > 0,

8 1 _1
s Ve (b a)

a+§,,, (E+W(8))1/2 < 0 —0 (212)
|loge| |loge]

as e — 0T,
Using (2.10) with 8 = a + 4, and ¢ replaced by ¢; and cg, respectively,

|loge| + = log (5 c}/ (572701 + 5)1/2)
1

1/2
a+6n 1
< —_——d
*/a (e +W(s >>1/2 ’
2 1/2
§21/2|log6|+ 2 log(5 Co (5n00+5)/)

Dividing by |loge| and letting € — 0T, we get
a+5 1 a+6 1
R ORGP " ey ds
— 75 < liminf < lim sup < —7-
201/ 50+ |loge| oot [log e 20

In turn, by (2.12),
B 1 B 1
o w4 < lim sup “2=EV DT P

2c,/° et |logel e—0+ |log el B QCé/Q.

Letting n — 07 gives

B 1
lim Jo w98 _ 1
=0+ |log €| 2L/2(W" (a))t/2

Similarly, one can show that for every a < a < b,

b 1
. Jo w3 _ 1
0+ |log €| 21/2(W(b))1/2

Hence,

1 b 1 c 1
Jo w3 _ ). vy o erweyrE 9
|log €| |loge| |loge|
1 1

= 21/2(W//(a))1/2 + 21/2(W//(b))1/2'

The inequality (2.9) now follows. ]
For the proof of the following proposition, we refer to [7, Proposition 2.3].




Proposition 2.3 Let a < a. < 8. < b. Then, there exists a constant C' > 0
such that

Be 9 1
/% {(5+W(s))1/2+W1/2(s) - 61 W ()2 ds <C (2.13)
forall0 < < 1.

We assume that g. : 9Q — R and g : 92 — R satisfy the following hypothe-
ses:

g. € H'(09), (2.14)

5/ IV ge|?dHY "t =0(1) ase— 0T, (2.15)
o

|9:(z) — g(2)| < Ce”, €0, v>1 (2.16)

for all € € (0,1) and for some constant C' > 0. Here, V, denotes the tangential
gradient.

In what follows, given z € RV, with a slight abuse of notation, we write

z=(2,zn) RV xR, (2.17)
where 2’ := (21,...,2y-1). We also write
0 0
P —, ..., —— ). 2.18
v <82’1, ’821\;1) ( )

In what follows, given § > 0 we define
Qs = {x € Q: dist(z,0Q) < d}. (2.19)
For the proof of the following lemma, we refer to [7, Lemma 2.6].

Lemma 2.4 Assume that Q C RY is an open, bounded, connected set and that
its boundary OS) is of class C>¢, 0 < d < 1. If § > 0 is sufficiently small, then
the mapping

D90 x [0,8] = Qs
given by

D(y,t) =y +tw(y),
where v(y) s the unit inward normal vector to O at y and Qs is defined in

(2.19), is a diffeomorphism of class C*%. Moreover, Q\ Qs is connected for all
0 > 0 sufficiently small. Finally,

det Jo(y,0) =1 for all y € 09 (2.20)

and

% det Jo(y,t)|,_o = k(y) for all y € 09, (2.21)

where k(y) is the mean curvature of OQ at y.



3 A 1D Functional Problem

Let
I:=(0,T)
for some T > 0 and consider a weight function
oo, T i 0. 3.1
we CH(0,T]), minw > (3.1)

s

The prototype we have in mind is given by
w(t) =14 tk(t).

In this section, we study the second-order I'-convergence of the family of func-
tionals

G:(v) := /(W(v(t)) + 2 (1) w(t)dt, ve HY(I),
I
subject to the Dirichlet boundary condition
v(0) =a., v(T)=pfe. (3.2)

In what follows, we will need the weighted BV space BV, (I) given by all
functions v € BVjo(I) for which the norm

lollsv, = / fo(t) w(t) dt + / w(t) dIDul(t)

is finite. For v € BV,,(I) we will also write the weighted total variation of the
derivative in the following manner

| Dl (B) ::/Ew(t)d\DvKt).

For a more detailed introduction to weighted BV spaces and their applications
to phase field models, we refer to [?, ?].

We will study the second-order I'-convergence with respect to the metric in
L(I). This choice is motivated by the following compactness result.

Theorem 3.1 (Compactness) Assume that W satisfies (2.1)-(2.4), that w
satisfies (3.1), and that ae — « and B — B as € — 0% for some a, 8 € R. Let
en — 07 and v, € H*(I) be such that

1
sup/ <5W(vn(t)) +en(v;(t))2> w(t) dt < o,
n I n

Then there exist a subsequence {vn, i of {vn}n and v € BV, (I;{a,b}) such
that vy, — v in LY(I).

The proof is identical to the one of [10, Proposition 4.3] and so we omit it.
In view of the previous theorem, we extend G, to L'(I) by setting

o) e L iV (®) +2@'(0))w(t)dt if v e HY(I) satisfies (3.2)
()= { o0 otherwise in L!(T).
(3.3)



3.1 Zeroth and First-Order I'-limit of G.

For the proof of the results in this subsection, we refer to [7]. We begin by
establishing the zeroth order I'-limit of the functional G..

Theorem 3.2 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that a. — a and B. — 8 as € — 01 for some a, 3 € R. Then the family {G.}.
[-converges to G in L'(I) as ¢ — 0%, where

GO (v) = /I W (v(t))w(t) dt.

Since W1({0}) = {a, b}, it follows that

inf GO (v) = 0.
ve L1(I)

Therefore,

GE(U) - il’lle(]) G(O)

GW(v) =

€

- (3.4)

= [ (2wt + et 0 ) wioyd

if v € H'(I) satisfies (3.2) and G (v) := oo if v € LY(I)\ H'(I) or if the
boundary condition (3.2) fails.
We now characterize the first-order Gamma limit of the family {G.}..

Theorem 3.3 Assume that W satisfies hypotheses (2.1)-(2.4), that w satisfies
hypothesis (3.1), and that o — « and B — B as € — 0" for some a, B € R.

Then the family {Ggl)}‘E I'-converges to G in L' (I) as e — 0, where

Cw
gy | AP OO
' +dw (o(T), B)w(T)
00 otherwise in L'(I),

where dy and Cyw are defined in (1.6) and (1.7), respectively.

Next we show that if w is sufficiently close to w(0) or strictly increasing, then
the unique minimizer of G() is the constant function b.

Corollary 3.4 Assume that W satisfies (2.1)-(2.4) and let a < o < b and
B =b. Suppose that w satisfies (3.1) and that

w(t) > w(0) —wo for allt € (0,T], (3.5)
where Lo d )
0<w < ,W_—W(a’)w(o) (3.6)
2 Cw

10



if a < a, while w is strictly increasing if « = a. Then the unique minimizer of
GW is the constant function b, with

11/111?[1) GV (v) = GV (b) = dy (e, b)w(0).

Proof. Step 1: Assume that a < o < b. Let v € BV,,(I;{a,b}). If v has at
least one jump point at tg € I, then by (3.5) and (3.6),

G (v) > %|DU|M(I) > Cww(to) > Cw(w(0) —wp) > dw (e, b)w(0).

Hence, either v = b or v = a. If v = a, then again by (3.5) and (3.6)
GW(a) = dw (a, a)w(0) + Cww(T) > Cw (w(0) — wp) > dw (v, b)w(0).

Step 2: Assume that « = a and g =b. Let v € BV,,(I;{a,b}). If v has at least
one jump point at ty € I, then since w is strictly increasing

W (v) > bC—W|Dv|w(I) > Cww(ty) > Cww(0).
—a

Hence, either v = b or v = a. If v = a, then again by (3.5) and (3.6)
G (a) = Cww(T) > Cww(0).
This completes the proof. [

Remark 3.5 Note that condition (3.5) holds if either w is strictly increasing,
with wg = 0, or if T is sufficiently small, by continuity of w.
3.2 Second-Order I'-limsup

The scaling of the second-order asymptotic development via I'-convergence of
G changes depending on whether a < o and @ = a. When a < «, under the
hypotheses of Corollary 3.4, we have

gln(r}) G (v) = GY(b) = dw (e, b)w(0).

In this case, we define

_ Ggl)(v) — inf LY (I) G(l)
&

G (v)
€

_ /I (;W(v(t)) n (v’(t))2) w(t) dt — dy(a, b)w(0) -

if v € H'(I) satisfies (3.2) and Gg)(v) = oo if v € LY(I)\ H'(I) or if the
boundary condition (3.2) fails. For the proof of the following theorem, we refer
to [7].

11



Theorem 3.6 (Second-Order Limsup, a < o) Assume that W satisfies (2.1)-
(2.4), that a_ satisfies (2.5), and that w satisfies (3.1), (3.5), where

1dw(a,a-)
< - . .
0<wy< 5 Cuw w(0) (3.8)
Let
a_ < g, 65 < b,
with

e —af < Age”, [B. — bl < By (3.9)

for some «, 8 and where Ay, By > 0, and v > 1. Then there exist constants
0<eg<1, C,Cy>0, and v9,7v1 > 0, depending only on a_, Ay, By, T, w,
and W, and functions v. € H*(I) satisfying (3.2), a < v. < b, and ve — b in
LY(I), such that

l
G2 (v,) < / W (p. (1))t dt ' (0) + Ce27 (201 + 1) + C21 + Ce™ [log 2|10

0
(3.10)
for all 0 < e < g9 and all 1 > 0, where p:(t) := v(et) is such that pe — z4

pointwise in [0,00), where z, solves the Cauchy problem (1.12) and G? s
defined in (3.7). In particular,

lim sup G (v,) < / A2 (5, (1)), (D)t dt ) (0).
e—0t 0

Remark 3.7 The function v, is constructed as the inverse function of the func-
tion

" €
0= |

where §. — 0% goes to zero faster than . Observe that if we take d. = €, then
(3.10) should be replaced by

1

G2 () < O + / 2 (p. (5))s dse (0) + Ce 2! (201 + 1)
0

+ Cel + Celog? e + Ce?|loge|' T + 772

On the other hand, when o = a, again under the hypotheses of Corollary
3.4, we have

i D) = @M (p) =
irlll(IIl)G (v) = GV (b) = Cww(0).

In this case, we define

(1) o (1)
Gf) (’U) — GE (’U) inf LY(I) G

3.11
e|loge| (3.11)

1
e|loge]

_; 1 v o 2 w B w
- E|10g5|/l(5W( (1)) +e('(t) ) (t) dt — Cyw(0)

12



if v € H'(I) satisfies (3.2) and G¥(v) := oo if v € LY(I)\ H'(I) or if the
boundary condition (3.2) fails.
We study the second-order I'-limsup of the family {G.}..

Theorem 3.8 (Second-Order I'-Limsup, a = a) Assume that W satisfies
(2.1)-(2.4) and that w satisfies (3.1) and is strictly increasing with w'(0) > 0.
Let a < a. < B < b with

lae —al < Ape”, |Be — b < Boe?, (3.12)

where Ag, Bo > 0, and v > 1. There exist v. € HL(I) satisfying (3.2), such
that v. — b in LL(I) and, for every 0 <n <1,

Cw c

@ - bw _
GP (v:) < (1 +n)21/2(W”(a))1/2w (0) + |log €|

(3.13)
for all 0 < e < g, for some 0 < e, <1 depending onn, Ay, By, T, w, and W,
and for some constant C' > 0, depending on Ay, By, T, w, and W, and where
G§2) is defined in (3.11). In particular,

Cw

' @ W
limsup G (ve) < 21/2(W”(a))1/2w (0).

e—0t

(3.14)

Proof. In this proof, ¢y and C depend only on Ay, By, T, w, W. In what
follows, we will take €y smaller and C' larger, if necessary, preserving the same
dependence on the parameters.

Define . .
U, (r) = /aE W ds.
Let
0< Loim W.() < To = WL(B2). (3.15)
By (2.9) and the fact that a < a., 8. < b, we have
b €
L.<T.< /a W) ds < Celloge| (3.16)

forall 0 < e < eg.
Let v : [0,T:] = [, Be] be the inverse of ¥.. Then v, (0) = ae, v-(T.) = B,

and

= WP 5.17)

Extend v. to be equal to . for t > T,.
Since w € C14(1), by Taylor’s formula, for ¢ € [0, T,

w(t) = w(0) +w'(0)t + Ry (t),

where
|R1(t)] = |w/(6t) — ' (0)]t < |w'|co.at! T4, (3.18)

13



Write

/OTE CW(%)H( ) dt — 1 Thog<]

'(0)

3.19
<€| loge| (3.19)

b
el loge|
1 o 1
—W(ve)+e() |wdt——="A+B+C+D.
3 e|loge|

Step 1. We estimate A. By (3.17), the change of variables s = v.(t), and the

equality
A

(A+ B)1/2 + B1/?’

(A+B)1/2 _ Bl/2 —

we have

AE<2W@9+d¢f)dw=An(i@+w4%»+d¢V)ﬁ_

Te
:/ 2e + W (v)) /20! dt
0

s Be
:/ m+W@WW%/?@H&mW“

€

5£BWW@“351@HWW£+WW@‘@+;@w4“

By Proposition 2.3,

pe 2¢e €
— ds < Ce
/as {(5+W(8))1/2+W1/2(8) (€+W(8))1/2} B
for all 0 < € < g9. Hence, using also the fact that a < a. < 8. < b, we obtain

T. /q
/ (EW(UE) + 5(1}2)2) dt < Cw + Ce, (3.20)
0
and so 1
ALC
|log €|

for all 0 < e < &g.
Step 2. We estimate B in (3.19). By (3.17) and the change of variables
t:=r+ L,

T.—L /
_ : : 1 = =1\2 w (O)LE
B= /—LE (€W(v5) +e(v) ) dT{-:\ log 2|
T-—L. 1 /
+/ (W(UE) + E(U;)2> rdr w (0) =: By + By,

_L. € e|loge|
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where ¥.(r) := v.(r + L¢). By (3.20), (3.16) and the fact that w'(0) > 0,

w'(0)Le L.

B <
! W5|10g5\ |log g]

wl(o) /C
< d
< Wlioge] J, Grwoe ¥t ee

for all 0 < e < g9. By (2.8), given 0 < 1 < 1, there exists 0 < &, < 1 such that

W'(0) [t 1 Cww'(0)
sl ) Ty S 0 g

"]

forall 0 <e <ey.
On the other hand, by the change of variables r := es,

T.—L. ! Te—L. /
B, :/ 2W (o )r dr 22 ©) —|—/ rdr—2 2 ©

_L. e2|loge] L. e?|loge]
(1t W(0) | e (O)(T. = Lo)* — LZ]
= 2W d ° < £
/_Lss_l (pe(s))s S|loga\ + 22| log €|
= Ba1 + Bao,

where p.(s) := Uc(es) = v:(es + L¢) solves the Cauchy problem
{ pe(s) =
p=(0)

in [~L.e !, (T. — L.)e™1]. Since ¢ < p.(s) < B <bfor 0 < s < (T. — L)L,
by (2.6) we have that

e+ Wipe ()2,

¢,

p(s) = (W(p= ()2 = o(b— pe(s)) > 0,

and so

(b—pe(s)) _ /
m = (log(b —p(s)))".

—0

v

Upon integration, we get
0<b—pe(s) <(b—c)e 7 < (b—c)e 7",
In turn, again by (2.6), for s € [0, (T. — L.)e 1],
W(p=(s)) < 072(b—p=(5))* < 07(b — )’ ™" (3.21)

On the other hand, we claim that there exists C' > 0 such that

0 0
—C/ e%7%|s|ds < / 2W (pe(s))sds < 0. (3.22)
_Laa—l

—L.e—1

15



As W > 0 and s < 0 it is immediate that

/0 2W(p<(s))sds < 0.

—L.e—1

Additionally, by (2.7) for —L.e~! < s <0, we have that

p(s) = (W(pe (5))'/? > o(pe(s) — a) > 0,

and so (pe(s) y
1 _q)) = LT
( Og(pE(S) a’)) pe(s) —a Z 0
Upon integration, we get
c—a
log ——— > o(0 —
%8 T —aZ o(0—s)

and so

-1

c—a 2 (pe(s) —a)e™™,
which gives
0<p:(s)—a<(c—a)e.
In turn, again by (2.7), for s € [-L.e71,0],
W (ps(s)) < o2(pe(s) — a)® < a?(c —a)?e*™.

This implies (3.22) and therefore, using (3.21), we obtain
oo !/
Byq < C/ e~ 208 dsL(O) < L
' 0 [loge| ~ [loge|
for all 0 < € < g9. By (3.16) and the fact that w'(0) > 0,

2

B <(C——&
22 =Y 2 loge]

< O log2 gl

for all 0 < € < &o.
Step 3. We estimate C in (3.19). Observe that by (3.20), (3.18), and (3.16),

T. / 1+d
1 T
c< / SW(ve) + e(v))? dt%
0 € e|loge]
< Celloge|? (Cw + Celloge|) < Ce?|logel®
for all 0 < € < gy.
Step 4. We estimate D in (3.19). By (2.6) and (3.12), for t > T,
T

T
D:W(BE)/ wdt—1 <a*2(b—55)2/0 wdt

.  €[loge| ~

62772

<C
e2|loge| =  |loge]

for all 0 < € < g.
Combining the estimates for A, B, C, and D gives (3.13). In turn, letting
first e — 0 and then  — 07 in (3.13) proves (3.14). [
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3.3 Properties of Minimizers of G.
In this subsection, we study some qualitative properties of the minimizers of the
functional G, defined in (3.3):
Ge(v) :== /(W(v(t)) + 2 () w(t)dt, ve HY(I), (3.23)
I

subject to the Dirichlet boundary conditions
v:(0) = ae, ve(T) = Be. (3.24)

Theorem 3.9, Corollary 3.10, Theorem 3.11, and Theorem 3.12 have been
proven in [7], cf. [7, Theorem 3.8], [7, Corollary 3.9], [7, Theorem 3.12], and [7,
Theorem 3.10]. We state them for the convenience of the reader.

Theorem 3.9 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that a < a., B < b. Then the functional G. admits a minimizer v. € H'(I).
Moreover, v. € C?([0,T]), v satisfies the Euler—Lagrange equations

2e2 (vl (t)w(t)) — W' (ve(t))w(t) = 0, (3.25)
and ve = a, orv. = b, or
a<uv:(t)<b forallte (0,T). (3.26)

Corollary 3.10 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that a < ag, B < b. Let v, be the minimizer of G. obtained in Theorem 3.9.
Then there exists a constant Cy > 0, depending only onw, T, a, b, and W, such
that

C
W) <=2 foralltel
€
and for every 0 < e < 1.

Next, we recall some differential inequalities for v.. To this end, we introduce
two auxiliary values

G_ = % (a—kmin{c,a;b}), B = % <b—|—max{c,a;b}). (3.27)

Note that these values only depend on (the zeros of the derivative of) W. These
are used together with some of the statements in [7] in order to obtain a depen-
dence on only W in these statements.

Theorem 3.11 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that a < ag, B < b. Let ve be the minimizer of G. obtained in Theorem 3.9
and let &_, _ be given as in (3.27). Then there exists a constant C > 0 such
that

£(v(0))? — %W(as) <c (3.28)

g
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for all 0 < e < 1. Moreover, there exist a constant 19 > 0, depending only on
w, T, a, b, and W, such that

L7 (el) —a)? < 20 < 2o (welt) — a)? (3.29)
whenever a + 1oe'/2 < v.(t) < f_ and
57— (1)) < L0 < S0~ ve(t))? (330)

whenever &— < v (t) < b— 7051/2, where o > 0 s the constant given in Remark
2.1.

Theorem 3.12 Assume that W satisfies (2.1)-(2.4), that w satisfies (3.1), and
that that a < a., B < b. Let v. be the minimizer of G. obtained in Theorem
3.9 and for k € N let

AP = {t € [0,T]): ac+e" <w.(t) <a_}, (3.31)
BF = {te[0,T]: B <wv.(t) < p. —eF}. (3.32)

Then there exist C >0 and 0 < g9 < 1 depending only on T, w, W,k such that
if I. is a mazimal subinterval of A* or B, then

diam I, < Ce|loge] (3.33)
for all0 < e < gp.

Next, we strengthen the hypotheses on the Dirichlet data a. and [. and
derive additional properties of minimizers.

Given 0 < n < %, by Taylor’s formula and the fact that W (a) > 0, we can
find d,, > 0 such such that

SV @)1= n)(s — ) SW(s) < SW @1+ m(s—af  (334)

forall a < s < a—+dy,.

Theorem 3.13 Assume that W satisfies (2.1)-(2.4) and that w satisfies (3.1)
and is strictly increasing with w'(0) > 0. Let a < o, B < b satisfy (3.12) and
let ve be the minimizer of G, obtained in Theorem 3.9. Given k € N with k > ,
there exist 0 < g9 < 1, C > 0 depending only on k, Ay, By, T, w, W, such that,
for all 0 < € < gq, the following properties hold:

(i) If T. is the first time such that v. = B. — ¥, then

T. < Cel|loge]. (3.35)
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(it) Let 0 < n < 1, let 8, be as in (3.34), and let S., be the first time such
that v. = a+6,. Then there exists a constant Cy, > 0, depending on n, k,
Ap, By, T, w, W, such that

S 1

en Z W (€| 10g€| — 7]5| 10g€|) — an’:?. (336)

Proof. In this proof, g and the constants C, Cp, and C; depend only on Ay,
By, T, w, W. In what follows, we will take ¢y smaller and C, Cy, and C; larger,
if necessary, preserving the same dependence on the parameters.

By Theorem 3.8,

GW (v.) < Cww(0) + Cielloge| (3.37)

for all 0 < € < gy.
Let
1 <5 <t§ <t

be the first time such that v. equals o, + ¥, &_, B_, and 3. — ¥, respectively.
Step 1: We claim that there exist 0 < g9 < 1 and C' > 0 such that

t5 — t] < Celloge| (3.38)

for all 0 < € < gg. To see this, observe that since v:(0) = a. < a. + ¥, we have
that v.(¢§) > 0. Using (2.4) and (3.25),

2e2(v.(Hw(t)) = W' (v-(t))w(t) > 0

for all @ < v:(t) < ¢. In particular, since &_ < ¢, we have that v.(t) > 0 for all
t5 < t < t5. It follows that [t5,t5] is a maximal interval of the set A. defined in
(3.31), and so by Theorem 3.12, the claim (3.38) follows.

Step 2: We claim that there exist 0 < g9 < 1 and C > 0 such that

t5 —t5 < Ce (3.39)

for all 0 < & < g¢. Indeed, since v.(t5) > 0, by (3.29) and (3.30), we have
that v/(t) > 0 for all t+ > t5 such that v.(t) < b — 7ee'/2. Tt follows that
a_ <w.(t) < B_ for all t € [t5,t3]. Since w is increasing, by (3.37),

C > G.(ve) > @ 3W(vg)dtz[miél]Ww(go)(tg—t;),
t% a_,p—

which proves (3.39).
Step 3: We claim that there exist 0 < gg < 1 and C' > 0 such that

t; — t5 < Celloge| (3.40)
for all 0 < & < g¢. Since v.(t) > 0 for all ¢ > ¢§ such that v.(t) < b— Toet/2,

there are two possible scenarios. Either v (t) > f_ for all t € [t5,5], in which
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case (3.40) follows from Theorem 3.12, or there exists a last time t§ < t. < t§
such that v. = f_and f_ < v.(t) < t. We claim that this latter case cannot
happen.

Since v.(t) > 0 for all t > t5 such that v.(t) < b — 19e/2, there exists 7. €
(5, 1) such that v.(7.) = b—roe'/2. Tt follows that v ([t5, 7.]) = [B_, b—10e'/2],
while v, ([te, t5]) = [3—, b — 10e'/2]. Then by (3.37), and (3.5), and the fact that

w is increasing
Cww(0) + Cielloge| > GV (v.) > GW(v; [0, 7] U [te, 15))

> w(0) / W/ (0,)|0! | dt
[O,TE]U[tE,tZ]
— (dw(asb—10e"2) +dw (B, B. — ) ) w(0).

Using the fact that dw (-, 7) and dw (s, -) are Lipschitz continuous and (3.12), it
follows that

Cww(0) + Cielloge| > (Cw + dw (8-, b) — L(Age” + 270e%))w(0),
or, equivalently,
Clelloge| + &7 +£"/?) > dw (B, b)w(0),

which is a contradiction provided we take 0 < £ < g¢ with ¢ sufficiently small.
Step 4: We claim that there exist 0 < g9 < 1 and Cy > 0 such that

t7 < Coellogel. (3.41)

Fix Cy > 0 such that

1
iw/(O)COCW > 201, (342)

where C is the constant in (3.37) and let 0 < € < gg, where g9 was .... Assume
by contradiction that

t7 > Coelloge| =: t§.
Since w is increasing, we have

T

Gulor) = | ' (iW(m + s(v;>2) e

€ £
1 1

1
(€W(v5) + 5(02)2) dt
/[.35

> w(tg)/ AVV2(s) ds > w(ts)(Cry — Ce2).
ac+ek
By Taylor’s formula, for 0 < t < tg for some ty small.
1
w(t5) = w(0) + w'(0)t5 + o(t5) > w(0) + 5w’(o)tg
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for all 0 < € < g provided ¢y is taken even smaller (depending on Cp). Then
by (3.37),

1
Cww(0) + Cielloge| > GM(v.) > (W(O) + §w’(0)00£| 10g5|> (Cw — Ce?),

and so

1 1
§w’(O)COCW5| loge| < Cie] log5|+<w(0) + §w’(O)C05| log5|> Ce* < 2Ce|loge|
provided g is taken even smaller (depending on Cp). This contradicts (3.42).
Combining Steps 1-4 proves (3.35).
Step 5: In this step, we prove item (ii). Rewrite (3.25) as

22 () — W' (v () + 252‘2/((5)) vl (t) = 0. (3.43)
Multiply (3.43) by Lv.(t) to get
SLOPY - L) 422 D=0 @)
Integrating between 0 and ¢ and we have
(L (0)? — W (e (1)) + 25/0 )Pt = <0L(0)° ~ W an). (345)

By (3.28) and the fact that w’ > 0, we have
1
e(vi(1)® = —W(ve(t) < C.

Hence,
e2(vL(£))2 < W(va(t)) + Ce (3.46)

for all t € I. Let 6, be as in (3.34) and let S, be the first time such that
ve = a + d,,. Then, by (3.34),

2L < 5 (@)1 + ) (0(1) — ) + Ce
< W (@)1 + 20) (1) — )

provided a + cnel/z <. (t) <a+6, and t <S5, ,, where
._ 92C 1/2
o \wram)

ev’ 1/2
ot CLADIEED) RS

In turn,
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Let R., be the first time such that v. = a+c,c'/2. Note that by (3.29), v.(t) # 0
whenever a 4+ 7oe!/? < v, (t) < B,. By taking 7 smaller, if necessary, we can
assume that ¢, > 79. Hence, v.(t) € [a + cnsl/Z,a + 6, for all t € [R. ), Se .y
Integrating in [R. ., S¢ ] and using the change of variables p = v.(t) gives

Sen gyl (t)
log 8, — el 1/2=/ = dt < Ly(Sep — Ren).
glogoy —¢ og(cna ) 5. vet)—a  ~ 77( €,n 5717)

Therefore,
1
§5| loge| + elogd, —eloge, < Ly(Se; — Re )

Corollary 3.14 Assume that W satisfies (2.1)-(2.4) and that w satisfies (3.1)
and is strictly increasing with w'(0) > 0. Let a < o, B < b satisfy (3.12) and
let ve be the minimizer of G- obtained in Theorem 3.9. There exist 0 < g9 < 1,
C > 0 depending only on Ay, By, T, w, W, such that

e (t)| > SYE)

for all 0 < e < &g and for all t such that o < v.(t) < a+ T0eY/2, where 1o is
the constant given in Theorem 3.11.

Proof. In this proof, £g and C depend only on Agy, By, T, w, W. Since w is
increasing

/OTE (iW(va) + e(v;)2> wdt > 2w(0) /TE W2(0 )0 dt

0

Bs_sk
—20) [ W)dp

€

and so
T: /1 B
/ <€W(v5) + 5(1)2)2) wdt — Cyw(0) > —2w(0)/ W2(p)dp
0 Be—ek
~ 2(0) / TW2(p)dp > — e,

Hence, also by (3.37),

/TT (iw(vs) +€(v§)2> wdt = /T ( W (v.) + e(vl) )wdt
. T N

L) )wdt

< C’Ww (0) + Cielloge| — Cww(0) + Ce®¥ < Ce|loge|
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since v > 1. Therefore,

T
/ (€W(v€) + 5(1}2)2> wdt < Celloge|.

T.
Since
2 (T /1 2 Tr1
= -W 0?2 dt < / -W D wdt
2 e eon?)an< i [ (G <007
< Celloge|,
by the mean value theorem, there exists t. such that
1 / 2 2 4 1 1\2
W (ve(te)) +e(vi(te))” = = —W(ve) +e(v)) ) dt < Celloge].
€ T Jrs \€

Integrating (3.44) from ¢ to t. we get
/ 2 1 l 2 1 t ! 2w/
(0)° — W (en(te)) = (0L (t))? — Wt + [ 26 dr
t

te /
> —Celloge] +/ 25(1);)2% dr. (3.47)
t

Since w’(0) > 0 and w’ is continuous, there exists 7o > 0 such that w’(t) > $w’(0)
for all 0 < t < 79. By taking g even smaller, we can assume that T, < 7y for
all 0 < e < gg. It follows that

te / / T,
/ 2?2 dr > 20 / 22(u)? dt. (3.48)
t t

min w

Let P. be the first time such that v, = a + 7'051/2, where 73 is the constant in
Theorem 3.11. Then by Theorem 3.11, and the properties of W,

(1)’ > Lo (ve — a)’ > OW(u)

for all ¢ such that a + 70e'/? < v. < ¢. Let J C [P.,T.] be a maximal interval
such that a + 7051/2 <w, <ec. It follows that

Te
/ 2e(vl)2wdr > /[5(1}2)2 + CW(ve)| dr > C/ QW2 (v vl dr
t J J
= C'/ 2W/2(s) ds > C/ QW2 (s)ds =: Cy
a+T1oel/? ate

for all 0 <t < P.. In turn, from (3.47) and (3.48),

e(v.(t)% — éW(va(t)) > —Celloge| + :1;20101-

Hence,
e(vl(t))? > Cy >0

forall0 <t < P.. [ ]
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Remark 3.15 Note that this corollary, together with Theorem 8.11, implies
that v does not vanish as long as v.(t) < b— 1oe'/2. Hence v.(t) > 0 as long
as ve(t) < b—roe'/2.

3.4 Second-Order I'-liminf

In this subsection, we present the I'-liminf counterparts of Theorems 3.6 and
3.8. We recall that when a < o, G is defined as in (3.7). For the proof of the
following theorem, we refer to [7, Theorem 3.15].

Theorem 3.16 (Second-Order Liminf, a < a) Assume that W satisfies (2.1)-
(2.4), that that a_ satisfies (2.5), and that w satisfies (3.1), (3.5), and (3.8).
Let a— < ag, B < b satisfy (3.12) and let v. be the minimizer of G obtained
in Theorem 3.9. Then there exist 0 < g9 < 1, C > 0, and ly > 1, depending
only on a_, Ay, Bg, T, w, and W, such that

!
G?(v.) > 2w/(0)/0 W2 (w)wls ds—Ce™ " (I 4 1)—Ce/21—CeMt | log e|> 70

for all0 < e < &g and 1 > ly, where G is defined in (3.7), we(s) := ve(es) for
s € [0,Te™1] satisfies

! I
lim Wl/Q(wg)w;sds:/ W2 (2,)2 s ds
0

e—0t 0

for every 1 > 0, and where z, solves the Cauchy problem (1.12). In particular,

liminf G® (v.) > 2w’(0)/ W2 (2)2, s ds.
0

e—0t
When a = a, Gt? is defined as in (3.11).

Theorem 3.17 (Second-Order Liminf, a = «) Assume that W satisfies (2.1)-
(2.4) and that w satisfies (3.1) and is strictly increasing with w’(0) > 0. Let
a < ag, Be < b satisfy (3.12) and let ve be the minimizer of G obtained in The-

orem 3.9. Then for every 0 < n < % there exist a constant C,, > 0, depending
onn, Ag, By, T, w, W, such that

Cyw'(0) c
@Dy y> W@l oy
Gy (ve) 2 21/2(”71/(a))1/2 ( ) [log g|

for all 0 < e < &, where g, > 0 depends on 1, Ao, Bo, T, w, W, and where
G s defined in (3.11).

Proof. In this proof, the constants ey, C, and Cy depend only on Agy, By, T,
w, W, while €, and C,, depend on all these parameters but also on 1. Since
w € CY4(I), by Taylor’s formula, for ¢ € [0, 7],

w(t) = w(0) +w (0)t + Ry (1),
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where
|R1(t)] = | (6t) — W' (0)|t < |w|co.at!Te. (3.49)
Let T be the first time such that v, = 8. — ¥, and write

/OTE <i.W(Ue) +€(v;)2) dt — CW‘| w(0)

el loge|

+ /OTE (iW(vE) + E(U;)2> tdt w(0) (3.50)

e|loge|

i /OTE (iww - sw) Ryd—t

e|loge]

Gg)(UE) =

T 1
+/ W) +e)? ) wdt—— — A+ B4 C+D.
1. \€ e|loge|

Step 1: We estimate A. By the change of variables p =v.(t), (2.7), (2.6), and
(3.12), we have

T Te Be_ak
/ (iW(vE) +5(U;)2) dt > 2/ QW2 (v )l dt = 2/ WY2(p)dp
0

0 Qe

Qe b
:CW—2/ W1/2(p)dp—2/ W2(p) dp
a 6

. —ek
(3.51)
= Cy — Ce*
for all 0 < € < €¢. Hence,
52771
A>-C——
|loge]

forall 0 < e < ep.

Step 2: We estimate B in (3.50). Let 0 < 1 < 1, let 4, be as in (3.34),

and let S. , be the first time such that v. = a 4 d,. By the change of variables

t=7r+S5:,,

Ts_Ss,n / 0 S
B:/ 1I/V(@E)jLs(z?;F ar (05

_s € elloge

e,n
Te=Sem 11 w'(0)
~W(v 0.)? ) rd
+/_Sm (5 (Te) + &()) )r 7"€|10g€|
= Bl + 62,

where 0.(r) := ve(r+S¢,,). By the change of variables r :=t -5, ,,, (3.51), and
(3.36),

/
By > (Cw — 0527)7&} ()<
elloge|
wa/(O) 2+ CW
Z g2 T O o
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for all 0 < e < ¢.
Define

De(s) == ve(e5 + S py)-
Then

w'(0) (Te=Sem)e™ 1 0on2
Bom ot | (W) £ GL) s

2_

/ 0
o W+ ) s

By (3.46), we have that

(PL(5)* < W (ps(s)) + Ce.
Hence, by (3.35),

B, >0 /0 2(W(pe(s)) + Ce) |s|d (3.52)
2 hogal | o 2OV + Ol |
W'(0) [°
e —
10g€|/_55m6IQW(pE(S))|S|d8 Celloge]

o
for all 0 < € < ¢e,. By Corollary 3.14 and Remark 3.15,

C
ve(t) = Vel

for all ¢ such that v.(t) < a + 1oe'/2. Therefore,

C

e2(V.(t))* > Ce > —
70

g

(v=(t) — a)*.
Together with Theorem 3.11, this implies that
evl(t) > oo(ve(t) — a)
for all ¢ > 0 such that v.(t) < ¢, where oo > 0. In turn,
PL(s) = o0(p(s) —a)

for all — Sm,s’l < s < 0. Hence,

, _ (po(s) —aY

(log(pE(s) - a)) pg(S) —a

> agg-

Upon integration, we get

)
log —— 1 > —
og (s —a o0(0 —s)
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and so
c—a >0, > (p(s) —a)e %,

which gives
0 <p:(s)—a<(c—a)e’.

In turn, again by (2.7), for s € [~L.e~1,0],

W (pe(s)) < Clpe(s) — a)* < Ce0s.

Hence,

0 0 0

/ 2W (pe(s))|s| ds < C'/ e270%|s| ds < C/ 2905 |s| ds.

— Sepet — Sepet —00

By (3.52),
C
By > ——— — Ce|loge]|
|log g]

forall 0 <e <egy. .
Step 3: We estimate C in (3.50). By Theorem 3.8,

GW(v.) < Cww(0) + Cielloge]

for all 0 < € < 9. We have,
T: 1
IC| < C5d|loge|d/ <€W(v€) +e(vé)2) dt
0

1 /TE LW (00) + £(0))? ) wat
minw Jg P

1
< Ce?log e/ ——— (Cww(0) + Cielloge|) < Ce|loge|?
min w
for all 0 < € < ¢, where we used (3.35) and (3.49).
Step 4: To estimate D in (3.50), observe that D > 0.
Combining the estimates in Steps 1-4 and using (3.50) gives

< Ce¥logel?

Cww'(0) &
@) > WD) gy T
Gy (ve) > 21/2(W//(a))1/2 ( ) |log g|

forall 0 <e <g. [ ]

4 Properties of Minimizers of F.
In this section, we study qualitative properties of critical points and minimiz-

ers of the functional F. given in (1.1) and subject to the Dirichlet boundary
conditions (1.2).
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Theorem 4.1 Assume that 09 is of class C? and that g : RY — R is a function
of class C' such that

a<g(x)<b forallxe i,
and that there exists xog € 02 such that
k(xg) >0 and g(zo) =a

Then the constant function b is not a minimizer of the functional F) given in
(1.5).

Proof. Since the boundary of € is of class C2, without loss of generality by
a translation and a rotation we can assume that o = 0 and that there exist
7o > 0 and a function f : RV~ — R of class C?3 such that f(0) =0, V/f(0) =0
and

Q0,70) NQ ={z € Q(0,r0) : zn > f(a")}, (4.1)

where, with a slight abuse of notation, we are writing = := (2, zy) € RN "I xR,
Q'(0,r) := (=r,r)¥ " and Q(0,7) := (—r,r)N. Let p € C*(Q'(0,1)) — [0,1]
be such that fQ/(O,l) oy ) dy' = 1. For 0 < r < rg, define

or(z’) = p(a'/r).

Consider the function wug : £ — R given by

(z) = a ifreQ(0,r)NQand zy < f(2) + 3. ('),
YOI "=\ b elsewhere in Q.

Define
Lp={(, f(z"): 2" € Q'(0, 1)},
Usppsp, = {(@, f(&') +r’pp(2") - 2" € Q'(0,7)},

By contradiction, assume that b is a minimizer of F(1). Then
FOb) = / dw (b, g) dHN 7 < FV (ug) = CuHY " HQN Ty ,.)
a0

+ / dW(ba g) dHNil
(o2\Q(0,r))u(0QNT; 3., )

+/ dW(U/,g) dHN_l’
(02NQ0,m)\T; 3,

which is equivalent to writing

(dw (b, 9) — dw (a,9)) dHN ' < CwHN "L (QNT 48y, ).

f+r3op

/(GQHQ(O,T))\F
(4.2)
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Define g(z') := g(2/, f(2')), 2’ € RVN~1. Since §(0) = a and a < g(z’) for all 2’
small, 0 is a point of local minimum, and so V’g(0) = 0. Since W'/2(p) ~ (p—a)

as p — a, by Taylor’s formula applied to the function z’ ff(x ) W2(p) dp,
we can write

b g(z")
mwamf»—dwm@@0>:2/ W”%mdpf2/ W2 () dp

g(z')
g(a’)
:OW*4/ W'2(p) dp
— Cw + O(l¢'|").
Then (4.1) and (4.2) imply
/ (Cw +O0(2'[)) (1 + V' f(a")*)2da’
Q’'(0,mr)N{er>0}

< CW (1 + |V’f(:c’) + T3v/§07~(1’/)|2)1/2d$/,
Q'(0,r)N{er>0}

or, equivalently,

Cw (A+ IR = A4V + Vo )Y2) ' (4.3)
Q'(0,r)N{wr>0}

< cr4/ (1+ [V f[2)1/2da.
Q' (0,1)N{er>0}

Using the fact that (1 4+ t)1/2 <1+ %t for t > —1,we have

, 203V f - V', Vo2 \2
(1+ |V’f + TdV,‘PrF)l/Q =1+ |V’f|2)1/2 (1 + 1+ |V’f|2 + T61 ‘+ V’|f|2)
A A\
(14 [V f|2)1/2 A+ V122

<@A+|VHY2+

Hence,
V'f -V,
_er?)/ _rJ
Q' (0. {er>0y (1 [V f2)1/2
V' [?
Q’(0,7r)N{p->0} (1 + |v/f‘2)1/2

+C7’4/ (14 |V'f|2)Y2da.
Q'(0,r)N{wr>0}

dx’

<r®Cy da’

c
I

Integrating by parts the first integral and using the fact that [|[V'¢,|le <
gives

V'f
3 . N+3
N o 0 () 2 <€
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Dividing this inequality by V2, and considering the change of variables ' :=

r~la’, gives

Cw k(ry')e(y') dy' < Cr.
Q'(0,1)

Letting r — 07 and recalling that fQ’(O 1y ¢(y') dy’ =1, we have
OWK’(O) S 07

which is a contradiction. ]
For the proof of the following theorem, we refer to [7, Theorem 4.9].

Theorem 4.2 Let Q C RY be an open, bounded, connected set with boundary
of class C*? | 0 < d < 1. Assume that W satisfies hypotheses (2.1)-(2.4) and
that g. satisfy hypotheses (1.13), (2.14)-(2.16). Suppose also that (1.9) holds.
Let 0 < 6 << 1, then there exist 1 > 0 and C' > 0, independent of € and &, such
that for all € sufficiently small the following estimate holds

0<b—uc(x)<Ce ™/ forzeQ\ Q. (4.4)

5 Second-Order I'-Limit

In this section, we finally prove Theorem 1.2.

Theorem 5.1 (Second-Order I'-Limsup) Let Q C RY be an open, bounded,
connected set with boundary of class C*% , 0 < d < 1. Assume that W satisfies
(2.1)-(2.4) and that g satisfy (1.13), (1.14), (2.14)-(2.16). Suppose also that
(1.9) holds. Then there exists {u.}e in H'(Q) such that tru. = g. on 0L,
ue — b in L1(Q), and

C
. @ ()< v / JHN ().
m b P ) S SR Sy "W )

Here, F® is defined in (1.15), k is the mean curvature of 92, and Cy is the
constant defined in (1.7).

Proof. By Lemma 2.4, for § > 0 sufficiently small, the function ® : 9Qx[0, 5] —
Qs is of class C'4. In turn, the function

w(y,t) := det Jo(y,1)

is of class C-?,

wy = min w(y,0) >0, w(y,0)=1 forallye o, (5.1)
yeoN
and
Ow
E(%O) =k(y) for all y € 09, (5.2)
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where k(y) is the mean curvature of 9 at y.
In view of (1.14), dist({g = a},d{x < 0}) =: po > 0. Let

Ky :={x € 9Q: dist(z,{g = a}) > po/2},
Ky :={xz € 00 : dist(z, {g = a}) < po/2}.

Then

Hll(llng =:1g- > a.
Fix
1 CW - dW(CL,g_)

O<WO<Z Cor

By taking § > 0 sufficiently small, we can assume that

wi. (53)

|w(yat1) - W(y,t2)| S wo (54)

for all y € 9N and all t1,t5 € [0,6]. Since w is of class C1'¢ and x < 0 in Ko, by
(5.2) and taking ¢ even smaller, we can assume that

Ow
5 1) <0 (5.5)
for all y € K> and t € [0, ].
For each y € ), define
. ( r)'—/r s (5.6)
T o W) |
and
0 <Te(y) := We(y,b). (5.7)
Note that T, € C1(Q), with
b €
Tg(y) < / W ds < OO€| 10g€| (58)

for all 0 < £ < gg and all y € 90 by (2.9), where Cy > 0 and &y > 0 depend
only on W

For each fixed y € 9Q, let v.(y,-) : [0,T:(y)] — [9:(v), ] be the inverse of
U (y,-). Then v (y,0) = g-(y), ve(y,Te(y)) = b, and

dv. _ (e W (o (y,1)'?
W(ya )* c

(5.9)

for t € [0,7-(y)]. Assume first that g. € C1(9Q). Then, by standard results on
the smooth dependence of solutions on a parameter (see, e.g. [17, Section 2.4]),

we see that v, is of class C! in the variables (y,t). Extend v.(y,t) to be equal
to b for t > T.(y).
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We have
Ua(ya \IIE(yv T)) =r
for all g.(y) <r <b. For every y € 02 and every tangent vector 7 to 992 at y,
differentiating in the direction 7 gives

v, Ov, ov,
5y W Vely,r) + - (5, Ve(y, 7)) 5= ~(y,r) = 0.
Hence,
v, ov, ov, B
E(ya )+ W(yat)?(yar) =0
for all y € 9Q and t € [0, T-(y)).
By (5.6),
£ 9g.

(y),

or (yyr) = —(5 n W(gg(il/)))l/z or
and so by (5.9), we have

Wl t) = ey, 0) D )

or
@+W@@wWﬂ@()
e+ Wig(y)/? or "’

ov.

for t € [0,T:(y)), while %”: (y,t) = 0 for t > T.(y). Observe that if g.(y) > ¢,
then since W is decreasing for ¢ < s < s and ve(y, +) is increasing, we have

W(ve (y,1)) < W(ge (y)). Thus, dvs (y, < ‘895 Yy ‘ On the other hand, if
g:(y) < ¢, then by (1.8),

(e + W(g=(y)))"/? > min W2 = W, > 0.

l9—.c]

Since a < v.(y,t) < b, in both cases, we have

(5.10)

avg(yt)‘ C‘f’gi ‘ if y € 00 and ¢ € [0, T-(y)),
or 7 if y € 00 and t € (T-(y), d].

If g. € H*(0R), a density argument shows that v. € H'(99 x (0,0)) and that
(5.9) and (5.10) continues to hold a.e.

Set . _
B G T
Then u. € H*(Q), with
2 o 2 2 _1 2
Ve (@) < | 52 (@71 ()] + ClIVYllL oy [Vrve(@7 @), (5:12)

where we used the facts that ®~1(z) = (y(z), dist(z, 99)), |V dist(z, 9Q)| =
and 7 - Vdist(z, 9Q) = 0 for every vector 7 such that 7 - v(y) = 0.
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In view of Lemma 2.4, we can use the change of variables = := ®(y,t) and
Tonelli’s theorem to write

() () = — - "(Ywiw y 2\ .
Fe7ue) = oge] /BQA <5W( (2(y, 1)) + e[ Vue(2(y, 1))] ) (y, t) dtdH N~ (y)
1

- m 0 dw (9(y),b) dHN_l(y) (5.13)

1 //5 1 v,
< — ~Wi(ve(y,t)) +¢
5|log5\ ( a0 Jo (5 (ve(98))
1

T (y,t)
dw (g(y),b) dH™ (y))

2
) w(y, t) dtdHN " (y)

_5\logs| o0
c 9 b 2 N-1
+ 57— IVl 0y) IVrve(y, )" w(y, t) dtd”™ " (y) =: A+ B.
|log €| a0 Jo

To estimate 4, we consider two cases.
Case 1: g(y) =a. Fix0<n < i, and let y € 99 be such g(y) = a, then by
(5.5), %—‘;’(y,t) < 0 for all ¢ € [0,4]. Thus, also by (5.1), we can apply Theorem
3.8 to obtain

Ov,

1 i (1
m/o <€W(Ua(y’t))+5 gD (y,t)

Cw Oow C
72w @) 2 or 0 T Thoge]

e|loge]

2) w(y,t)dt — Cw
<(1+n)

for all 0 < € < gy, for some 0 < €, < 1 depending on 7, Ag, By, 6, w, and W,
and for some constant C' > 0, depending on Ay, By, T, §, and W. Integrating
over the set {g = a} gives

1 s/
A=t / W ey 0) +
6| log 5‘ oQN{g=a} JO €

%(w) ) w(y, t) dtdHN " (y)

1 N-1 _
8\10g6|H 2N {g=a})
Cw N-1
< W
= (1 + 77) 21/2(WN(CL))1/2 /aﬂn{g—a} E(y) dH (y)
C N-1 —
+ @IH (BQﬂ{gfa})
Letting € — 0T gives
; Cw / N-1
1 A < (1 —_— dH .
lsnij)lip 1> ( + 77) 21/2(W//(a))1/2 99N {g=a) H(y) (y)

Case 2: ¢g(y) > a. Now let y € 9Q be such that g(y) > a. If y € K7, then
w(y, ) satisfies (3.8) by (5.3) and (5.4), while if y € Ko, then w(y, ) is strictly
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increasing in [0, ] by (5.5), and so it satisfies (3.8) with wy = 0. Thus, in both
cases, also by (5.1), given [ > 0, we can apply Remark 3.7 to get

1w I ’ dw (9(y), b)
e\Yy 7t 7t dt — —————
e|log6| / € Wve(y, ) +e ot (%) ) w(y.t) ¢|loge|
< / 2W (pe( ))sdsa (y,0) + Ce 27! (201 +1) —— !
€ ) 5 g
|logs| |log5\ (pe(y, s at Y |loge]
2'y 772
+ ce +C€|log5\+05d|log5\d+0

|log e] | log |

for all 0 < € < g9, where p:(y, s) := ve(y,es) and the constants C' and ¢ > 0
depend on Ay, By, 4, w, and W. Since a < p. < b,

!
/ 2W (pe(y, s))sds < 12 I[n%;}](vv’
0 a,
by integrating over 9Q \ {g = a} and taking £ smaller if necessary (depending

on ), we obtain

1 o1
dym L / W ey 1) + ¢
ellogel Joo1g=a} Jo \ €

1
- dw (g(y),b) dH "' (y
T1082] Joon (ya w(g(v),0) (y)

c . B
< g™ O\ {9 = a)

Ov,
ot - (y,t)

2> w(y,t) dtd’HN_l(y)

for all 0 < g9 < 1. Letting ¢ — 0T gives

limsup As < 0.
e—0t

In conclusion, we have shown that

. Cw / N-1
1 A< (49— dH 5.14
im sup <( +77)21/2(W,,(a))1/2 () K(y) (y) (5.14)

for every 0 < < 1. We now let n — 0F.
On the other hand, by (2.15), (5.8), and (5.10),

B 1oVl [T [ty ) i)
~ |loge| L2(08) Joq' 7T 0 7
< Cellwl = @ax (0.6 /asz 10-g-(y)|” dHN " (y) = o(1). (5.15)
By (5.13), (5.14), (5.15), we have

. Cw
1 2) (4, <—/ dHN 1 (q)).
i sup 72 (ue) < W @) Joonisear K(y) dH" " (y)
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Step 2: We claim that
ue — b in LY(Q).

In view of Lemma 2.4, we can use the change of variables z := ®(y,t) and
Tonelli’s theorem to write

)
Ue — T = U — blw N-1
/Q e —bld /8 ) / e (B (5. £))) — bleo(y, ) dedH Y (3)

T:(y) N1
- / / oy, ) — bleo(y, €) dedHN " (y)
oNJo
< Ce|logel,

where we used the fact that v.(y,t) = b for t > T.(y) and (5.8). ]
In the next proof, we use the localized energy

1 1
E.(u,F) = ——— - 2) d HY(Q
wB) = o [ (SW +elTuP) dos we @)

defined for measurable sets £ C €.

Theorem 5.2 (Second-Order I'-Liminf) Let Q C RY be an open, bounded,
connected set with a boundary of class C>% , 0 < d < 1. Assume that W
satisfies (2.1)-(2.4) and that g. satisfy (1.13), (1.14), (2.14)-(2.16). Suppose
also that (1.9) holds. Then

C
s (2) . N-1
lim inf 727 (ue) 2 21/2(W"(a))t/? /am{g_a} W) G0

Proof. We define w and § > 0 as in the first part of the proof of Theorem 5.1.
By Theorem 4.2 (with Q5 and Qa5 replaced by €5/, and €25, respectively),
we can assume that

0<b—u.(x)<Ce ™/ forxeQ\Qs (5.16)

for all 0 < e < ¢5.
Write

F(u) = Ec(ue, Q\ Q)
+ (Es(usa Qé) -
= A+ B.

1

L etam i)
ellogel Jaq

Since A > 0, it remains to evaluate B. In view of Lemma 2.4, we can use the
change of variables = := ®(y, t) and Tonelli’s theorem to write

é
Eutue ) = o [ [ (B0 0000 + 900000012 ) o, 6 a2 o)
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Since u. € C1(Q), if we define

ae(ya t) = ue(y + tV(y)),

we have that
8'&5( P = ou
ot Yy,t) =

aT(sy)(y +tv(y)),

ot
o2 o wen [ (tweso

e (y.1)
(ﬁ))}%N%)

and so,

2) w(y,t)dt

B s|log5|
For y € 09, in view of (5.16) we have that
b— Ce /() < i _(y,8) <b

Let v¥ € H'([0,6]) be the minimizer of the functional

1%%/ ( +ﬂvU|>M%ﬂﬁ

defined for all v € H(]0,d]) such that v(0) = g-(y) and v(8) = . (y, 6)

(5.17)

(5.18)

There are now two cases. If y € 9Q is such g(y) = o then by (5.5), 22 (y,t) <
0 for all ¢ € [0,4]. Thus, also by (5.1), given 0 < 7 < , we can apply Theorem

3.17 to obtain

il 2 C
6|log5|/ < yt) +e ot ~(5:1) )w(y,t)dt— 5|10Vg6\
) C
dby_/( +d<>@n)m%wm—dg;|
Ow Cy

>(1- )W ot W0 - |logel

for all 0 < € < g, for some 0 < &, < 1 and C,, > 0 depending on 7, Ay, By, ,

w, and W. Integrating over the set {g = a} gives

L /(S LW (e (g, 1)) +
= 7 - Y,
E| log €| o0N{g=a} JO € :

1
e|loge]

Ot
5 —-(y,t)

HNH (99N {g = a})

Cw N—1
>(1—1n)———m—m—-—+
> ( 77)21/2(12[/,,@)1/2 /8 Qm{g:a}f-c(y)d?—t (¥)
C"l

|10g€|HN Loan{g=a}).
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On the other hand, if y € 9 is such g(y) > a, then there are two cases. If
y € K, then w(y, -) satisfies (3.8) by (5.3) and (5.4), while if y € K5, then w(y, -)
is strictly increasing in [0, 6] by (5.5), and so it satisfies (3.8) with wp = 0. Thus,
in both cases, , also by (5.1), given I > 0, we can apply Theorem 3.16 to find
0<ep<1,C>0,andly > 1, depending only on g, k, a, b, §, w, and W such
that

Otie
5\log5|/ ( yt) +e

ot
Y (4)[2 1
E| 10g€| ( ) +el(@e) (@) ) w(y. 1) dt — elloge| dw (b, 9(y))

= (y,t)

)m%wﬁ—dgﬁﬁwwaw>

Ce " (lp+1) B Clet/?
[loge| [log €|

(y,0 / W2(w)w's ds — — CeM | loge|t o

\log6| 6t
for all 0 < ¢ < gg and [ > Iy, where w,(s) := v¥(es) for s € [0,0e71]. Since
a <w, <b,and ||wl]s < Cp, by Corollary 3.10,

!
/ W2 (w,)|wl|sds < 12C max w2,
0 a,

Hence, by integrating over 9 \ {g = a}, we obtain

1 N
By — 1 / W (e (y, 1)) + €
ellogel Joo\(g=ay Jo \ €

1
B E dw (9(y),b) aH "y
T0ge] Joon (e (9(y),b) (y)

>~ MY 00 {g = o).

By combining the estimates for B; and Bs, we have

ot
¢ (Urt)

> w(y,t) dtd’HNfl(y)

C
@(u)>B>(1- —W/ dHN !
Fe(ue) > B> ( 77)21/2(1/1/,,(61))1/2 S a}m(y) HY " (y)
Cy N1
H oNN{g= N\{g=ua
- 00N g = a)) — O 00 (o = )
In turn,
lim inf F® (u )>(1—77)C—W/ w(y) dHN " (y).
e=0F B 212(W"(a)? Joon(g=a)
We conclude by letting  — 0F. n
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