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Abstract

This paper addresses a two-dimensional sharp interface variational model for
solid-state dewetting of thin films with surface energies, introduced by Wang,
Jiang, Bao, and Srolovitz in [1]. Using the H ~!-gradient flow structure of the
evolution law, short-time existence for a surface diffusion evolution equation with
curvature regularization is established in the context of epitaxially strained two-
dimensional films. The main novelty, as compared to the study of the wetting
regime, is the presence of moving contact lines.
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1 Introduction

Understanding the dewetting process and its underlying mechanisms is essential for
controlling the morphology and properties of thin films, which have many applica-
tions in microelectronics, optics, and other fields (see [2]). This type of dewetting is
distinct from liquid dewetting and is primarily driven by surface diffusion-controlled



mass transport at temperatures below the melting point of the film. The move-
ment of the contact line, where the film, substrate, and vapor phases meet, plays
a crucial role in this process. Mathematically modeling the morphology evolution of
solid-state dewetting involves treating it as a surface-tracking problem. The mini-
mization of interfacial energy guides the process and consists of a combination of
surface diffusion-controlled mass transport and the movement of the contact line.
While moving contact line problems have been extensively studied in fluid mechan-
ics, incorporating surface diffusion-based geometric evolution equations with moving
contact lines presents significant challenges in materials science, applied mathematics,
and scientific computing.

This paper studies a two-dimensional sharp interface variational model for sim-
ulating solid-state dewetting of thin films with surface energies, proposed by Wang,
Jiang, Bao, and Srolovitz in [1], (see also [3]). The morphology evolution is driven
by surface diffusion and contact points migration, coupled with elastic deformation.
We restrict our consideration to a single island whose profile is given by a function
h : [a, 8] = [0,00), where o and § are the contact points, h(a) = h(8) = 0, and
h(zx) > 0 for every x € («, ). The region occupied by the island is

O ={(z,y) eR?: a<zr<B,0<y<h(x)}.

We assume that the region Rx (—oo, 0] is filled by a rigid substrate and (R x (0, 00))\
by a vapor.

The elastic displacement within the island is described by a function u : Q;, — R2,
which satisfies the boundary condition

u(z,0) = (epz, 0) for z € (o, B). (1)

The parameter ey # 0 reflects the mismatch between the crystalline structures of the
thin film and the substrate. The underlying energy is

Wi, ) + 7 length(T) —20(3 - o) + % [ s, 2
'n

where W(u, 23,) is the linearized elastic energy of the displacement u, I'j, is the graph
of h, k is the curvature, and s is the arclength parameter on I';,. The constant v =
yry > 0 is the surface energy density between film and vapor, while v9 = yys —
Yrs, where vy g is the surface energy density between vapor and substrate, and vyrg
between film and substrate. The constant vy > 0 is a small parameter in the curvature
regularization, which is commonly used in the literature ([4], [5]). The dewetting regime
(Volmer—Weber) is characterized by the inequality v > ~o, which favors the exposure
of the substrate.

We will assume that at each time the displacement wu satisfies the elastic equilibrium
problem on €25, with natural boundary conditions on I'y, and the Dirichlet boundary
condition (1) in the rest of the boundary.

The time evolution of («, 3, h) is obtained as gradient flow of the energy (2) with
the area constraint || = Ag > 0, where for the dynamics of h we use a type of



H=Y(T1,) norm (see [6], [7]). To describe the equations of this evolution system, we
introduce the chemical potential ¢ defined in terms of the arclength parameter s of

Fh by
3

4:—w+uo(assn+%>+ﬁ7, (3)

where W is the value of the elastic energy density of u at the point of I'j, corresponding
to s.
The equation for h is given by

V = podssC on Ty, (4)

where V denotes the normal velocity of the time dependent curve I'y, at the point
corresponding to s and py > 0 is a material constant.
The equations for the contact points migration are

000 = ycos by — o + Vg0skq sin by, (5)

UOB = —ycosbg + v — vp0skpsinbs,

where oy > 0 is a material constant, the dot denotes the time derivative, 8, and 03
are the oriented angles between the z-axis and the tangent to Iy, at («,0) and (3, 0),
both oriented with increasing values of x, while Osko and Jskp are the derivatives
with respect to s of the curvature x of I}, at the values of s corresponding to («,0)
and (5,0). Observe that if we neglect the curvature regularization, that is, we take
vg = 0, then the resulting equations reduce to the usual Young’s law ([8], [9], [2])-

The main result of this paper is that for every initial condition («yg, 8o, ho) there
exists a small time 7' > 0 such that the evolution equations (4) and (5) admit a weak
solution on [0, T']. Our approach does not allow us to obtain the uniqueness of solutions.

The existence proof relies on a minimizing movements argument: we consider a
time discretization and construct an approximate solution via incremental minimum
problems involving the energy (2). While this approach is not novel for epitaxial
growth (see [10], [11], [12]), the major challenge here is that the domain € has
evolving corners. This requires a delicate W?2P(Q;,) estimate of the solution for the
Lamé system, with a precise dependence on the time step of the discretization. This
estimate plays a central role in the study of the convergence of the discretized solutions
for the generalized Young’s law (5). We refer to [13] for a stress-driven grain boundary
diffusion problem, where the analysis of the singularities of the solutions to the Lamé
system near triple junctions plays a crucial role.

There is an extensive body of literature in two and three dimensions for the static
problem both in the wetting (v < ) and dewetting (v > 7o) regimes. We refer to
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23],][24], [25], [26], [27], [28], [29], and the
references therein for the wetting regime; and [8], [30] for the dewetting regime. We
also refer to [31] for a study of the Lamé system in the presence of cracks.

For the evolution case in the wetting regime, we refer to [10], [11], [32], [33], [12],
[34]. Observe that in the papers [32], [33] the curvature regularization is omitted.



While moving contact line problems have been studied in the fluid mechanics
community (see, e.g., [35],[36], [37] and the references therein), to our knowledge our
work is the first to prove the generalized Young’s law in a problem involving elasticity.

2 Preliminaries

Throughout this paper, we fix the physical parameters v, g, 09, Ag, g € R, with
v >0, >, 09 >0, Ag > 0, eg # 0, the Lamé coeflicients A and u, with © > 0 and
A+ p > 0, and the regularizing parameters Ly > 1 and vy > 0. We renormalize the
parameter po in (4) to be one. We use standard notation for Lebesgue and Sobolev
spaces, as well as for spaces of Holder continuous and differentiable functions.

We introduce the class of admissible surface profiles, A, as the set of all («a, 5, h)
such that a < 8, h € H?((a, 8)) N H ((r, B)), with h > 0 in (o, 8), Liph < Lo, and

B
/ h(z) dz = Ao . (6)

Moreover, if (a, 8,h) € A, then h is the extension of h by zero outside of [a, ], and
we set

s = [ bpdp= [ hpdp. weR, )
and
Qi ={(z,y) eER*: a<z<p,0<y<h(z)}. (8)

Furthermore, the admissible class A.(a, 3, k) of elastic displacements in 2}, is defined
as

Ac(a, B, h) := {u € H'(Q;R?) : u(z,0) = (egx,0) for ae. z € (a, B)}.  (9)
Finally the admissible class A for the total energy is

A= {(a,8,h,u): (a,8,h) € As, u € A, 5,h)} . (10)

In what follows we will use the result below.

Lemma 1. We have
24,

—a>
Ba_LO

(11)
for every (o, B,h) € As.

Proof. Since h(a) = h(8) = 0 and Liph < Ly, we have h(z) < LoﬁfTa for every
x € (a, §). Hence, by (6),

B
Ay = / h(z) dz < %(5 — )

which concludes the proof. [



For (o, 8, h) € A, we define the surface energy as

B U B ()2
S(a, B, h) == 7/a \/1+(h’(x))de—vo(ﬂ—a)—i—?O/a (1_'_(&/((;)))2)5/20[3:. (12)

Note that since v > 0 and v > g, we have

B8
y / VIE (@) —70(f —a) > (v —70)(B — a) > 0 (13)

and so
S(a, B,h) > 0. (14)
For (o, B8,h) € As and u € A.(a, 8, h) we define the elastic energy as

E(a, By h,u) = A W (Eu(z,y)) dzdy , (15)

where W : R2*2 — [0, 00) is given by

W(E) = 1CE-€, with C = (e +€7) + ()l (16)

where p, A € R are the Lamé coefficients and I is the 2 x 2 identity matrix. Note that
C¢ = Césym € R2X2 for every & € R?*2, where &y = (£ +€7) /2.

sym

We assume that p > 0 and A+ p > 0 so that there exists a constant Cy > 0 such
that

1
@KF <W(E) < Cwl¢)? (17)
for all £ € R2X2

sym *
In order to study the incremental problem, we introduce the following functionals.

Given 7 > 0 and (h°,a?, 8°) € A, for every (h,a,8) € As we define

1 . o o
a0 B9 B0 = — [ (H—H"2 /1 0)/)2 20— a®)24 29 (5 B0y2
To(0nBulia 80,00) o= 5 [ (=01 (0P T a0+ 32 (35
(18)
where we abbreviate
H(z):= H(z;a,B,h), H°(z):= H(zx;a% % 1%, (19)
and H is given in (7). Observe that
1 . 1 max{8,8%} -
— [ (H - H°?*\/1+ ((h0))2dx = — / (H — H°)?*\/1+ ((h%))2dz (20)
27 R 27 min{a,a%}

since by construction and (6), H — H® = 0 for 2 ¢ (min{a, a’}, max{s, 8°}).
The existence of a minimizer for the incremental problem will be a consequence of
the following result.



Theorem 2. For every 7 > 0 and every (a°, B° hY) € A, there exists a minimizer
(a, B, h,u) € A of the total energy functional

Fa, B,hyu) = S(a, B, h) + E(a, By hyu) + Tr(a, B, h; o, B2, BO) . (21)

Moreover, there exists a constant C' > 0, depending only on the structural parameters
Ap, €9, A, u, and Lg, such that

ull @,y < C (22)
for every minimizer («, 8, h,u) of F° in A.
The proof of the theorem relies on the following Korn’s inequality.

Lemma 3. Let (o, 8,h) € As, let Qp, be as in (8), and let 1 < p < co. Then there
ezists a constant C' > 0, depending only on p and Lo, such that

/ |Vu|’ dedy < C | |Eul’ dedy + Ceh Ay
Qh Qh,

for every u € WHP(Q,; R?) such that u(z,0) = (egx,0) for z € (o, B) (in the sense of
traces).

Proof. By a translation we can assume that a = 0. Define v(z,y) := u(z,y) — (eoz, 0)
in Qp and v :=0in (0,8) x (0, —0c0), and

w(z,y) = v(Bz, By)
for (x,y) € D, where
Dy, ={(z,y) ER*: 0<z<1,y<hg(z)}

and hg(z) := h(Bx)/B. Note that
nstar) = ha(aa)| < Ih(B1) ~ h(Ba)| < Lofor o

for all z1,29 € (0,1). Applying Theorem 4.2 in [23] to w we can find a constant C
depending only on p and Ly such that

J,

By the change of variables (2/,y') = (B, By) we have

|Vw|? dedy < C’/ |Ew|” dzdy .
Dhﬁ

hg

/ |VolP dedy < C | |Ev|? dady,
Qh Qh



where we used the fact that v = 0 in (0, ) x (—00,0). Recalling that v = u — wy, it
follows that

/Q |Vul|? dzdy < C/Q |Eul? dzdy + Ceb £2(Q,) = C/Q |Eul? dzdy + Ceb Ay

by (6). O

Proof of Theorem 2. Let {(an, Bn, hn,un)}n be a minimizing sequence in A for (21).
Then there exists a constant M > 0 such that

]:O(an76’ﬂ>hn7un) S M (23)

for all n. Since all the terms in F° are nonnegative (see (14)), by (18) and (23) there
exist two constants M; € R and M, € R such that

Ml S Qpn < ﬂn S Mr (24)

for every n. Hence, up to a subsequence, not relabeled, we can assume that
a, o and S, = f (25)
as n — oo, with o < 3. Since Lip h,, < Lg for every n, the extension h,, by zero of h,,
outside of [y, 8] satisfies Lip h,, < Lg. Using (25), up to a further subsequence, not
relabeled, there exists a nonnegative Lipschitz continuous function h : R — R such
that h,, — h uniformly and h = 0 outside (a, 8). In particular this implies that the

restriction h of h to (a, 8) belongs to H((cv, 8)) and that (6) is satisfied. Since A9 >0
we deduce that a < 8. By (12), (23), and the fact that Lip h,, < Lg for every n,

Brn
sup/ |h!2de < 0. (26)

n

By (25) this implies that h € H*((a,3)), and so (h,a, ) € As and h € C'([a, f]).
Moreover, since h = 0 outside («, 8), from (25) and (26) we deduce that

h(x) = B (x) (27)

for every = € R\ {«, 8}.
By (15), (17), and (23),

/ | Bu, (z,y)|*dedy < MCy (28)
Qn,,
for every n. By Korn’s inequality (see Lemma 3)

/ V| dedy < C / |Euy,|? dedy + Ce2 Ay < CMCyy + Cet A . (29)
th th



Since uy, (x,0) = (eox,0) for z € («, 8), by Poincaré’s inequality we find that
| luneg)Psdy < © (30)
th

where C' > 0 is independent of n. By (29), (30), and a standard diagonal argument,
using the increasing sequence of sets ¢, where h¢ := (h—e)V0, we conclude that there
exist a subsequence, not relabeled, and a function u € H'(Q;R?) such that u,, — u
weakly in H!(Qj:;R?) for every . Note that the trace of u satisfies u(x,0) = (eox, 0)
for a.e. © € {h > 0}. In conclusion, we have shown that (h,u,a, 3) € A, where A is
given in (10).

Next we claim that

lim inf S(an, B, hn) > S(a, B, ), (31)

n—oo

where S is given in (12). It is convenient to write

S(a, B, h) + v0(M; — M;)
_ a0 [f (@)
= [ a1+ Gr@par+ g [ e G

M,
where
0 if Yy = Oa

and similarly for S(anv, Brs hn) + Yo(M,. — M;).
By (27), hl,(x) — K/ (x) for a.e. z € R. Moreover,

v ify>0,
g(y)t={

liminf g(hn()) > g(h(z))

n—oo

for every € R, since h,, — h uniformly and ¢ is lower semicontinuous in view of the
inequality v > 79. Therefore, by Fatou’s lemma we have

M, M, .
lim n / g (@)1 + (i (2))2de > /M g(h@)\/1+ (W (@)2de.  (33)

On the other hand for every [a,b] C (a, ), by (25), (26), and (27) we can apply a
weak-strong lower semicontinuity theorem (see [38, Theorem 2.3.1]) to get

it [T ((@))? mint [ (@)
it [ a2 |

b (h”(l’))Q
Z/G @+ (W)™




Taking the supremum over all [a,b] C (o, 8), we obtain

g [T (@) GG
et | G 2, e

Therefore, from (32) and (33) we deduce (31).
Now we prove that

liminf E(an, B, bn, un) > E(a, B, hyu), (34)

n—oo
where £ is defined in (15). Fix an open set U € Q. Since u,, — u weakly in H'(U;R?),
by (16) and (17) we have

lim inf W(Eun(z,y)) dedy > liminf [ W(Eu,(z,y)) dzdy

n— o0 th n—oo U
> / W (Eu(z,y)) dedy
U

and letting U 7 €, we obtain (34).
Finally, by (7), (19), (20), and (25), the fact that h,, — h uniformly, it follows from
Lebesgue’s dominated convergence theorem that

lim T (n, Bny hns a®, 8%, h%) = To (e, B, h; a°, 5°, h0).
n— oo
This, together with (21), (31), and (34), allows us to conclude that

liminf 79, By Ay wn) > FO(av, B, hy 1) .

n—,oo
Since (a, B, h,u) € A and {(an, Bn, hn,un)}n is a minimizing sequence, we deduce
that («, 8, h,u) is a minimizer.

The proof of (22) can be obtained from Korn’s and Poincaré’s inequalities, arguing
as in the estimates for the minimizing sequence. O

3 Euler—Lagrange Equations
Given (a, 8,h) € As and o < a < b < 3, we define
QY= {(z,y) eR?:a <z <b,0<y<h(z)}, (35)

Theorem 4 (Euler-Lagrange equations). Let 7 > 0, let (o, 8%, h°) € A, and let
(a, B, h,u) € A be a minimizer of the total energy functional

Foa, B, hyu) = S(a, B, h) + E(a, B, hyu) + Tr(a, B, h; 0, 8, 1°) . (36)



Assume that

Liph < Ly and h(z) >0 forallz € (a,p). (37)
Then

h e C¥((a, 8)) N C%((a, B) \ {a®, ), (38)

u € 03’1/2(§Z’b;R2) foreverya<a<b< g, (39)

and u satisfies the elliptic boundary value problem

—divCEu(z,y) =0  in Qp,
CEu(z, h(x))v"(x) =0 for x € (a, B), (40)
u(z,0) = (epz, 0) forz € (o, 8),

where V" (x) denotes the outer unit normal to 98, at (x,h(z)). Moreover,

bty [ (5 o () (B0 37

for every x € (o, 8) \ {a®, B°}, where

J(@) =1+ W (@)?, J2) =1+ ((h%)(2))?,
and W(z) := W(Eu(x, h(z))). (42)

Proof. Step 1: We first observe that standard variations with respect to u in €, lead
to the weak form of (40). Since h € C*/?((a, 8)) and h > 0 in (o, B), by elliptic
regularity (see [39, Theorem 9.3]), we have that

u € Cl’l/Q(QZ’b;]RQ) for every a <a < b< .

Fix @ < a < b < 8 and extend u to a function defined on Q5 U ([a, b] x R), still denoted
by u, such that u € C([a,b] x R;R?). Let » € C2°((c, 3)) be such that supp ¢ C [a, b]
and

B
/ p(x)de =0. (43)

Since Liph < Ly and h is bounded away from zero on [a,b], we have that (o, 8, h +
ep) € As and h(z) + ep(x) > 0 for all z € (o, B), if |¢] is sufficiently small. In turn,
(a, B, h + €, ulQthw) € A. Taking the derivative with respect to ¢ of F°(a, 3, h +
€@, ulg, . ) at € =0, we obtain

S W) () 5 () (@)
”/a T+ (W()2ie ™t / @+ ()22 ™

10



5 [P (x)(h(x)2¢ (2) 8
2 O/a 1+ (W (2)2)? d“/a W (Bu(z, h(x)))¢(x) du (44)

21/
¥ / (H () = HO@))\/1 + (A (2))2( / ¢(s) ds)dw = 0.

—00

Since @ belongs to C°(R) and satisfies (43), using integration by parts the integral
over R becomes

1/j</w (H(s) — H°(s)) 1+((5°)’(s))2ds)¢(x)dz, (45)

T — 00
This allows us to rewrite (44) as

B
/ (AW'o" + BW @' + fo)dz =0

for all ¢ € C°((«r, B)) with supp ¢ C [a, b] satisfying (43), where

L)

A= TP e
1B @)

PO G e~ 2 T e o

) = W )~ [ () = HO )1+ (RO G)2ds. (49)

By introducing a Lagrange multiplier m for (43), we obtain

b b
/ (AR" " + BRh' o' + fo) dx:m/ pdz

for all ¢ € C°((a,b)).

Note that A € C%'/2([a, 8]), A > ag for some constant ag > 0, B € L*((«, B)),
and f € C%a,b]) since u € C1([a,b] x R). Let us fix 29 € (a,b). Integrating by parts
once we get

b
[ g B~ B da =0, (19)
where

Fo(z) = /m(f(s) ~m)ds. (50)

For every ¢ € C°((a,b)) with f;wdaz = 0, setting p(z) := [ ¥ ds, from (49) we
obtain

b
/ (A" + (BN — Fp)i)de =0.

11



By the arbitrariness of ¢ we obtain

A(x)h' (z) = /J(B(s)h’(s) — F(s))ds + p1 (51)

Zo

for all € [a, ], where p; is a polynomial of degree one associated with the constraint
fab 1 dx = 0. Observe that since A, B, and F,, are independent of a and b, with o <
a<xg<b<f,so0is pp, hence (51) holds for all z € («, 3). Since A € C%'/2([a, A]),
A > ag, B € L'((a, B)), and F,,, € C'((«, B)), (51) implies that h” € C°((a, 3)). In
turn, this gives A € C'((a, 3)) and B € C%((«, 3)). Hence, the right-hand side of (51)
is C'((a, B)), therefore h” € C((a, B)). In turn, A € C?((a, 8)) and B € C*((«, B))
by (46) and (47), and so h” € C?((a, B)) by (51).

By elliptic regularity ([39, Theorem 9.3]) it follows that u € C3/2(€; ) for every
a < a<b< B, which gives (39). In turn, (40) hold in the classical sense.

By (39) and (48) we have f € C%!((a, 8)) N C*((c, B) \ {a®, 8°}). Hence, F,, €
CH1((a,8)) N C%((a, B) \ {a®, 8°}) by (50). Moreover, again by (46) and (47), A €
O3 (e, £)) and B € C*((o, 8)) and, by (51), B” € C>!((a, ) N C¥((e, §) \ {0, 6°}),
which proves (38).

Step 2: We prove (41). Fix @ < a < b < 8 and let ¢ € C°((a, 8)) be such that
supp ¢ C [a,b] and (43) holds. Define

H(x):= /x (H(s) = H(s)\/ 1+ () (5))* ds, (52)

—0o0

By (42), (44), and (45), we have

by 1 ", 1 1
h h 5 R (W)
'y/a fdw—i—uo/a Jf dr — 20/a (pdx—l—/ Wgodx—f/ Hepdr =0,

where J is defined in (42). We integrate by parts once the integrals containing ¢’ and
twice the integral containing ¢” to obtain

b I b " b INAY
h'N\’ R\ 5 R (h")2N!
—fy/a (7) <pdx+uo/a (ﬁ) (pd$+§yo/(l ( 77 )god:c
b 1 /b
Jr/ Wgadxff/Hgad:v:(),
a T a

By the arbitrariness of ¢ € C2°((a,b)) satisfying (43) we obtain

Y w8 (M et

where m is a Lagrange multiplier due to (43). Using (52) and differentiating

() () (Y e o,

12



where Jy is defined in (42). Dividing by J° and differentiating once again we obtain
(41). O

Remark 1. From the special form of C, it follows that

pAu+ A+ p)Vdive =0 in Qy,
2u(Bu)v + X\(divu)r" =0 on Ty,

where T, is the graph of h in (a, B) and V" is the outward unit normal.
Given (a, 8,h) € As, a <a <b< g, and n > 0 we define

Q= {(@.y) €R?: a<a <b, h(@) —n<y<h()}.

Theorem 5. Let (o, 8,h) € Ag, let u € A.(a, B, h) be the minimizer of the functional
E(a, B, h,-) defined in (15), let 6 > 0, n > 0, and M > 1. Assume that there exist
a<a<b<f, withb—a> 44§, such that

h(z) >2n  for all x € [a,b], (54)

/ﬂ |n (x)|?dz < M . (55)

Then there exists a constant C = C(6,n, M) > 0 (independent of «, 8, a, b, h, hg,
and 7) such that

||u||cl,1/2(§;fn5»b*5) <C. (56>

Proof. In what follows C' denotes a positive constant whose value changes from formula
to formula and which depends only on §, , M and the fixed parameters A, u, vy, 7o, 0o,
Ay, o, Lo, and v of the problem. Let Q_j, := {(z,9) € R?: a <z < 3, —h(z) <y <
0} and let v be the function defined by v(z,y) := u(x, y+h(x)) for every (z,y) € Q_},.
Then v € HY(Q_p;R?) and by (22) we have

vl < C. (57)
It can be shown that v is a weak solution to the boundary value problem

{ div(AVv) =0 in Q_p, (58)

(AVv)es =0 on (a, 8) x {0},

(A9 11 = 2u(&11 — &12h) + A& — &2l + &22)

(A)12 = —2p(&11 — &12h/ )W + M(&r — a2k + &a2) W + p (E12 + Eo1 — Ea2h) . (59)
(A&21 = 1 (§21 + &2 — E22h)

(A& = —p (&a1 + &12 — E2P') W + 2100 + A(&11 + Eo2 — E12R) .
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Define Q% := {(x,y) € R?: a < 2 < b, —h(z) < y < 0}. Since h € C1/2([a, 4])
in view of (55), we have that

||A||CO,1/2(§‘in) S C (60)

Moreover, recalling that C satisfies the Legendre-Hadamard condition and the latter is
preserved by changes of variables, we deduce that A satisfies the Legendre-Hadamard
condition. Hence, we are in a position to apply Theorem 9.3 in [39] in each rectangle
of the form (z — 26,z + 2J) x (—2n,0) with a + 2§ < 2 < b—24. Using (57) we obtain
that v e Cl’l/z([.’ﬂ — (5,1’ =+ (S] X [—U,O],Rz) Wlth ||,U||Cl’1/2([x—5,x+6]><[—7],0]) S C ThlS
implies that ||v]lc1.1/2(ja46,6—8)x[—n,0) < C and, in turn, (56). O

Let us define
0 0 0 1 0 1 0 1 0
BT(H,H,CY,OZ,B,B):l‘i‘; ‘H—H|d$+;|0{-0¢|+;|6—6|’ (61)
R

where H and H? are defined in (19).
Theorem 6. Under the assumptions of Theorem 4, suppose in addition that there
exist 0 <mno<1,0<m <1, and M > 1 such that

2o < h'(a), N(B)<—2m, (62)
h(z) >2m  for all x € [a+ &0, 8 — do], (63)
B
/ |n" (x)|?dx < M, (64)
where
So:=n3/(4M) < 1/4. (65)

Then W (Eu(-,h(-))) € L*((o, B)), h € W*((«, B)), and there exists a constant co =
co(no,m, M) > 1 (independent of o, B, h, ho, and 7) such that

B
/ W (Eu(z, h(z))) dz < coB-(H,H®, a,a", 8, 8°), (66)
1B | Lo ((a3)) < coB-(H,H®,a,a°, 3, 8%), (67)
11" | o ((a,39) < coBr(H,H,r,0°, 8, 5%)?, (68)
A" N[22 () < coBr(H, H, a0, B, 8%), (69)
1B 1 (o) < coBr(H,H, 0,00, 5, 5°)%. (70)

Unless otherwise indicated, in the proofs of the rest of the paper C' denotes a
constant depending only on the constants 79, 11, and M of the previous theorem (and
on the structural constants eg, A, u, and L, and possibly on the exponents considered
in the statements). The value of C' can change from formula to formula.

In the proof of Theorem 6 we use the following estimate.
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Lemma 7. Letny >0, M >0, a < 3, and h € H*((«r, B)) N H} (v, B)). Assume that

20 < W' (a), H(B) < —2mo, (71)
B
/ |n (z)|?dz < M . (72)
Then
B—a>16n3/M. (73)

Proof. By the fundamental theorem of calculus and by (71) for every z € («, ) we
have

B (z) =h'(a) + /m h"(s)ds > 2no — /m |h"(s)|ds . (74)

We claim that there exists z,, € (a, 8) such that

/ ) |h'(s)|ds = 2n9 and / |h"(s)|ds < 2n9 for x € (o, q) - (75)

If not, by (74) we would have h/(z) > 0 for every = € («, ), which contradicts the
assumption h € H}((«, 8)) and proves the claim. By (74) and (75) we have h/(z) > 0
for every = € (o, zq)-

In the same way we prove that there exists x5 € (v, ) such that

B
/ |h"(s)|ds =2m9 and h'(z) <0 forx € (z3,p). (76)

B

Since z, < g, from (75) and (76) we deduce that

B
4ng S/ |h(s)] ds .
By Hoélder’s inequaliy we get
4,',’0 S M1/2(/8_OZ)1/2,

which gives (73). O

Proof of Theorem 6. Step 1: A Variation of («, 3, h,u). Extend h to a function
h € H*((a — 1, 8)) by setting h(x) := h/(a)(z — a) for x € (a — 1,a]. Using Holder’s
inequality for = € («, ) we have

T 1/2
B(z) > W (a) — (z —a)'/? (/ h”(s)|2ds) >0 — (z—a)2MY2 >y (77)

provided = — o < 2 /M.
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Then, using also the fact that h(x) := h'(a)(x — «) for x € (o — 1, &, we have
no < h'(z) < Ly for every x € [a — 8o, a + 20p) - (78)
Since h(a) =0 and a + 469 < 8 by Lemma 7, we obtain

no(z — ) < h(x) for every x € [a, a + 469, (79)
|h(z)| < Lolx — a] for every = € [0 — dg, o + 2dp)] . (80)

Take o € C*°(R) with ¢(0) = 1, po(z) > 1/2 for every = € [—do/2,00/2],

b0 o dz =0, and supp ¢ C (—do, dp). Define

0
o) == ¢o(x —a), xeR. (81)
Let o := min{1, 18010/ |¢0llc1}. Then for every ¢ € R with |e| < g9 we have

B (z) +ep'(z) >no/2 forall z € [a— o, + dp] (82)
h(a = o) +ep(a— o) <0 < h(a+ o) + ep(a + ) .

This implies that there exists a unique a. such that
ae € (a —dp,a+0g) and h(a:)+ep(as) =0. (83)

Moreover, by the Implicit Function Theorem the function € ~ a, is of class C' and
so we can differentiate the previous identity to get

doe o) (84)
de (o) +ep(az)
By (82),
d 2
a%e < Uleollco for all € € [—&g, €0] ,
de o
and, since a” = «, this implies that
2
0. — af < 2eeller gy (55)

Mo

Since @o(z) > 1/2 for |z| < /2, we have
@(x) > 1/2 for |[x — a| < &y/2. This, together with (85) implies that ¢(a.) > 3

for
2
le] < e1, where &1 := min{dono/(4||¢ollc0), €0} In turn, by (82) and (84),

do
de

<0 forle] <eq. (86)

Observe that (82) implies that h + ¢ > 0 in (a.,a + dp). On the other hand
h+ep=h>0on [a+d,[s].
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In order to satisfy the area constraint (6) we fix a function ¢y € C*°(R) such that
supp¢o C (do,2dp) and f;fﬂ Yodr = 1, and we define 9(z) = ¥o(r — a), v € R.
Consider the function h. € H?((ae, 8)) N H ((ae, B)) defined by

he(z) := h(z) + ep(z) + we(2) , (87)

where w. € R is the unique constant such that

B
/ he dz = Ay . (88)

Since ff pdx =0, from (6) and (88) it follows that
B B
[ e+ epla) + webi@) do = o = [ (o) + (o) do.

[e3%

Hence, using the fact that [ f Ydr =1, we get

[e3

B B
/ (h(x) +5ga(x))dx+/ (h(z) + ep(x)) de + we :/ (h(z) 4+ ep(x)) dz,

Qe

('L:i/:h(x)d:c/aaap(:n)d:c.

e e

and so

To estimate the right-hand side we use (85) to get

a 2 2
/wtc)dxlf Iollcny)
Qe Mo

while, using also (80), we obtain

« 4 eollzo 4 1/251/2 7 r1/2
h(z)dz| < 2 e*(Lo + 2726y " M=) .
[o 0

Combining these inequalities we have

]%‘ < Clel. (89)

Let €2 := min{2”%”01jzgcwouc1 ,€1}. We claim that for all |e] < g2 we have

B> 0/2 in (ae,a+ 26). (90)
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Fix |e| < eg. Then by (78),

h = W' teg'+we)’ = mo—lelllpollcr —Ce?|[wollcr = mo—lel(lleollcr+Cllvoller) = m0/2,

which proves the claim.

Since supp ¥ C (a4 g,  + 20p) and . € (o — dp, @ + dp), we have ¥(a.) = 0. By
(83) and (87), this gives h.(a.) = 0, hence (90) implies that h. > 0 in (@, a + 2d0).
Moreover, since supp ¢ C (o — dg, @+ 6g) and supp ¢ C (a+ dg, @+ 2Jp) we have that

he =h on [a+ 2d,[]. (91)

We conclude that h. > 0 in (a., 8). In turn, also by (88), (e, B, he) € As.
Let U be the interior of the set Qp, U (o — &g, 3] x [~1,0]) and let @: U — R? be
the function defined by

)  Julz,y) if (z,y) € Q,
Wz, y) = { (eox,0) if (z,y) € [a — dg, 5] x [—1,0].

Since the two definitions match on [a, 8] x {0}, we have 4@ € H'(U;R?). Recalling that
U has Lipschitz boundary, we can extend @ to a function defined on R2, still denoted
by 4, such that @ € H'(R?* R?).

Hence, if we let u. be the restriction of @ to €y,_, we have u(z,0) = (epx,0) for
a.e. T € (ag, B), which gives (ag, 8, he, ue) € A.
Step 2: Evaluation of derivatives. We claim that

S(asaﬂ,hs) — S(O‘,ﬁah)

lim inf
e—0 3
—d V1+ (W (« 1
_’Y/ \/711, z+yv1+( h’ W(a) ’YOW
B8 h// 7z 5 B h/(h//) ©
v f <1+<h/>2>5/2dm‘2”°/a @+ eyt %

Since (ae, B, he) € As and ¢(a) = 1, by (84), (87), and (89) we have

o S(ew,Bhs) — S(a TP
hg{r)lf 5 / \/sz+'y 1+ (h o
1
105 (@) + 7 lminf .,
where

1 h// B (h//)Q
K M i, wwd] |
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Write

B "\2 B 1\2
PR U R (U
€ | Ja. (L+ (hL)2)5/2 a. (14 (R1)2)5/2
1 [} (h//)2
S ) =T, 41,
+ 5/% (1+(h’)2)5/2d1: 1+ deo
By (87) and (89),
B U B h/(h//)2 /
. - % _ ¥
tter =2 [ Gt =3 [ oy oy

By (86), a. < a for e > 0 and a > « for € < 0, provided |e| < e5. This implies that

liminf I, » > 0.
e—0

From this inequality and from (93) and (94) we conclude that (92) holds. Since Lip h <
Ly, from (64), (65), and (73), we deduce that

lim infs(ae’ Brhe) = S(a, B, )

e—0 9

> —(yLobo + voMY28) + (5/2)voLoM)|gollc> —v/(2m0) . (95)

For simplicity of notation we abbreviate
7‘0(3 E ) = 7;(; ) aov Bov ho)

To evaluate %7'0(045, 8, h5)|6 o We define

) | Che(p)dp, D) = / " 5(p)dp. (96)

€

where h. and ¢ are the extensions of h. and ¢ by zero outside (o, ) and (o, B),
respectively. Since f(fo o dxr = 0 and supp po C (—do, do), we have ff wdz = 0, hence

O(xz) =0 forevery z ¢ (a, ). (97)

Observe that if o < < 8 then o, < z < § for all |¢| sufficiently small, and so by
(84), (89), and the fact that h(a) =0,

d
dngg(f,U)

d [* .
= — h e d
. ds/( +ep+w)dp

Qe

:/mgodpsz(x). (98)
e=0 «
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On the other hand, if # < «, then x < «. for all |¢| sufficiently small. Hence, H.(z) =0
and so d%HE(:r)|E=O = 0. Moreover, H.(x) = Ag for x > by (88), and so again
4 H.(z)|__, = 0. By (97) it follows that (98) holds for all z € R\ {a}.

By the regularity of h it follows from the Lebesgue dominated convergence theorem,
(18), (84), and (98) that

d 1 Y 0\/ g0 1
ETe | = [ e L (e - - at) s (09
2 g0 1

1
—(1+L0)H<P0||00250*/ |H — H|de — —=|a = "],
T JR Mo T

where in the second inequality we used (62) and the fact that supp e C (—do, do)-
Integrating by parts, and using (52), (96), and (97), we obtain

/R(H — H)®\/1+ ((h0))2dr = — /j Hopdz . (100)

Step 3: Proof of (66). In what follows C' denotes a positive constant whose value
changes from formula to formula and which depends only on 79, 1, M, and the fixed
parameters A, i, v, Yo, 00, Ao, €, Lo, and vy of the problem.

By Step 1, (ae, 8, he,ue) € A and because (o, 8, h,u) € A is a minimizer of the
total energy functional F°, we have that

FO(aE,B, havua) _fo(avﬁvhﬂu) 2 0

Then 0 0
1imsup]: (a5767h67u6>_]: (aaﬁaha’U/) S0
e—0~ 3
and so, by (21), (95), and (99)) we have
h - h
Jim sup 202 “)E Ela.Bhu) CB,(H,H° a,a®, 8, 5°). (101)
e—0—

By (85), (86), and the fact that ¢ < 0 we have that @ < @ < «a + do/2 for all
—g1 < e < 0. Since

glonphen) = [ ([ wimatev) a)ae,

suppp C (a — dg,a + dp), and suppy C (a + dp, @ + 2d9), we have that h. = h in
(a4 260, 8), and so for —e; < £ < 0 we can write

9 9

E(ae, By he,ue) — E(a, Bohyu) 1/a+260( h(z)

—= W(Ea(z,y)) dy) dx
he(z)
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1 ac h(z) 1 a+28g h(z) R
_g/a (/0 W(Eu(a:,y))dy)dm > —C /ag ( o) W(Eu(x,y))dy)dm.
(102)

By (79) we have that h(xz) > 19 do/4 for all z € [ + dp/4, @ + 4Jp]. Hence, we can
apply Theorem 5 to obtain that W(FEu(x,h(x))) < C for all € [a+ §p/2, a + 20¢].
By (87), this implies that

1 a+248g h(x) a+24§g

lim - / ( W (Ei(z,y)) dy) do = — / W (Bu(z, h(z)))p(z) dz < C.
a+680/2 “he(x) a+d0/2

(103)

Together with (101) and (102) this implies that

a+d0/2 h(z)
lim sup ( - f/ ( W (Ed(z,y)) dy)dx) < CB,(H,H" a,a°, 3,8").
e—0— € Ja he(x)
(104)
Using the facts that ¢ > 1/2 in (a, @ + §o/2) and supp ¢ C (« + dg, & + 2dg) we
obtain that he = h +ep < h in (o, @ + do/2) for every —e1 < € < 0. Hence,

1 k@)
—= W(Eu(x,y))dy > 0
€ Jhe(z)
and
1 h(:r) R
~ = X(az,a+do/2) () W(Eu(z,y))dy — W (Eu(z, h(z)))p(x)

E(z
for every = € (a, a4 §p/2). By Fatou’s lemma, the fact that ¢ > 1/2 in (a, @ + d0/2),
and (104),

1 O[+50/2 1 a+50/2 h(:v)
— < 3 3 . A~
5 /a W (Eu(z, h(x)))dx < llsg(l)lgf( 5 /% ( o) W(Eu(z,y)) dy)da:>

< CB.(H,H°, a,0,8,8°).

A similar argument gives the corresponding estimate over the interval [ —d¢/2, 3].
To prove the estimate over the interval [a+ dp/2, 8 — d0/2], we apply Theorem 5 with
a=a+d/4, b= 08—20/4, and 6§ = §y/4. We observe that (54) is satisfied with
1 = min{nedy/8, 71} thanks to (63), (79), and a similar estimate near 3. By (17) and
(56) we obtain

B—6b0/2
/ W(Eu(z, h(z)))dr < C < CB.(H,H’,a,a, 3, 8°),
a+d0/2

where we used the fact that 1 < B, (H, H°,a,a?, 3, 8°).
Combining the inequalities on [o, a4 60 /2], [ + 80 /2, 8 — d0/2], and [B — §o/2, 5]
we obtain (66).
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Step 4: Regularity of h. Observe that by (6) and (63), we have that § — a — 20y <
Aop/(2m1), and so
B—a<Ao/(2m)+ 2d. (105)
Let us fix g € (a + o, 8 — J,). By (51) we have

A(x)h' (z) = /E(B(s)h'(s) — F(s))ds +my (106)

0

for all z € («, ), where A, B, F,, are defined in (46), (47), and (50). In particular

we have
Fo(z) = F(x) —m(xz — x9), where F(z):= /ac f(s)ds. (107)

By (66) we have that F,, € W'((a, 8)). Since A € C%V/2([a, B]), A > vo/(1+L2)%/2,
B € L'((a,B)), and F,, € C%Ja, B]), (106) implies that k" € C°([a, 8]). In turn,
this gives A € C'([e, 8]) and B € C°([, B]) by (46) and (47). Hence, the right-hand
side of (106) is C'([a, A]), therefore h” € CYa, A]). In turn, A € C?*([r, 8]) and
B € C'(|a, B]), and so by (106), " € W21((«, 8)). By differentiating (106) we get
A(z)h"" (z) = —A' ()R (z) + B(z)h' (z) — Fp(x). (108)
By (46), (47), and (105) we have
[ All e ((a.8) + 1Bl ((a)) < C (109)

To estimate F,,, we first obtain bounds for the function f defined in (48). In view
of (66) and (105),

||fHL1((a,ﬁ)) < CB-,—(H, Ho,a,ao,ﬁ,ﬁo). (110)
Hence, by (107),
HF”LOC((a,ﬁ)) < CBT(Ha Hoaaaaoa/gaﬂo) . (111)

Next we estimate the constant m in (107). Let (o € C°((—d0/2,30/2)) be such that
fé[j;ﬁQ o= = 0 and f&g//Q z)z?dr = 1, and let ((z) := (o(x — mp). Since
a+d) <z < [3 09, we have that e CP(a+d0/2,8 — 00/2)). Multiplying (106)
by ¢ and integrating over (a + d¢/2, 8 — do/2) we obtain

B—0b0/2 B—60/2 x m
/ A(z)h (x)¢(x) dw = / C(m)/ (B(s)h'(s) — F(s))dsdx — R

+00/2 a+00/2 0

22



where we used the facts that ff;foo//; ¢(z)dr = 0 and ff;;oo//; C(x)(x — 20)%dx = 1.

From (64), (109), (111), and Holder’s inequality, it follows that
im| < CB(H, H', a,a°, 8, 8°).. (112)
Together with (105), (107), and (111), this gives

|| Fm”L‘X’((a,ﬂ)) S CBT(H7 H07a7ao767ﬂ0)
and || Fnllzr ((a.5)) < CB-(H, H®, a, 0", 3, 8°) . (113)

Using the fact that A > wvo/(1 + L3)%/2, (64), (108), (109), (113), and Hélder’s
inequality, we obtain

IR £1 ((a,8)) < CB-(H,H®, o, a°, 3, 8°) . (114)

This proves (69).
For every z € (o, 8) we have

I (2)] < (B=a) " W |11 asy + 1B |2 ((arp)) -
By (11), (64), and (114), this inequality yields
11| Lo (o)) < CB-(H,H",a,a°, 8,8°) (115)

and proves (67).
By (46), (47), (105), (114), and (115) we have

AN o< () FIA N 2t (.8 FI Bl oo (.8 FI Bl L1 ((a8)) < OB (H, Ho,a,ao,ﬁ(ﬁz))-
Using again the fact that A > /(1 + L2)®/? and (108), from (113), (115), and (116)
we get

||h/”HL°°((a,B)) < CBT(H7 H07 a, aovﬂvﬂO)Q 3

which proves (68).
Differentiating (108) gives
A(@)h™) (2) = =24 ()0 () + (B(x) — A" (2))h" (@) + B'(2)l' () — f(x) +m.

Using the fact that A > /(1 + L3)%/2, (112), (105), (110), (114), (115), and (116)
we obtain '
12| 21 (o)) < OB-(H,H®,a,a°, 3, B°)%, (117)

which proves (70) and concludes the proof of the theorem. O
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Remark 2. Since h € C*([a, B]) in view of Step 4 in the previous proof, the limit
inferior of I. in (93) is actually a limit and, by (84) and (94), it is given by

) B B h”(p” B hl(h//)Q(p/ (h”(a))2 1
t =2 || G G =0, o R O e

Hence, (93) becomes

(ag,ﬂ, / de+7\/1+ (h(« h’ 70@
e=0
B h// " 5 B hl(h//) <P % (h//(a))2 1
+”°/a wvw‘“‘a%/a @R 2 T (@) )
(118)

4 Flattening the Boundary

In this section we transform the intersection of a neighborhood of («,0) with €y, into
the triangle

A" = {(z,y) eR?*: 0<x<7r,0<y<mz}, (119)
for some r > 0 and m > 0. We fix 0 <19 < 1 and M > 1 and assume that

a<f, heW"((e,5) C C%(a,f]), (120)
h>0in (a,8), h(a)="h(B)=0, (121)
W(a)>2n9, NW(B)<-2no, Liph<Lg, (122)
/ﬁ |n (x)|?dx < M . (123)

For simplicity, in this section we assume that o = 0 and we write hy := h'(0), h{ =
R (0), and hy' := A" (0).
Given r > 0 we set I, := (0,r) and Q%T = Qp N (I, x R). Assume that

770 1
< — < 124
0<r<éy= M < 1 ( )
By Lemma 7 we have 64r < 8 — «. Define for x € I,
hyx
= 12
o) = o (125)
and the diffeomorphisms ® : I, X R - [, x Rand ¥ : [, x R — I, x R by
O(z,y) == (z,y/o(x)) and V(z,y):=(z,0(x)y). (126)
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Throughout tis section we set m = hy. Observe that
T(Q)") =A™, (127)

where AJ" is the triangle introduced in (119). By (120) and a direct computation, we
have that o € C?(I,)) and that

_ hoh(x) — hyzh/(x)

o'(x) = ()2 , (128)
wo o~ hozh! (2)h(x) 4+ 2hoh(x)N (2) — 2hha (b (x))?
o (x) = -2 (()h(x))3 g ) (129)
if z € I, and
B , B h// ” B (h//)Q h///
o(a)=1, U(a)——Z}SB, o’ (a) = 2(56)2 _3/26' (130)
In turn, L
dc C?(AT;R?) and W e C%(Q)";R?). (131)

Lemma 8. Under the assumptions (120)—(123), let r be as in (124). Then there ezists
a constant C' = C(ng, M) > 0, independent of r, such that

F1/2
lo = lpee(r,) < nTIIh”IILzur) < Crl|h"|lpe=(1,) » (132)
o'z 1,y < ClRG|+ Cr(|hg| + P51 1,y) (133)

0" Lo,y < C(1RG 1 + 0G| + 1R |1 a,y) + O (Ihg 1P + IR0 ) - (134)
Moreover,

sup  |yo’ ()] < Cr|hg|+ Cr2(1hy| + 1K L) » (135)
(m,y)eﬂg’r
sup yo”(x)] < Cr(hg* + 1B + R || Lar,y) + Cr3 (IR + Hh(iv)llium) ;
(z,y)€Q)”
(136)

( S;lpA lyo' (z)] < Crlhy| + Cr2 (IR + R L1 r,)) s (137)
z,y)eAT

( s;lpA lyo” ()| < Cr(|hg > + |hg'| + 1B |1 r,y) + Cr3 (1012 + 1B 30, -
z,y) €A
(138)

Proof. Using Taylor’s formula with integral remainder for x € I,. we can write

o Mo —h@) _ fo h(s)@ —s)ds
e e B 1(z) :
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If x € I, by Holder’s inequality, (122), (123), and (124) we have
h'(z) = hy +/ R'(s)ds > 2ng — M'/?21/2 > pq .
0
Hence,
h(z) = / B (s)ds > oz . (139)
0
In turn, by Hélder’s inequality,
3/2 1/2

X T
o(x) — 1| < Z— W' ||z < —||R"|| 22
lo(z) — 1] < o 1A 21,y < no 1A N z21,)

for every = € I, which gives the estimate (132).
To prove (133), in view of (128), we use Taylor’s formula with integral remainder
to get

1 1
hoh(z) — hozh' (x) = —§h6h3x2 — ghghg’x3

1 T 1 Lo
— §h6x/ AV (s)(x — 5)%ds + gh{)/ ROV (s)(x — 5)3ds .
0 0
Hence,
1 1 2 r o
Boh(a) ' (@)] < ghelhgla® + 3G e + Shoa® [ O] ds.

Using (139), if follows from (128) that

Lo (1 1 2
@)l < 8 (510614 rIkg+ 31 )
0

which proves (133).
To prove (134), in view of (129), we use Taylor’s formula with integral remainder
and the inequality 2ab < a® + b? to estimate

|hpah” (x)h(x) + 2hph()h () — 2hha(h ()|
< OflngPa® + [hg'12® + ) |21 2™ + 15 P2® + R 1y 2]

where C' = C(Lg) > 0. Using (129) and (139), for = € I, we get

0" (@) < =5 [|hg* + 1hg"| + [0 pacry + 2 (15 P + 18521 s,)]

3 Q

which proves (134).
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To prove (135) and (136), in view of (133) and (134), it is enough to observe that
if (z,y) € Q?L’T, then 0 < y < Lor.

Finally, if (z,y) € A, then 0 < y < mr < Lor, where in the last inequality
we used the fact that m = h{ < Ly by (122)) Together with (133) and (134), this
inequality proves (137) and (138). This concludes the proof. O

Remark 3. By (123), (124), and (132) we have that
lo =1,y <1/2.

Lemma 9. Under the assumptions (120)-(123), let r be as in (124), and let
1<p<oo. If f € LP(Q)") and w € W2P(Q)"), then fo ® € LP(AT) and
wo® e W2P(A™). Moreover the following estimates hold:

1f o @llLrag) < Coll fll Lo oy

Vo Ol < Cplt+ s olo’ @)DVl zoiagr
z,y)EA®

[V2(wo )| Lr(am) < Cp(1 + ( S?PA yQ(U/(z))2) HVQWHM(Q;’LW)
z,y)EAT

+Cp(1+ sup [o'(x)| + sup y(o'(@)?+ s ylo” (@) [Vel| oo
zel, (z,y)e A (z,y)€AT '

where the constant Cp, depends only on p.

Proof. In this proof C is an absolute constant, independent of all other parameters,
whose value can change from formula to formula. Since det V®(z,y) = ﬁ, by a
change of variables and Remark 3 we have

/ |fo®Pdady = /0 ) olfPdxdy < g/o ) | fIPdzdy . (140)
Am % QY

By (126) and Remark 3, it follows by the chain rule that
IV(wo @)(z,y)| < C(1+ylo'(z)])|[Vw(®(z,y))|. (141)
Hence, by (140), we have

IV(wo ®)llmiam < C(1+  sup  ylo’(@)])|Vaull o, -
(z,y)eAT '

Similarly, again by Remark 3 and the chain rule

V2 (w o @)(x,y)] < C(1+1(0"(2)*)|V2w(®(x,y))]
+C(1+ o' (@) + (o' (2))* + ylo” (2))[Vw(@(z,y)] .
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Hence, by (140) we obtain

[92(wo ®)ll o) < C(1+  sup y2(0"@)?) V2] oy

(z,y)e AT
+C(1+ sup |o'(z)|+ sup y(o'(z))*+ sup ylo"(z)]) IVl ooy
z€l, (z.y)eAR (z.y)€Ar "
which concludes the proof. O

Remark 4. Similarly, one can show that if f € LP(A™) and w € W2P(A™), then
foWe LP(Q?L’T) and wo W € Wz’p(Q?L’T) and the following estimates hold

1 0 @l ooy < Coll fllogap)
IV(wo W)l Lnqory < Cp(l+  sup  ylo'(@)])[VwllLocap
(z,y)eQy”

HVQ(w o \P)HLP(Q(}-)L,T) < Cp(l + sup . y2(0"(x))2) ||V2w||LP(A:n)
(z,y)eQ,”

1, (1 suwp o'@)| + swp y(@ @)+ sup ylo” (@) [Vl g -
zel, (x,y)eQ?L’"’ (x,y)GQ?L”'

where the constant C), depends only on p.

Given r > 0 asin (124), let I‘%T :=I',N(1. xR), where I'y, is the graph of h, and let
= {(z,mz): 0<x <71} COIA™. For x € I, let v"*(z) := (=h(z),1)//1 + (K (z))?
be the outer unit normal to €, on T'j, let 19 := (=h{,1)/\/1 + (h{)? be the outer
unit normal to A7 on I', and let w;: I, = R be the functions defined by

b W ()
0 h 0
= —_ = — —|— )
=i ) = - e Y AT
, 1 1

wo(z) =19 — vi(x)

T VIR T @R
ws(x) = —0" (@) h(@)h () = o (2)h(z) e )

VIH @)

wa(z) == —(o(x) = W} (z) = (o(z) - 1)%’

1
VI+ (@)’
1

we(z) == (o(x) — Di(z) = (0(z) = 1) —//— .

6(z) = (o(x) = Dry () = (o(x) — 1) O
Lemma 10. Under the assumptions (120)-(123), let r be as in (124), let 1 < p < oo,
let u € Wli’f(Qg’r;RQ), with u € WP (Q},";R?) for every 0 < p < r, let m = hj, let
v: AT — R? be defined by v(z,y) = u(x,y/o(x)), and let g € W'P(QY": R?). Assume

(142)

ws(2) := o' (2)h(2)v} (z) = o' (x)h(x)
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that
(CEu)" = 2u(Bu)v" + A(divu)" =g onTO".
Then
(CEv)v =2u(Ev)y + AM(divo)y =go®+ 3" + 3§ on T,
where §¥ = (§%,4%) and §g° = (g%, 33) are defined by

97 = (2uwr + Aw1)0zv1 + pw20,v2

G5 = Awa0,v1 + pw1 0502 .

97 = (pwa + 2pws + Aws — pwe)Oyv1 + (Awr + Awg — pws )0y 2,

G5 = (pw1 + pws — Aws)0yv1 + (2pws + Aws + pws — 2w — Adwes ) Oyva -

Remark 5. If u = 0 on dQ)" \ Q)" then §* = 0 on (0,7) x {0} and §* =
{r} x (0,mr).

Proof of Lemma 10. Since u(x,y) = v(z,o(x)y), the partial derivatives of u are
Opu(w,y) = Opv (@, 0(2)y)+0yv(w,o(2)y)o’(x)y and  Jyu(x,y) = Oyv(x,0(x)y)

So at (z,h(z)) the first component of 2u(Eu)vh + A(divu)v” is

(143)

(144)
(
(146
(
(
0 on

o(x).

2 (Opv1 + Oyv10'y) VI 4 1(Dy 02 +8yv20/y+3yv10)ug+)\ (Opv1 + Oyv10'y + Dyv20) vl

while the second component is

11 (0302 + Dyv20"y + Dyv10) VI + 20y vao vl + X (Opv1 + Oyv10’y + Dyvao) U

where v and vy are computed at (z,0(z)h(z)) = (v, hyr) and o and o’ and "

at x.

By adding and subtracting some terms containing v and /9, the first component can

be written as

2#37:1111/? + w(Opve + 3yv1)1/g + A (Ogv1 + Oyv2) V(f
— 240,01 () — V) — (B + 0,01 )R — ) — A (Batn + Byu3) (0 — 1)

+ 200y 10" yv} 4 1(Dyvac’y + Ayvi (o — 1))l + X (8yv10"y + yva(o — 1)) vf

and the second component as

11 (0302 + 0yv1) VY + 200,021 + X (Opv1 + Oyv2) V3
= (Ozva + Byor) (1) — v1') — 200y va (g — 1) — X (Bzvr + Byv2) (V5 — V)
+ 11 (9yva0"y + Oyv1 (o — 1)) U} + 2udyva (o — 1)y 4+ X (9yv10"y + Oyva(o — 1))

Hence, using (143) we obtain (144) with

g1 = 200501 (] — V1) + pOzva (Vs — 1) + Aavr (V] — 1)

29

h
2)



35 = 1Oyua(V) — V) + A0n () — 1)

and
30 = p0yv1 (V3 — v 4+ A0yva (V) — V) — 2ud,vi0” vt
= 1(By20"h + 0,01 (0 — 1))k — X (Dy10"h + Dyvalo — 1) v,
35 = 10, (0 — V1) + 200,08 — v) + Nyua (v — )
— p (0yv20"h + dyvr (o — 1)) v — 2udyva(0 — 1)1y — X (Qyv10”h + Dyva(o — 1)) vl

Using (142) we obtain (145), (146), (147), and (148). O

For technical reasons we need a precise estimate of the L norms of the functions
w; defined in (142) and of their derivatives.
Lemma 11. Under the assumptions (120)—(123), let r be as in (124), and let w;,
i=1,...,6 be defined as in (142). Then there exists a constant C = C(ng, M) > 0
such that
leillzoqryy < CrlR Iy + CrR Loy + 1Bl 1) (149)
il oo 1,y < CUIB" N[ Loer,y 4+ Cr(I0 | Fe 1,y + 1B L1,y + 1B L1 a,y) - (150)
O (IR m sy + IR s )
fori=1,...,6.

Proof. Define

filt) = 1t+t2 and  folt) =

1
Wig: forteR. (151)

Observe that wyi(z) = f1(h' () — f1(h{) and wa(z) = fa(hy) — fo(R/(x)). Since

t

A0 = s B0 =~ (152

the functions f; and fy are Lipschitz continuous with Lipschitz constant one. Hence,
lwi(z)| < |W(z) — hy| fori=1,2,
and the estimate (149) follows by the mean value theorem. On the other hand,
wi (@) = [f1 (W (@)h" ()] < [p"(x)] and |wy(z)] = [fo(h'(x))h" ()] < |h"(2)],
which gives (150) for ¢ =1 and 2.

By (121) and (122) we have h(z) < Lox for z € (a, 8), hence |ws(z)| < Lor|o’(z)|
for « € I, and (149) is a consequence of (133), while

jws ()] < [0 (@) (@) fu(B (2))] + [0 (2)h' (@) fr (W ()] + |0’ (@)h(2) f1 (B (2))h" ()]
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< Lor|o" (x)| + Lolo’(z)| + Lor|o’ (z)h" (z)] .
Using (133), (134), and the inequality

202 |1 oo () (IR oo 1) + B9 ([ 22 1)
< 2B e g,y + TR [T 1,y + 1R 201, )
we obtain (150). The estimates for wy are similar.

We have |wa(z)| < [(o(z) — 1) f1(h' ()] < |o(x) — 1], and so (149) follows from
(132). On the other hand,

jwi ()] < |o”(2) fr (W ()] + |(o(x) = D) f1(H ()" ()]
< o' (@) + [(o(z) = DA ()],

so that (150) is a consequence of (132) and (133). A similar estimate holds for wg. O

5 Regularity: Preliminary Results

In this section we study the regularity of solutions to the Lamé system in the triangle
A™ introduced in (119). The exponent in the regularity theorem will depend on the
complex solutions z of the equation

sin?(zw) = K; — K2%sin*w, (153)

where w = arctanm is the angle of the triangle A’ at the vertex (0,0), and

A A+ 2u)?
L N O /1)

=i EESTIEEmE (154)

where A and p are the Lamé coefficients. In particular, we will use the results of the
following lemma.

Lemma 12. There exists a constant & = &o(A\, p) € (1/2,1) such that for every
0 <w < /2 the equation (153) has no complex solutions z with Re z € (0,&p).

Proof. We follow the proof of [40, Theorem 2.2]. If Im z # 0, then using the fact that

0 < w < 7, the argument in the first case of that proof shows that there are no

solutions z with Re z € (0,1]. If Im z = 0, then (153) reduces to
sin(wRez) = K1 — K(Rez)?sinw. (155)

By (154) there exists g > 0 such that K < 1 < K; — gp. By a trigonometric
computation we find that sin®(w/2) < 1 — (sin®w)/4, hence

sin?(w/2) < K1 —eg — K(sin®w)/4.
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Since for every 0 < w < 7 the function § +— sin?(wé) + K¢?sin® w is Lipschitz con-
tinuous on [0,1] with Lipschitz constant 7 + 2, there exists a constant & € (1/2,1),
depending only on gg, such that

sin?(wép) < Ky — K& sin®w

for every 0 < w < 7. Since £ sin?(wé) is increasing and ¢ — K; — K&2sin®w is
decreasing on [0, o], it follows that

sin?(wRez) < K; — K(Rez)?sin®w

for all z with Rez € [0,&p]. This shows that (155) is impossible and concludes the
proof. O

Let pg be such that 2 — p% = &p. Then

4 2

— < e
3 Po 2- ¢

<2. (156)

We recall that for every 0 < m < Ly and r > 0 the triangle A’ is defined in (119). Since
the conjugate exponent of pg satisfies p{, < 4, by the Sobolev embedding theorem we
have HJ(A™;R?) < LPo(A™;R?). Hence, by duality LP°(A™;R?) — H~1(A™;R?).
Similarly, given g € WhPo(A™; R?), its trace on

I'={(z,mz): 0<z<r}, (157)

still denoted by g, belongs to W'—1/po.po (I'; R?) and, by the embedding theorem
for fractional Sobolev spaces, we have g € L?(I'™;R?) — H~'/2(I'™;R?). Therefore,
given f € LPo(A™;R?) and g € WHPo(A™;R?) there exists a unique weak solution
w € HY(A™;R?) to the problem

—divCEw = f in A",
(CEw)y™ =g onTm, (158)
w=0 on JA™\ T |

where 1™ := (—m,1)/v/1 + m? is the outer unit normal to A™ on I'"".

In the next theorem we will use [40, Theorems 2.1 and 2.2] (see also [41, Theorem
1]).
Theorem 13. Let py be as in (156), let v >0, let 0 < ng < m < Ly, let AT and T
be defined by (119) and (157), let f € LPo(A™;R?), let g € WEPo(A™; R?), with g =0
on one of the sides of the triangle A™ different from T™, and let w € H'(A™;R?) be

ro

the unique weak solution to the problem (158). Then w belongs to W2Po(A™; R?) and

IV2w] oo apy < (1 FlLroam) + 1Vl roam)) (159)

for a constant k > 0 depending on A, u, ng, and Lo, but independent of v, m, f, and g.
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Proof. By a rescaling argument we see that it is enough to prove the result for r = 1.

Step 1: Assume g = 0. By [42, Theorem 3.1], Lemma 12, and (156), we have that
w € W2Po(AT:R?). Let X™ be the space of functions z € W2Po(A7*; R?) such that
z=0o0n JAT\I'?" and (CEw)v = 0 on I'!* endowed with the norm of W2Po (AT R?).
Consider the continuous linear operator £ : X™ — LPo(A7;R?) defined by L(z) :=
—div CEz. By what we just proved (see (158)), £ is invertible, and so by the Closed
Graph Theorem we obtain that there exists a constant C' > 0, depending on A, u, and
m, such that

[wllwzmo(amy < Cllfllroam) (160)
for every solution w to (158) with g = 0.

Step 2: In the general case g € WHPo (A7 R?), with g = 0 on one of the sides of
the triangle A7* different from I', recalling that 1 < py < 2, we can reason as in [23,
Lemma 3.12] and using [43, Theorem 1.5.2.8] we can find w' € W2Po (AT R?), with
(CEw')y™ =g on I'!"* and w! = 0 on AT, such that

[ w20 az) < Callgllw-1rm0m0 oy < C2llVgllzoo (ap) (161)

for some constants C1, Co > 0 depending on A, p, and m, where in the last inequality
we used the trace estimate and Poincaré’s inequality. Then the function v := w — w?
is a weak solution to (158) in AT* with f replaced by f + div CEw! and g replaced by
zero. Hence, by the previous step v € W2Po(A7; R?). Moreover, using (160) for v and
(161) for wy we obtain a constant k,, > 0, depending on A, u, and m, but independent
of f and g, such that

IV2wl| oo (agy < fom (£l Loo a2y + [Vl oo amy) - (162)

Step 3: Let mq € [no, Lo]. We want to prove that there exists €y > 0 such that, if
m € [no, Lo] and |m — mg| < €, then w satisfies the estimate

V2wl Leo (apy < 26m0 (I1f | Lro capy + IVl Lro (agm) 5 (163)
with the constant x,,, corresponding to my.

Since w € W2Po(AT; R?) satisfies (158), a direct computation (using Remark 1)
shows that the function z € W2Po(A7"; R?) defined by z(z,y) := w(z, wey) satisfies

—divCEz=f+ f* in AT, (164)
(CEz)v™ =g+ §°+¢§° onl7", (165)
z=0 on AT \IT", (166)

with f, f* € LPo(A™;R?) and §, §%, §* € WP (AT: R?) defined by

f(xay) = f(x’mﬂo ) and g(x,y) = g(]},mﬂoy), (167)
i ()~ )02, + (o )(2 — 1)0E, 5 (168)
f5 = O+ 2 ((22)? = 1)02, 22 + (A + p) (22 — 1)07, 21, (169)
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gf = (2/1’—’_ )‘)(\/17_:? - \/ﬁ)img)amzl - ’u‘(\/liw - \/;73)81227 (170)

- A= - 1)0ym + \/%(% —1)9yz2, (171)

— 20 )0, 2, (172)

Y 1 2
3 = m(igm — i) % — 2 — i) 0 — s (S — Doy
1

— )\(\/L}-W m)ayZQ + %(% - )3y21 - \/1?_7(% — 1)8y22 .

(173)

Since z € W2Po (A" R?) and 2z = 0 on A" \ I'1", we have that 0,z = 0 a.e. on

[0,1] x {0} and dyz = 0 a.e. on {1} x [0, mg], hence §* = 0 a.e. on [0, 1] x {0} and §* = 0

a.e. on {1} x [0,mg]. Moreover § vanishes on one of the sides of A7 different from

I'". We may assume that § = 0 a.e. on [0, 1] x {0}, the other case being analogous.
Let Z and Z be the unique solutions of the problems

—divCEz = f+ f* in AT, —divCEz =0 in AT,
(CEZ)v™ =g+ g* onI']", and (CEz)v™ =g* on '],
2=0 on QAT N\ T | 5=0 on QAT N\ T

By linearity we have z = 2 + Z. Since g+ §* and ¢* vanish on one of the sides of A"
different from I'**, by (162) we have

IV22]| oo (amoy < Koo (I1F + FZ | ro(amoy +1IVG + VG [l oo aro)) 5

IV22]| oo amoy < Koo [VG* || oo a0 -
hence
||V22||Lpo(A;"0) < “mo(HJ?‘Ffz||Lpo(A;”0)+HV§+§ZHL1)0(A;"0)+||VQZ||Lpo(A;”0))~ (174)

Let us fix w > 0. Since z € W2Po (A" R?), by (167), (168), (169), (170), (171),
(172), and (173) there exists ,, > 0 such that, if m € [y, Lo] and |m —mg| < &, then

Hv2w||Lvo(A;") <(1+ W)HVZQHLpo(A;"O) ) (175)
||f~||LP0(A71"0) + vanmo(A;"O) < (1 +W)(Hf||LPo(A;") + HVQHLPO(A;")) ) (176)
1 Lo (aroy + I8 progaroy + 195 L mmgamoy < wlV22llpgarey - (177)

From (174), (176), and (177) we obtain

V22| Lo amoy < (14 w)Kmg ([1Fll oo apy + IV gllLro (ag)) + @himo V22| Lo (am0) -
(178)
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We now choose w < 1/3 such that wkm,, < 1/9. If m € [ng, Lo] and |m — mg| < e,
then (178) gives

%HVQZHLpo(A;"O) < %“mo(“f”LPo(A;") + HVQHLPO(A{")) .
Using (175) we obtain

211Vl ro(ag) < 38mo (I1f11Lro(ap) + 11Vl Lroa)) 5

which implies (163).

Step 4: By compactness we can cover [r)g, Lg] by a finite number of open intervals
(m; — e, m; +€;), with m; € [no, Lo], such that (163) holds with mg and ¢ replaced
by m; and ;. Then (159) holds with x := 2max; k. O

6 Regularity at Corners

In this section we obtain a precise estimate on the W?2P° norm of the equilibrium
solution u in a neighborhood of the corners.
Next we use a fixed point theorem to prove that u belongs to WP near (o, 0).
Theorem 14. Under the assumptions of Theorem 6, we have that u € WP (Qy,).
To prove this theorem we need some auxiliary results. We begin with Poincaré’s
inequality.
Lemma 15 (Poincaré’s inequality). Let 0 < r < 8 — « and let p > 1. Then

HU||LP(Q‘;'O‘+T) S LOTHVIUHLIJ(Q:KH'T) (179)

for every v € WHP(Q2*F") such that v(x,0) = 0 for € (a,a + 1) (in the sense of
traces).

Proof. By density we can assume that v € C®(R?). For (z,y) € Q" by the
fundamental theorem of calculus and Hélder’s inequality we have

, h(x) 1/p
oo < G ([ 0t oar)
0

where we used the fact that h(z) < Lor. Raising both sides to power p and integrating

over Q1" gives
/ lv(z,y)|[Pdzdy < (LOT)LH)/Z)// |0yv(z, y)|Pdedy ,
Qu,(x+'r' Qa,cx+'r'
h h
which yields (179) and concludes the proof. O

Remark 6. Let r > 0, let 0 < ng < m < Lo, and let A7" be the triangle defined in
(119). With a proof similar to the one of Lemma 15, one can show that

vl r(amy < max{Lo, 1/no}r||Vv|[Leam)
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for every v € WHP(A™) such that v(z,0) = 0 for z € (0,7) or v(r,y) = 0 for
y € (0,mr) (in the sense of traces).
We turn to the proof of Theorem 14.

Proof of Theorem 1. In view of Theorem 4, it is enough to prove that there exists
r > 0 sufficiently small such that

we W2ro ety iy,

where Q7¢ is defined in (35). We will only show that u € W20 (Q"*™"), since the
other endpoint can be treated in a similar way. By a translation, without loss of
generality, we may assume that o = 0. We modify w far from (0,0) to obtain a new
function @ vanishing away from (0,0). We then use the transformation (126) to map
Qg’r into the triangle A defined in (119) with m = h’(0). A fixed point argument
will allow us to show that the resulting system has a solution in W2P°(A™), and due
to uniqueness, this solution is % o ® itself. To apply the Banach fixed point theorem,
we will use Lemmas 8 and 11.

Step 1: Localization. Let

w(x,y) := (eox,0), (x,9) € R (180)

For every r > 0 let ¢, € C°°(R?) be a function such that 0 < ¢, < 1, ¢,(z,y) = 1 for
x <5r/8, pp(x,y) =0 for & > 7r/8, V.| Lo me) < C/r and HV2<,07~||L00(R2) <C/r?,
where C' > 0 is a constant independent of r. In €2;, we define

= (u—w’)p,. (181)

If 0 < r < B we have @(z,0) =0 for 0 <z <r and u(r,y) = 0 for 0 < y < h(r). In
other words @ = 0 on 90" \ ", where T''" = {(z, h(z)) : 0 < & < r}. Moreover, we
have

Vi = ¢, V(u—w’) + (u—uw’) ® Ve, .
By Poincaré’s inequality (see Lemma 15) we obtain

||V71||L2(Q?;T) < C[V(u— wO)HL?(Qg’T) : (182)
By direct computation, it follows from Remark 1 that

—divCEi = —pAi — (A + p)Vdiva = f in Q)"
(CEa)v" = 2u(Ba)v" + M(diva)y" =g onT)", (183)
=0 on 9Q)"\T)",

where v (z) := (=h'(z),1)/+/1 + (W (z))? denotes the outer unit normal to £, on I'y,
and

f=—pn(2(Vu — Vu)Ve, + (u — w”)Ayp,) (184)
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— (A + p)((dive — divew®) Ve, + (Vu — Vu?) Ve, + Ve, (u —u?)),
g:=pn((u—v’)®@ Ve, + Ve, ® (u-— wo))uh + Atrace((u — w®) @ Vi, v . (185)

Note that f € L*(Q)";R?). Since h € C3([0,]) by Theorem 6, we can consider 1"
as a C? function in the strip [0, 8] x R. This shows that ¢ € H'(QY":R?). Since
u(z,0) — w(z,0) = 0 for a.e. x € [0,7] and p,(r,y) = 0 for every y € R, we conclude
that the trace of g vanishes on 8Qg’r \ F%T. We also observe that for every f &
L2(Q)";R?) and every g € H'()"";R?) problem (183) has a unique weak solution in
HY(Q)";R?).

Step 2: Straightening the boundary. Let r be as in (124) and let

vi=1u0dc HY(A™R?), (186)

where A" and ® are defined in (119) and (126), with m = h{,. Recalling Remark 1 and
the fact that a(x,y) = v(z,o(x)y), it follows by direct computation and by Lemma
10 that v satisfies the boundary value problem

—divCEv = —pAv — A+ p)Vdivo= fod+ f¥  in A",
(CEv)V° = 2u(Ev)r® + A(divo)r? =go® +§* + g% on '™, (187)

v=20 on QA™\ T,

where 10 := (—=h{,1)/+1/1 + (h{)? is the outer unit normal to A™ on I'™ := {(z, hjx) :
0<ax<r) fo=(f fY) € H1(A™; R?) is defined by

o2

o' 2 o'
= /i{ (02 -1+ y2( ) ) 8§yvl + 2y08§yv1}
/

(o )2 2 o' 2 192
5= 0y V1 + 2y;8myvl + (0 = 1)0;,v2 +yo'Oyva |, (188)

+(A+u){y2 =

O_// 0_//
+ uy?aym + A+ [yaayvl + gfayvg] ,

N2 !/
fa = M|: <02 — 1492 (((772) ) 6514“2 + 2@/?‘7&?@,1}2}
+ A+ wllo —1)02,v1 + o'ydy,v1 + (07 — 1), va] (189)

"

o
+ uy78yv2 + A+ p)o'dyv

while §° = (§¢,4%) € WHPo(A™:R?) and §° = (§¢,§%) € WHPo(A™; R?) are defined
by (145)—(148).

Step 3: Fixed Point Argument. To prove the W2Po regularity of v we use a fixed
point argument in the space

XM= {z € W2PO(A™;R2) : 2z =0 on QA™ \ T™},
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endowed with the norm
Izl xm == V22| ro (am) - (190)
Let us first prove that ||| x is a norm equivalent to [|-||lyy2.p0 (4 g2). By Poincaré’s
inequality (see Remark 6) there exists a constant C' > 0, depending only on 7y and
Ly, such that

lellroamy < CrlIVel Leoam) (191)
for every ¢ € W1Po(A™ R?) such that ¢ = 0 on one of the sides of the triangle A
different from I'7*. If z € X", then z, 0,2, and 0z satisfy this property, hence

2] zro (am) < C7[|V2| Lro(amy
1022l Lro (ar) < CT||VOzz|[Lro(am)
10y || Lro (ar) < CT([VOyz|[Lro (ar) -

These inequalities imply that there exists a constant K, > 0 such that
12llw20 () < Kl V22| oo ap)

for every z € X", concluding the proof of the equivalence between the norms || - || xm
and || - [[w2.r0 (am g2)- This shows, in particular, that X" is a Banach space.

Let 7 be as in (124). Given z € W2Po(A™:R?), let w := F™(2) be the solution to
the boundary value problem

—div(CEw) = fo®+ f* in A",
(CEw)® =go®+g¢* +§* on I, (192)
w=0 on OAT\ T,

let w1 be the solution to the boundary value problem

—div(CEw;) = fo® in A",
(CEw)’ =go® onIT,
wp =0 on QAT N\ T,

and let wg := GI(z) be the solution to the boundary value problem
—div(CEwg) = f* in A",
(CEwa)v® = g% + g7 on I'™ |
wy =0 on QAT \ T,
By linearity, we have F*(2) = wy + G'(2).
We claim that for r > 0 sufficiently small the linear map G}* : X* — X" is a

contraction. By linearity it suffices to show that

|G (2)]|xm < 1/2 forall z € X" with ||z]|xm < 1. (193)
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Fix z € X]" with [|z[x» < 1. By linearity, using Theorem 13 we obtain that w; =
G (z) € W2Po(A™; R?) with

||v2w2||LPO(A;,") < H(HJCZ”LPO(A;.") + ||v§z||LP0(A:.") + HVQZHLPO(A:?%)) 5 (194)

where k depends only on A, u, 19, and Lg; in particular it does not depend on r, h,
f, g, and z. Therefore, (193) follows provided we can prove that

K152 ro camy + IV GZ || oo (amy + [IVZ] oo (amy) < 1/2. (195)

Step 4: Proof of (195). In this step we prove (195). Below C} denotes a constant
independent of r € (0,72/(4M)) and m € [2n9, Lo], but depending on h, whose value
can change from formula to formula, while C'y ,, denotes a constant depending only on
the Lamé coefficients. We begin with || f#||,ro (amy. For 0 < r < n3/(4M), by Lemma
8, Remark 3, (188), and (189), in A™ we have the pointwise estimate

7212 Ol = Uy + sup lyo’ ()] + sup o' (@)?) V2

(w,y)eAT (w,y)eAT
+ (0"l + sup_|yo" @)]) V2 < Cur922] + CalVEl, (196)
(z,y)eAp

where in the last inequality we used (132), (135), and (138). In turn, using Poincaré’s
inequality given in Remark 6 together with the inequality [[z[x» < 1, with norm
defined by (190), we obtain

||fZHLP0(A;n) < ChTHVQZHLPO(A,in) + C”VZHLPO(A;R) < ChTHvQZHLPO(A;n) < Cpr.
(197)
We now estimate ||V §*|| Lo (am). We observe that by (145) and (146) we can write
each component of V§* as linear combinations of products of the functions w; and
second order partial derivatives of the component of z, as well as products of the
derivatives w] and first order partial derivatives of the components of z. Therefore, we
obtain that

6 6
IV* || Lro(am) < Cm(z llwill 2o (1) IV 2l oo Ay + Y ||w§||L°°(1T)HVZHLPO(A;”))
i=1 =1
< Cyr, (198)
where in the last inequality we used the fact that V22|10 (am) = [|z[[xm < 1 and

the estimates (149) and (150), together with Poincaré’s inequality for 0,z and 0,z,
which vanish on one of the sides of A" different from I'" (see Remark 6). Similarly,
we prove that

[Vg*|lro(am) < Chr. (199)
From (197), (198), and (199) it follows that

&1 zro cazmy + IV | Lro (amy + IV P o (amy) < Chr. (200)
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Therefore (195) is satisfied if r € (0,73/(4M)) is sufficiently small. This shows that
G is a contraction in the Banach space X]"*. Consequently F™ is a contraction.

Step 5: Conclusion. By the Banach fixed point theorem applied to F", there exists
zo € X such that zg = F"(z). By (192) the function zy solves (187). By (131)
the function ug := zp o ¥ belongs to W2’p0(Q?L’T;R2) and, by direct computation, it
solves (183). Since W2Po(Q)":R?) ¢ H'(Q)";R?) and problem (183) has a unique
weak solution in H'(Q)";R?), we conclude that ug = 1, hence @& € W27 (Q)"; R?).
Recalling that & = v — w® in QE’T/Q, we obtain that u € WQ’I’O(Q%T/Z;RQ), which
concludes the proof. O

Theorem 16. Under the hypotheses of Theorem 6, we have

h'(a) =h"(B) =0, (201)
and
a— aO (o ANV
go——— = ﬁ — %Y + ;L(Ek)l (%) (@), (202)
_ ;0 l 7N
Uoﬂ Tﬁ = JZB) +7% — o ﬁ((ﬁﬁ))z (%) (B) (203)

where J is defined in (42).
We begin with a preliminary lemma.

Lemma 17. Under the hypotheses of Theorem 6, let 1 < p < oo and let v €
W2P(Qp;R?) be such that v(x,0) = 0 for a.e. x € (o, ). Then there erists © €
W2PR2,R?) such that © = v in Qp and ©(x,0) = 0 for a.e. v € R.

Proof. Since {1, is a domain with Lipschitz boundary, we can extend v to a function
b € WP ((a, B) x R;R?) (see [44, Theorem 13.17]). Let & := a — 252 and § :=
ﬂ+6%a. For z € [&,a] and y € R we set

o(x,y) == 30(2a — x,y) — 20(3a — 2z, y) .

Since 0, 0,0, and J,0 have the same trace on both sides of the line = «, the function
© belongs to W2P0((&, ) x R;R?). Similarly, for z € [8, 8] and y € R, we set

o(x,y) == 30(28 — x,y) — 20(38 — 2x,y)

and we obtain that o belongs to W2 ((&, ) x R;R?). By construction, we have
0(x,0) = 0 for a.e. z € (&, 3). Using a suitable cut-off function, we can modify © near
the lines z = & and @ = 3 so that the modified function vanishes near these lines. The
conclusion can be obtained by setting ¢ = 0 outside the strip (&, 8) x R. O

Proof of Theorem 16. Since u € W2P0(,;R?) by Theorem 14, by Lemma 17 we can
extend u to a function @ € W P°(R?; R?) such that u(z,0) = (egz,0) for a.e. z € R.
We take ¢, ae, and h. as in (81), (83), and (87), respectively, and we define wu. as
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restriction of @ to €,_. Due to our choice of the extension, we have u.(z,0) = (epz,0)
for a.e. z € (ae, B).
Step 1: We claim that

d

digg(at?aﬁa h/E; uE)

B
- / W (Eu(x, h(z)))e(x) da (204)
=0 «

By (102) there exists £; > 0 such that

g(asaﬂuhsyug) _S(O[,B,h,u) _ 1/(¥+250( h(z)
€ € Ja.

W (Bi(z,y)) dy)de
he(x)

1 Qe h(x)

- g/ ( W (Eu(z,y)) dy) dr =: I. + I1.
« 0

for all —e; < & < 0. Since & € W2P0(R?;R?), with py > %, by the Sobolev—Gagliardo—

Nirenberg embedding theorem, we have that Vi € LPo(R%;R2%?), where p§ > 4.
Hence, by Holder’s inequality and (17),

Qe h(z) Qe h(x)
[ weeae < ow [ [ 9ute 0 Py
a 0 a 0

<on( [ [ watetaae) ([ )"

a:  rh(z) A 1/2
<c( / [Vu(e,y)ldydz) " |e

where we used the fact that |h(x)| < Lo|a. — «f and (85). This shows that I1. — 0 as
e—0".

Since the function ¢ := FE4 belongs to I/Vlf)’fo (R%;R?), we have that W o ( €
WUH(R?). Indeed, using the fact that W (€) = p|¢|? 4+ (A + ) (tr )2, for every bounded
Lebesgue measurable set £ C R2, by Holder’s inequality, we have

[ 1907 e Qldady <€ [ (€196 dody < Ul IV €llroger- (205)
E E

Since pg > %, it follows that pf, = ple <ph = 22_”;0, and thus the right-hand side of
(205) is finite.

By considering the representative of ¢ that is locally absolutely continuous on a.e.
line parallel to the axes, we have that

h(z)
W(C(a,y)) = W(C(, h(x))) — / 8, (W o O)(x, 5) ds
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for a.e. & € (e, a0+ 26¢). Hence,

a+280  ph(x) a+280  ph(x)
-t / E W(C(a,y)) dyda — — / / W (C(a, h(a))) dyda

he(x) € Ja. e(z)

1 a+238g h(z) h(z)
+*/ / / 0y(W o ()(x,s)dsdydr =: Ac + B..
€ Qe he(z) Jy

By (87) and (89), we have

a+2dg we a+248g
A= / W(C(ar () () + Zo(2) do / W (¢ (, h(x) o) d.

€

(206)
On the other hand, by Fubini’s theorem
1 a+25g h(z)
B, = g/ / (s = he(2))0y(W o () (z, s) dsdz,
e he(x)
and so,
we a+28y  ph(x)
Bl < C o+ 2y / / 10,(W o ¢)(x, s)| dsda (207)
o0 Ja, he(z)

w a+260  rh(z) 1/po
il ’ Po
=0 H‘p”L € wHoo <M 26 ()¢ 0, 03—y /a /ha(z) |0y¢ (2, 5) 7 dsda =0

as € = 07, where in the last inequality we used (205).
It follows from (206) and (207) that

B
Is%/ W (Eu(z, h(x)))e(x) dx,

which proves (204) when e — 0.
On the other hand, if 0 < € < &1, then by (83) and (86) we have a — dg < ae < «,
and since supp ¥ C (a + dp, @ + 209) we write

& a8757h57u5 - & Oé,ﬂ,h,u 1 a+24o he (z) .
( ) ( ) = */ </ W(Eu(x,y))dy)dm
y ¢ Ja h()

1 o h(x)4ep(x)
+ */ (/ W(Eu(z,y)) dy) dx
« 0

3

€

= III. +IV..

The proof that IV, — 0 as € — 07 can be done as in the proof of II.. The term IT1,
can be treated similarly to I..
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Step 2: By (99), (118), and (204), we have that the derivative d%}'o(ae,ﬂ, he, ue)
exists at € = 0, and by minimality,

d
7‘70(0[6757}167’“6) =0. (208)
de e=0
Hence, using also (100), we get
/3h/ / J By, B pripn
@ (a) 1 / h'e 5 / B (h")%p
d ——dr — = 7d
7/(1 7 ”+7h'a) gty T T T g 7
Vo (h”(cv))2 / / —a¥ 1
— Weodr — — Hopdr — =0
RO TP h’ P plo = 0= Wa) 7

where W, H, and J are defined in (52) and (42). We integrate by parts once the
integrals containing ¢’ and twice the integral containing ¢ to obtain

,7/ (}f]l) cpdz+1/0/j (}}/5/) pdr + ;l/o/ (h/(t;l:)Q)/@dx

/ Weodr — f/ Heodr — Z(a)) —|—’y};],((a)) — h’(la) - }}/(I((f;g ¢’ (@)
h" 5 h(a)(h"(a)? v (B"(a)? 1 a—a® 1
+V0(J5) (o) + §u07j( ) + 50 T(a)p W(a) — 00 T W)’

where we used the facts that supp¢ C (o — dp,a + dp) and p(a) = 1. By (53), and
the fact that m ff pdz = 0, we have

W)  J(a) 1 W'(a) N
7@ T e T @ T (@) + (55 (@)
L5 @) (@) @(h"(a))z L a-a 1

270 J(a)7 2 J)p W) ° 1 W@

Since ¢((0) can be chosen arbitrarily, by (81) so can ¢'(a). Hence, by dividing the
previous equation by ¢’(a) > 0 and letting ¢'(a) — 0o we get

W' (a) = 0. (209)

Using (209) and multiplying the previous equation by h'(«) we obtain

O6_040 a 2 _ /04 2 "y
o OB
) W(a) ('Y’
= T -0 +Voj(a)2 (ﬁ) (a).
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In a similar way we can prove that h”(8) = 0 and that

5 _ 60 B v , RN\ 7 v h/(ﬁ) R\
do——— = ~708) + 70 — voh (5)<ﬁ> (B) = NTE) +7% — VOJ(B)Q (ﬁ) (B)-
We omit the details. This concludes the proof. O

We now estimate the LP° norm of V2u near a. To simplify the exposition we
assume that o = 0. Given r > 0, we set I, := (0,7), QV" := Q, N (I, x R), and
9" =T, N (I, xR) = {(z,h(z)): 0 <z <r}.

Theorem 18. Under the assumptions of Theorem 6, let 0 < r < §y. Then there exist
two constants 0 < ¢1 = c1(no,m, M) < 1 and co = co(no,m, M) > 0, independent of
r, such that if

r2(Ih" Lo,y + 1R aay) < e (210)
then
2 C2
920l o g3, < €2+ 2190l oy (211)
C2
I3l o 2y < €2+ 29l o - (212)

We begin with a preliminary lemma.
Lemma 19. Let 0 <ng <m < Ly, 1 <p < oo, R2 :=R x (0, +00),

AT = {(z,y) €R*: 2 >0,0 <y < ma} (213)

and let v € W2P(A™) be such that v(z,0) = 0 for x > 0. Then the function

8z, y) = { 3v(2y/m — z,y) — 2v(3y/m — 2z,y) if (v,y) € RZ \ AT,
; v(2,y) if (z,y) € A™

belongs to WP(RZ) with (z,0) = 0 for all x € R. Moreover,

||V2@||LP(R1) < CIV?0 Loam) (214)

for some constant C > 0 depending on ng, Lg, and p.

Proof. Since 0, 0,0, and d,0 have the same trace on both sides of the line y = mx, the
function ¢ belongs to W#?0(R2 ;R?). By direct computation we check that 9(z,0) = 0
for a.e. z < 0. The estimate (214) can be obtained by computing the second derivatives
of 0. O

Proof of Theorem 18. Step 1: We proceed as in the proof of Theorem 14. We recall
that we are taking a = 0. Let m = h/(0), let r be as in (124), let A" be the triangle
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defined in (119), and let v be defined as in (186). In view of Theorem 14, we have that
v € W2Po(A™:R?), and so, by (187) and Theorem 13, we have that

||v2U||LP0(A;") < ’Q(Hf S fI)HLpo(Agz) + ||fv||Lpo(A;n) +|V(go q))”LPO(A;n)
+ 18" llro cagy + 19" | zro ) -

Since v = 0 near the line x = r by (181), we can extend it to A7 by setting v = 0
in A \ A™, and the extended function belongs to W2Po(A™;R?) and satisfies the

r o
estimate
||V2U||LP0(Ag;) < K(Hf o ‘I’”Lvo(A;n) + ”fU”LPO(A;")
+ IV (g 0 ®)llLro(ag) + 15" Lro (amy + 197 Lro camy) - (215)
We underline that & is independent of r € (0,d¢), m € [2n9, Lo], and h satisfying
(120)—(123). Since h”(a) = 0 by Theorem 16, it follows by the mean value theorem
that
1B oo 1,y < TR Loe 2,y - (216)
Hence, also by (196), (132), (133), (137), and (138) we have

1£2 1 Lro (azy < CP2 (IR | o (1,) + 1R |21, IV 0] oo (A
+ Cr (I e 1,y + IBE T )V 20l Loo (4
+ Cr(|W" | L r,y + 1B L2 (2, ) V]| 2o (amy
+ O (" [ 1,y + RS F0 1)V 0l o0 (e -

Since J,v and dyv vanish on one of the sides of A]" different from I']*, by Poincaré’s
inequality (see Remark 6) we obtain

1l o camy < CP2(IW" | o1,y + 1B L1 (1) V20 oo (amy
+ Cr (10" 7 1,y + 1B 21 1, IV 0 oo 4z - (217)

By (198), (149), and (150) we have

IVG | roamy < Cr2 (IR o= roy + 1RO |22 1,0 1IV20] oo am)
+ Cr([1h" || o) + 1R N L2 ) IV 0| oo (am)
+ CTS(HhW”%w(m + ||h(w)||%1(IT))||VU||LPO(A;”) .

Using again Poincaré’s inequality (see Remark 6) we obtain

V3" [l Leoamy < Cr2 (IR || o2,y + 1R 1)) V20 oo am)
+ CrH (IR N3 1y + IR 2 IV oo A (218)
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In the same way we prove that

173" | oo agy < CF? (10" | oo (1) + 1 22 1)) V20| oo (apey
+ CrH (I 13 e 1y + IR0 2 IV 0] o0 (A (219)

By (184), it follows from Lemma 9 that

IIf o <I>HLpo(A;n) < CHfHLPo(Q%T)
< ClIV2¢rlloore) lu = w°ll oo o)

+ ClIVeosllcogee) [V — Vol | o oo (220)

¢ 0
< ?HVU - Vuw ”Lpo(Q(}’l«’“) )

where we used the Poincaré inequality (see Lemma 15) and the inequalities
HVSDTHCO(]RZ) < C/T, and ||V2QOTHCO(R2) < C/T2.
By (185), it follows from Lemmas 8 and 9 that

V(g 0 ®)l|Lro(ap) < C(1+ ., ylo’ @)1Vl oo o)
z,y)EAT

<C(1+ L, ylo’(@)]) [IIV*erllco@e) llu = wll Lo o)
z,y)eAT )

+ HVSDTHCO(R?)HVU - vaHLPO(QZ*T)
+IVerllco@e) llu — w0l Lo (o 1R | e 1,)] (221)
< g (142" oo 2,y + 1O N Lagr)) + 7 (R e 1,
+ 1R L1 2,))?] IV — vw0‘|LP0(Q‘BL»") )
where we used the Poincaré inequality (see Lemma 15), the inequalities ||V, || co(rz) <

C/r and [|[V2¢,||corzy < C/r?, and (216).
Combining inequalities (215), and (217)—(221), we finally obtain

HVQ”U”LPO(A;'L) < CTQ(HhIHHLw(IT) =+ ||h(iv)||L1(IT))||V27)||LP0(A¢)
+ Cr(1W 3 (1) + IS F 2 IV 0l Lo () (222)
C iv
+ - [1 Jr7"2(||hm||Lo<>(Ir) + ||h( )||L1(1,‘)))
+ A (IR oo (1) + 1B 11,0 [V — V|| oo 07y -

Let us fix ¢; = ¢1(no,n1, M) > 0 such that ¢; < 1 and Ce¢; < 1/4, where C' =
C(no,m, M) is the constant in (222). Suppose that (210) holds. Then r4||h”’\|%oc(lr) <

||| Lo (1,) and 7"4||h(i")||%1(h) < 7[R 111y, hence (222) and the inequality
Q07| < Lor?/2 give
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1 C C C
§||v2’l)||LPo(ATTn) S ?HVU — vaHLl’O(Q?Lm) S ?HquLZDD(Q?L’r) + 7,,,2/po s

with new constants C' depending only on 7, 11, and M. Since pyg < 2 by (156), we
obtain

C
1920l o0 agey < 2190l oogayery +C (223)

In turn, by Remark 4, (133), (135), (138), (186), (210), (216), and Remark 6 applied
to 0,v and Jyv, the previous inequality gives

c
2~ 2
192l o oy < CIV?0llinam) < =1Vl oo gy +C-

Since @ = u — w" in Q%Tﬂ and w? is linear, inequality (211) follows.

Step 2: It follows from (181) and (186) that the function v € W?2Po(A™; R?)
is zero outside A7’ /8 Hence, by extending v to be zero, we can assume that v €
W2Po (A" R?), where AT is defined in (213) with m = h/(0). By Lemma 19 we have
that the function

. | 3u(2y/m — 2, y) — 20(3y/m — 2x,y) if (z,y) € RE \ AL,
’U(.’E,y) T :
v(z,y) if (z,y) € AL,

belongs to W20 (R?) with ¢(x,0) = 0 for all 2 € R. Moreover,
IV28]| Lo (g2 ) < ClIV20l| 00 (am) -

Next we extend © across the z-axis by setting

_ 30(x, —y) — 20(x, —2y) if (z,y) € R* \RZ,

v(z,y) =9 , )

’U(Z‘,y) if (l‘,y) €R+'
Then v € W2P0(R?) with
V20| oo m2) < ClIVZ0| oo g2y < ClIV?0] Lr0 (am)-

It follows from [44, Theorem 18.24] that the trace of Vo along the half- line I'Z :=
{(z,mz) : x > 0} belongs to LPo/(2=Po)(T: R?*?) with

IV Lrosc2=po (rmy < ClIV20]| Loo m2) < Cl[V20ll oo (amn) - (224)

Since r =1 on A7), it follows from (181) and (186) that v = (u — w’) o ® in Al
Hence, u — w® = 50 ¥ in Q%r/z. By (126) and the chain rule,

[V (u—u®)(@,y)] < CA+ |0’ (2)y])| V(w0 (z)y)| -
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Taking y = h(x) and using (125) gives

V(u—w)(z,h(z))| <C  sup (1+ o' (x)y))|Vi(z, mz)|
(z,y)eQy/?

for a.e. 0 < & < r/2. Hence, by (224),

[V (u— wo)lleo/(zfpm(pgjr/z) <C sup (14" @yDIVOll Lrosero rm)
(zy)eQy™/?

<C sup (14 |0/($)y|)“V2””L1’0(AL") :
(z,y)€Q”

Using (135), (201), (210), and (216),
[V (u— w0)||Lpo/<2—po>(pzw/2) < C|IV*]| o amy < C + gHVUHLFO(Q%r) ,
where the last inequality follows from (223). Since by (180),
IV sy < leol (1 + 3) /2 /8) P/ < €,
inequality (212) follows. O

Corollary 20. Under the hypotheses of Theorem 6, let 1 < p < po/(2 — po) and let

1/2
a L % @} (225)
2o BL(H, HY,a,a0, 5,79 2" 2§

r1 := min {

where B, (H, H°, a,a?, B, B°) is defined in (61), co > 1 is the constant in the statement
of Theorem 6, and 0 < ¢; < 1 is the constant in (210). Then there exist two constants
cs = c3(no,n, M) >0 and cq = c4(no, 1, M, p) > 0 such that

HV2 ,CY+T1) S C?,B-,—(H, H07a7a0757ﬂ0)2_2/1)0 9 (226)
HquLp(F;’“a+T1) < C4B-,—(H, Hoa a, aO’ B, ﬂo)lil/p . (227)

uHLPO(Q:

Proof. By Holder’s inequality with exponent ¢ = 2/pg, and Lemma 3, for every 0 <
T S ﬂ - Q,

HVUHLPO(QZ’“'”) = 0(72)1/((1/1)0)”VUHL2(QZ"B) < Cr?/rt, (228)

where we used the fact that ¢’ =2/(2 — po).
By (68), (70), and (225), recalling that 2co > 1, we have

(IR || Los (o)) + Hh(iv)HLl((a,B))) < 2coriB,(H,H°, a,a’, B, 8°)* < c1.
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Hence, we can apply Theorem 18 to obtain (211) and (212). In turn, by (228),

2 C2
||V u”LPo(Q:f,DH-T‘l) <c+ EHVUHLPO(QZ'OH—QT1)

1
<c+ 6202771)0 < 3B, (H, ]:IO7 a, a07ﬁ7ﬂ0)2—2/170’
r

2/
1

where in the last inequality we wused (225) and the inequality 1 <
y
BT(Ha HO7 «, aO’ 67 60)
If p < po/(2 — pg), we use Holder’s inequality with exponent p; = po/[p(2 — po)],
(212), (228), and the fact that 71 <1 to get
1/(pp})
HVUHLp(r;“’“l) <O/ ||VU||Lpo/<2—po>(F;f""“1)
141/p—2
— CTI /p /pOHVUHLPO/(Q_PO)(FZ‘“*’”)

< C + Cr}/Pm2/vo [V7ll 1 g0 2m1y < €'+ cri/r=t
< CB.(H,H° a,a’ 8,8°)' /P,

where in the last inequality we wused (225) and the inequality 1 <
B, (H,H° a,a° 3, 3"). The same inequality holds if p = pg/(2 — po). O

7 Global Regularity

In this section we obtain global estimates for V2w in the entire domain €. Given
r > 0and zg € R, we set I.(xg) := (o —7, 2o +7). Under the assumptions of Theorem
6, let us fix 7 and xg such that
0 < 2r <min{dp,m} and a+8r/ny<zo< B —8r/no. (229)
If « € I4-(x0), the inequality 79 < 1 implies that
a+4dr/ng < a+8r/ng—4r <ax < B —8r/ng+4r < —4r/no. (230)
Using the fact that 2r < dy < g, by (79) we have h(z) > no(x—a)>4r for a+4r/ng <
x < a4+ dp; in the same way we prove that h(z)>4r for f—dy < x < 8 —4r/ng. Using
(63) we have also h(z) > 2n;>4r for a + 6y < x < 8 — dp. Hence, by (230), we have
h(z) > 4r (231)

for every x € Iy, (x0) and r and zg as in (229).
We recall that

Qp={(z,y) eR?: a <z <, —h(z) <y<0},
QZ’; ={(z,y) eR*:a<z<b, h(z)—r<y<h(z)},
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%= {(x,h(z)) : a <z <b}.

Theorem 21. Under the assumptions of Theorem 6, let r and xo be as in (229).
Then for every 2 < q < oo there exist constants cs = cs5(no,m, M) > 0, and ¢g =
c6(no, m, M, q) > 0, independent of h, r and xo, such that if

1
||h//||LOO(I4T(m0)) < ol (232)
then w € H? (%, 2"} and we have
2 C5
||V UHLQ(Qz%;%,zOJrzr) < 7||vu||L2(QZ?4;4T,wo+4T) , (233)
Ce
HVUHLq(FiO*Q”W“’OJFZ") < 77‘1_1/‘1 HVUHLQ(Qz%;M,mOJrM) . (234)

Proof. Without loss of generality we assume that o = 0. For every p > 0 define
Ry :=(=p,p) x (=p,0) and J, := (—p, p) x {0}.
Step 1: Let
v(z,y) = ulz,y + h(x)). (235)
In view of (231) we have Ry, C Q_j. Hence, (58) gives

div(AVv) =0 in Ry,
(AVv)ea =0 on Jy, .

Define v, (z,y) := v(rz,ry), (z,y) € Ry. Then v, satisfies the boundary value problem

div(A,Vv,.) =0 in Ry,
(A, Vu,.)ea =0 on Jy,

where A, (z) := A(rz). Using using (59) and (232) and the fact that Liph < Ly, we
have
1Al gy < C-

Standard elliptic regularity ([45, Proof of Theorem 20.4]) gives
V200l 22(Ry) < ClIVOllL2(RY) -

In turn, we obtain
C
IV?0ll L2 (s, < lIVellzar, - (236)
Since u(z,y) = v(x,y — h(z)) and
Oyt = Oyv — Oyvh’,  Oyu = dyv (237)
O2,u = 07v — 207, vh' + 0, v(h')* — Oyvh”, 92 u = Oyyv — 82 vh'
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2 a2
8yyu—8yyv,

we have

IV2ull p2o2rery < CUIVP0llL2(ror) + 1R e (10 1V 0]l 22 (Ro )

c C
< ?||VU||L2(R4VF) < ?HVU||L2(Q};§;4T)a

which proves (233).
Step 2: In this step we prove (234). We begin by proving

C
Vollz2(s,) < mHVUHL?(RM)v (238)

C
IVl gz g,y < —IVellezry,) - (239)

Define z = Vwu. Then by standard trace theory [46, Theorem 2.5.3] and a rescaling
argument, we have

¢

12720 < Zl12022(Ro0) + CTIVAITR R,

|Z|?'—]1/2(J2T) < CHV'ZH%?(RQT) .

Combining the previous inequalities with (236) gives (238) and (239).
Next, fix 2 < ¢ < co. We claim that

C
IVUllpa(r,) < mHVUHL%RM)- (240)

Let s = % < % Then s is subcritical so, by [47, Corollary 2.3],

C
IVVllzary = 1Vl () < =7 VOl 0y + OV (2 5

where 2% = —2_ = ¢ is Sobolev critical exponent. On the other hand, by [47, Lemma

T 1-2s T
2.6],
‘VU|HS(J2T) < CT1/275|V’U|H1/2(J27.) = Crl/q|Vv|H1/2(J2r) .

Combining the last two inequalities and using Holder’s inequality and (238) and (239),
we deduce

C
HV'UHLQ(JZT) < m”vanz(er) + Crl/Q|V’U|H1/2(J2T)
< m||vv||L2(R47-)'

By changing variables using (237), we obtain (234). O
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Corollary 22. Under the assumptions of Theorem 6, let r be such that
0 < 2r <min{dg, 7}, (241)

and let
ari=a+9r/ng and Br:=p—9r/n0. (242)
Then there exists a constant c; = c¢7(ng,m, M) > 0 such that, if

1
17" W oo (12 wo)) < (243)
for every xy € [ay, Br], then u € HQ(Q‘;:”"ﬂr) and
V2 <v 244
190l 2 ey < IVl (0 (244)
Proof. Assume (243) and let
QO ={(z,y):ar <x < B, 0<y<2r},
Qy ::{(mvy):ar <z < B, r<y<h(x)—r},
Qs :={(z,y) : ar <2< B, h(z) —2r <y < h(z)}.
Since QZ‘“’BT = Q; Uy UQg, it is enough to prove that u € H?(;) and that
9 C
IV%ulz20 < IVulzao (245)

For every (zo,yo) in R? and every p > 0 let Q,(zo,y0) be the cube with center
(z0,y0) and sides with length 2p parallel to the coordinate axes. We set Q;‘ (2o,y0) =
{(z,y) € Qy(x0,y0) : y > 0}. We take for granted that every solution of the Lamé
system in a cube of the form Q2,(z¢,yo) belongs to H?(Q,(zo,yo)) and satisfies the
inequality

/ |V2u|? dedy < % / |Vul|? dzdy , (246)
Qp(z0,y0) P JQap(x0,y0)
(see [45, Theorem 20.1]). Moreover, every solution in a rectangle of the form
Q3,(20,0) with homogeneous Dirichlet boundary condition on Ia,(x) x {0} belongs
to H*(Q (x0,0)) and satisfies the inequality

c
/ V2ul* dedy < — |Vu|? dedy . (247)
QF (20,0) P Q;rp(ﬂﬂmo)

In both cases the dependence of the estimate on p follows from a standard dimensional
argument.

To prove the estimate for {21, for every integer i we define x; := 2ir and we consider
the set Z; of integers ¢ such that a, < x; < .. Since x; satisfies (229), by (231) we
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have h(z) > 4r for every i € Z; and x € I4.(w;). It follows that QF (z;,0) C Q.
Therefore u € H*(QF (2:,0)) and by (247),

C
/ |V2u|? dedy < —2/ |Vu|? dedy .
Q% (2:.0) 4% Qi @0

Using the inclusion Q; C Uy, Q3. (7;,0), we obtain u € H?(Q;) and

C
/Q |V2ul|? dedy < 2 Z / |Vul? dedy .
1 €21

Ir (%4,0)

Since each rectangle Q7 (;,0) intersects at most 7 rectangles of the form Q} (;,0),
from the previous inequality and from the inclusion Q4 (z2;,0)" C ) we obtain

C
/ |V2ul|? dedy < — |Vu|? dedy . (248)
o} 47' Qn

To prove the estimate for Qo, we set p :=r/(3+3Lg) and we consider the set Z5 of
all pairs of integers (i, ) such that Q,(ip, jp) Qs # 0. We claim that Q2,(ip, jp) C Qp,
for every (i,7) € Zo. Indeed, if (i, j) € Z,, then there exists (xo,yo) € Q,(ip, jp) N Q.
Hence a, < z9 < B, and 7 < yo < h(xg) — 7. If (z,y) € Q2,(ip,jp), we have
|z — 20| < 3p and |y — yo| < 3p. Recalling the Lipschitz estimate for h, this implies
that 0 <r—3p <yo—3p <y < yo+3p < h(xg)—r+3p < h(x)+ Lo|lz—xo| —r+3p <
h(z) + 3Lop — r + 3p = h(x), which gives (x,y) € Qp and concludes the proof of the
inclusion Q2,(ip,jp) C Q, for (i,5) € Za. Therefore u € H*(Q,(ip,jp)) and by (246),

C
/ |V2ul|? dedy < —2/ |Vu|? dedy .
Qp(ip:jp) " JQzp(ip,jp)

Using the inclusion Qa C Uy, j)ez, @o(ip, jp) we obtain u € H?(Q3) and

C
|V2u|? dedy < — / |Vul? dedy .
/92 r 2 Qa2 (ip.ip)

1,J)EZ>

Since each rectangle Q2,(ip, jp) intersects at most 49 rectangles of the form Q2,(ip, jp),
from the previous inequality and from the inclusion Q2,(ip, jp) C Q) we obtain

/ |V2u|? dedy < %/ |Vul|? dedy . (249)
Qg r Qh

To prove the estimate for 23, we consider x; and Z; as for ;. By Theorem 21 we
obtain that w € H?(Qy',,>"*") and that

2
c
|V2u|? dedy < -2 |Vu|? dedy .
T;—2r,T9; 2 T — T o
Q% w2 t+2r r Qi —4r@itar
h,2r h,4r
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Using the inclusion Q3 C |J Qf;;ﬁr T2 e obtain u € H2(Q3) and

€2,
/ IV2u|? dzdy < & Z / Crin \Vu|? dedy . (250)
Q3 icZ1? MWlar
Since each set Qfll;h Tt intersects at most 7 sets of the form Qij}"”“r, from

the previous inequality and from the inclusion Qii;}T’“MT C Qp, we obtain

7 2
/ \V2u|? dedy < %/ \Vu|? dzdy , (251)
Q3 r Qp
which concludes the proof. O

Theorem 23. Under the hypotheses of Theorem 6, let 2 < p < po/(2 — po). Then
there exists a constant cs = cs(no, m, M,p) > 0 such that

IVull o, < csBr(H, H°, o, al, B, B0 1/p,

Proof. By (227),

a+ry
/ |Vu(z, h(x))P\/1+ (W (2))2de < B (H,H, a,a°, 3, 8°)P~ (252)

A similar estimate holds in (8 —ry, ). It remains to estimate Vu over (a+ry, 5 —71).
Let r := nor1/4 and for every integer i we define x; := ir. Let Z be the set of integers
i such that a +ry <z; < —r1. Since (a + 11,8 —71) C U,y Ir(2:), we have

B—r1
/ \Vu(z, h(z))[Pr/1+ (W (x dx<Z/ \Vu(z, h(z))[Py/1+ (W (x))2dz .
a+7ry ieZ
(253)
Recalling that r < r; < dg, we see that (229) is satisfied with r replaced by r/2.
Moreover, from (67) and the definitions of r; and r, we obtain

T”h//”L‘X’((a,,@)) < COTBT(Ha Hoa @, 0505 Ba 50) < 61/2770/8 <1.

Hence we can apply Theorem 21, with r replaced by r/2, to obtain (234) in each
interval I.(z;).
By (234),

Ce
||Vu||Lp(1"zi*7":"'i+"') < 7_1_71/:0HVUHL2(Q?;‘2"’%+27') .

Combining this inequality with (253) gives

B—r1
/a Vu(z, hiz 1+ (W(2))*dx < -1 Z IV Hm(ﬂ“?” !

+r1 i€z
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C p/2
2
-1 (Z ||VU’||L2 (9272;2711 +27')> 5

i€Z

where we used the fact that p > 2. Since each set QZ‘Q_TQM 27 intersects at most 7
sets of the form Q> *"***™ from the previous inequality and from the inclusion

Qi’z_rzr @it — (), we obtain

B—r1 C
/ [Vu(z, h(z))|P/1+ (R (z))%dz < — ||Vu|\L2(Qh) < =7 (254)
o 1

+71 T

where in the last inequality we used (22) and the equality r := nor1/4. By (225) we
have

1 2co 2 2
— = B.(H,H° 0
o max{ci/2 ( aa,ﬁﬁ) 3 771}

20 2 2 0 0 4 a0
Smax{77iai}BT H,H,Oé,Oz, ’ ’
/200" m ( 8.5°)

where in the last inequality we used the fact that 1 < B.(H,H° «a,a° 3,3%).
Therefore, (254) yields

B—r1
/ |Vu(z, h(z))|P\/1+ (W (x))2de < CB.(H,H° a,a, 3,3°)P"

11

Summing this inequality to (252) and to the corresponding inequality in (8 — rq, 5)
gives

/\vu:ph P/1+ (W (2))2dx < OB, (H,H® o, 8,3°)P~

which concludes the proof. O

Theorem 24. 155> Then we have
Po

R(¥) ¢ Lpo/(4=2p0)((, B)) and there exists a constant cg = co(no,m, M,p) > 0 such
that

|R¥) 7o a8y < coBr(H, H®, 0”3, 5°)1, (255)
where B, (H, H°, a,a®, 3, 8°) is defined in (61) and

q :=max{p,5p/2 —1,3p—2,2p — 1}.

Proof. By (53),

ORI

-
e
|
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in (o, B), where we recall that W (z) := W(Eu(x, h(z))) and

H(z) ::/ (H(s) — H°(s))y/1 + ((h0)'(s))2 ds .
Hence,
R0 P < CIB|P + CI"[P|R" P 4+ CIB" | + CW + |H|p+C|m|p

for some constant C' > 0 depending on L.
By (67) and (105) we have

B
/ |h”|pdl‘ S (6 - a)HhHHpoc(a’ﬁ) S CBT<H7 H07a7a07ﬁ750>p'

If 1 < p < 2, by Hélder’s inequality with exponents 2 5 and 5= p,

B B B _
/ |h///|p|h”|pd1‘§ (/ |h”|2d1’>p/2(/ |h’”|2p/(27p)dx>(2 p)/2

3p—2)/2 2—p)/2
< MPPREE A IR

(256)

(257)

where in the last inequality we used (64) and the fact that (2p/(2—p)—1)(2—p)/2 =

(3p — 2)/2. Using (68) and (69), it follows from the previous inequality that

B
/ |h/”|p‘h//|pd$ < CB-,—(I‘L H07a7a075750)5p/2—1,

(258)

where we used the fact that 3p —24 (2 —p)/2 =5p/2—1. If p > 2, by (64), (67), and

(68) we have

B
F A U N e / W 2

<C(B.(H,H° a,a’ B, 8°))* 2.

On the other hand, by (64) and (67),

(259)

B
/ B [*Pda < B[220 ﬁ))/ \W'|2dx < C(B,(H, H°, a,a°, 3, 8°))*~2M . (260)

By the previous theorem

B B
/Wpdmg/( (Eu(z, h(x))))P\/1+ (W (x))%dz
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B
< C/ \Vu(x,h(m))|2p\/l + (W (x))?dx < CB,(H, Ho,a,ao,ﬂ,ﬁo)2p_l.

Since L[H| < CB,(H, H,a,a°, 8, 8°) and |m| < CB,(H, H, a, a0, B, 8°) by (61)
and (112), respectively, combining these two inequalities with (256)— (260) yields (255).
O

Remark 7. Note that 5p/2 — 1 < 2 for p < g, 3p—2 < 2 forp < %, and
2p — 1 < 2 for p < 3/2. Hence, by taking 1 < p < min{6/5,po/(4 — 2po)} we
have that ¢ < 2. Moreover, as in the proof of (20), we have that H — H° = 0 for

r ¢ (min{a, a®}, max{B3, 8°}). Hence, by Holder’s inequality

2 max{8,5°} 2
(/ |HH°|dx> = / |H — H°| dx
R min{a,a®}

max{8,5"}
< (max{ﬂ,ﬂo}—min{a,ao})/ |H — H°|>dx .

min{a,a®}
In turn, by (61) for ¢ <2,
(max{3, 8°} — min{a, a’})
2

4 4
+ la—a’P + 518 -5
T T

BT(H7 Hoaaaaovﬁaﬁ())q < 4+4 / IH_ HO|2d$L‘ (261)
R

8 Discrete Time Approximation

For a given function f = f(z,t) we set

i Of oy o O
flz,t) = 5t (z,t) and f'(z,t) = pe (z,t).
Fix (ag, Bo, ho, ug) € A with Lip hg < Lo and define
Ho(w) = [ alp)dp. (262)

where hg is the extension of hg by zero outside the interval (g, By). For every k € N
we set 7y, := ¢ and t}, := iy, i € NU{0}. We define (af, B}, h, ui) € A inductively
with respect to ¢ as follows:

(a27ﬂ2ah27u2) = (Oéo,ﬁo,ho,lto), (263)
and given (a}:175}:1, hfjl,u?l) € A we let (ai,Bi,hi,ul) € A be a minimizer of
the functional

.7:]2_1(04,5, hau) = S(O&,ﬁ, h) +5(a,ﬂ,h,u) + ﬂk(avﬂ,h;az_l7ﬂli_lahz_l) ) (264)
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whose existence is guaranteed by Theorem 2. We introduce the linear interpolations
(in time) for a, B, h given by

) t— i .
ap(t) == ai b+ T: (af — i), (265)
i—1 l— tllic_l % 1—1
Br(t) =B, + - Br =By, (266)
t—tit

hi(t, @) o= by~ () + (hi(x) = by (2)) (267)

Tk

fort € [t;;l, t:],i € N, and x € R, where hfg is the extension of h{ by zero outside the
interval [af, S1].

We also introduce the piecewise constant interpolations (in time) for a, 8, h given
by

Gn(t) ==k, Br(t) :=BL, h(t,z) = hi(z) (268)

fort € (tz_l,t}'c], i € N, and z € R. For ¢t = 0 we set 45(0) := a2 = ay, Bk(O) =) =
Bo, and hy (0, z) = hQ(x) = ho(x). Observe that, since (ai, i, ht) € A for every i
and k, we have hy(t,-) € H2((éu(t), Br(t))) for every ¢t > 0 and, by Lemma 1,

Bult) — () > ,/QL—“ZO. (269)

Note that since Lip fvﬁ:l < Ly and Lip fVL}i < Ly, we have Lip hy(t,) < Lo and
Lip hi(t,-) < Lo for every t € [0, 00). Moreover by (6),

/hk(t,z) de = / By (t, ) dz = Ag (270)
R R

for every ¢ € [0,00) and all k.
Lemma 25. There exists a constant My > 0 such that

% I % i i 3t Q j j j j— j— j—1
S(akvﬁkahk)"’_g(akvﬁkv kvuk)—‘rz?jrk(aivﬁivhi;aiy 175% lvh{g ) SJ\40
j=1

for every i and k.

Proof. Fix i € N and let 1 < 7 < 4. Since (ai,ﬁi,hi,ui) € A is a minimizer of the
functional " defined in (264), we have

S, B 1) + E (o B iy ) + T (o, B P g, B )
j— j— j—1 i—1 pj—1 75— j—1
< S(eq B )+ ECq B )
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Summing both sides of this inequality over j = 1,...,7, we obtain

S(at, B, hi) + E(ak, B by uk) + > To (o Bl hsoq ™ 5 )
j=1

< S, Bo, ho) + E(w, Bo, ko, uo) =: My,

and this concludes the proof. O

Proposition 26. There exists a constant My > 0 such that
[ nza<an ana [ G2 < ()
0 0

for every k. In particular,
ok (f2) = o (t)| < Myt = 2] V2, 1Br(t2) = ()| < Ml — 1]V (272)
for every t1t2 € [0,00), and
o — (tM1)Y? < oy () < Bi(t) < 6° + (tM)"2 (273)

for every t € [0, 00).
Proof. By (14), (18), and Lemma 25 we obtain

2M,
g

1 X, ,
—E o —al M2 < =: M.
Tkj:l( k k ) —

By (265) the previous inequality can be written as
oo e ti
/ (c (1)) 2dt = Z/ (ée(8))2dt < M, .
0 =a

The first inequality (272) now follows from the fundamental theorem of calculus and
Hélder’s inequality. Since a(0) = o the first inequality (273) is a direct consequence

of (272). Similar estimates hold for f. O
Define

mi) = [ B dp. )= [ ) dp. (274)

fulta)i= [ hult.p)dp. (275)
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Observe that by (267),

i—1
t—t

Hy(t,x) = H Y (z) + - (Hi(z) — H Y(z)) forte [t ' th], (276)
k
Hy(t,z) = Hj(z) for (t51,¢1], (277)
fori € Nand z € R.
Proposition 27. For every k,
| eyt < 200, (279)
0

where My is the constant in Lemma 25. In particular,

| Hy(t2, ) — Hi(t1, )| 22y < (2Mo) /2|ty — t1|*/? (279)
[ Hi(t, )| 2y < (2Mo) 2% + || HO|| L2 (w) (280)

for every t,ty,ta € [0,00) and for every k, where H® is defined in (262).

Proof. By (14), (18), and Lemma 25,

Z/ (H](z) — H " (2))%dx < My .
27’k

Using (276) we have

/ /Hkt;v )2dxdt = Z/t /Hktx)dxdt
- EA(HZ(I) — H] Y (2))%dx < 2My,

which gives (278). The estimate (279) follows from the fundamental theorem of calculus
and Hélder’s inequality. From (262) and (279) we obtain (280). O

Proposition 28. There exists a constant Ms > 0 such that

1kt ) L2y < Ma(t? + (Bo — c0)) (281)
1k (t2, ) — hi(tr, )| L2y < Malta — 1|31, (282)

for every t,ty,ta € [0,00) and for every k.

Proof. By (267) and (273) we have that hy(t,z) = 0 for every ¢t € [0,00) and for
x ¢ [a® — (tMy)Y/2, B0 + (tM;)'/?]. Since Lip hy(t,-) < Lo for every t € [0,00), w
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obtain (281). To prove (282), fix ¢1,t2 € [0,00) and k and apply Theorem 7.41 in [44]
to the function v(z) := Hy(t2,z) — Hi(t1,x), © € R, to get
1R (t2, ) = B (tas )l 2wy = [ Hi (2, ) = H;'c(th Mo
< Can || Hy(ta, ") = Hic(tr, ) |[350m 1H (b2, ) = HY (b1, )72 )
< Can (2My)* 0|t — t1\3/10||h§€(t2, ) = h(ta, ')||2L/oi(R
< CGN(2M0)3/10(2L0)2/5|t2 _ t1‘3/10
where in the last inequalities we used (279) and the fact that Lip hy(t, ) < Lo for
every ¢ € [0, 00). O
Proposition 29. There exists a constant M3 > 1 such that for every i,k we have

B
[ oy @pas < . (253)

In particular,
(L) (2) — (h) (w1)] < My (g — 1)/ (284)
for all o, <@y <o < Bi.

Proof. 1t follows from (13), (14), Lemma 25, and the fact that Lip h}, < Lo that

o i Br, N ()2
/ai ((hi)"(x))?da < (1 + LE)*/? /ai i +(EZI;£)/(($))))2)5/2 de < 205 (14 L2)5/° My .

By the fundamental theorem of calculus and Hoélder’s inequality this implies (284). O

9 Convergence to the Evolution Problem

Throughout this section we assume that

(00, Bos ho) € As , (285)

ho(x) >0 for every = € (ay, Bo), (286)
hi(ap) >0 and h{(By) <0, (287)
Lipho < Lo . (288)

Proposition 30. Let ay, B, i, and B be defined as in (265), (266), and (268).
Then there exist functions a, 3 : (0,00) — R such that o, 3 € H*((0,T)) for every
T >0 and, up to subsequences (not relabeled),

ar —a and By — B weakly in H((0,7T)), (289)
ar = a and Br— B wuniformly in [0,T7], (290)
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Gy —a and By — B uniformly in [0,T], (291)

for every T > 0. Moreover,

a(0)=ao, B(0)=p5o, and B(t) —alt) =/ —— (292)

for every t > 0.

Proof. Proposition 26, together with the initial conditions «(0) = ap and Sk (0) = o,
implies (289), which in turn yields (290) in view of the compact embedding. By (265)
and (268), for every k and t € [0, T, there exists a t € [0, T] with ¢ < < t + 73 such
that ay(t) = o (f). By (272), |6 (t) — o (£)] < M;/*7,. This implies that g, — g, — 0
uniformly. Similarly, 8z — 8 — 0 uniformly. Hence, (291) follows from (290). The
equalities in (292) follow from (290), since o (0) = ap and S5 (0) = Bo. The inequality
in (292) follows from (269) and (291). O

Proposition 31. Let hy be defined as in (267). Then there exist a subsequence (not
relabeled) and a nonnegative function h, € C%3/19([0,00); L?(R)) such that for every
t € [0,00),

Liph.(t,") < Ly and h.(t,z) =0 forz ¢ (a(t),B(t)) (293)
hi(t,:) = hy(t,-) uniformly in R, (294)
Ry (t,-) = hL(t,) weakly star in L°(R). (295)

Moreover, if we let h(t,-) be the restriction of h*(t,-) to («(t),B(t)), then h(t,-) €
Hg((a(t), B(t))) N H?((a(t), B(1))) and

B(t)
/ h(t,x)de = Ag , (296)
alt)

B(t)

| P < s, (297)

alt)

[P (t,22) — B (¢, 21)] < M§/2(x2 —x)Y2  for all zy,xo with a(t) < z1 < 9 < B(t)
(298)

for every t € [0, 00).
Remark 8. It follows from the previous proposition that (a(t), B(t), h(t,-)) € As for
every t € [0, 00).

Proof of Proposition 31. By Proposition 28 and the Ascoli-Arzela theorem there exist
a subsequence (not relabeled) and a nonnegative function h, € C%3/18(]0, c0); L?(R))
such that for every ¢ € [0, 00),

hi(t,-) — he(t,-) weakly in L*(R). (299)
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Since Lip hg(t, ) < Lo for every t € [0, 00) and every k, we obtain that Lip h.(¢,-) < Lg
and that (295) holds.

Fix ¢ € [0,00) and k and find 4 such ¢, ' <t < ;. Since oy (¢, ') = af ' and
ag(th) = ai, (see (265)), by (272) we have

ag(t) — (My)Y? <min{ai !, al} < max{al ' ot} < ap(t) + (Mym)/2, (300)
where we used the fact that ti — ¢. ' = 74. Similarly we can show that

Bi(t) — (Mym)'? < min{B;7", Bi} < max{B;~", 5L} < Bu(t) + (Mam) /2. (301)
Therefore by (267) we have

hi(t,z) =0 for z ¢ (ap(t) — (Mymi)'/2, Br(t) + (My73)'/?) . (302)

Hence, by (290) and (299) we obtain that h.(t,z) = 0 for x ¢ (a(t),5(t)). In turn,
since Lip hy(t, ) < Lg, we can apply the Ascoli-Arzela theorem in the x variable and
we obtain (294). Properties (270), (290), (294), and (302) imply (296).

To prove (297) observe that by (267), (300), and (301), for every = € (ag(t) +
(My7i)'2, B(t) — (My7y)'/?) we have

i—1
t—th

hi(t, @) = hi” (@) + —

(hio(w) = by (2)) -

Fix a < b such that a(t) < a < b < B(t). By (290) we have that ay(t) + (My7;,)'/? <
a <b< Bi(t)— (My7)'/? for all k sufficiently large, and so h}(t,-) € L?((a,b)) and
by (283), we have that

i—1
t—t

Tk

a a ) o [ )
[ ieope < = [y Pds + B [ @) e < .
b b k b

It follows from (294) that h”(t,-) € L*((a,b)) and
b
/ (¢, ) |2dz < M. (303)
a

Taking the limit as a — a(t) and b — () we conclude that h(t,-) € H?((a(t), B(t)))
and that (297) holds. In turn, by the fundamental theorem of calculus and Hélder’s
inequality, we obtain (298). O

Proposition 32. Let {hi}r and h. be the subsequence and the function given in
Proposition 31, and let {Hy}1 be defined by (274). Then up to a further subsequence
(not relabeled),

Hy — H weakly in H'((0,T); L*(R)) for every T >0, (304)
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with
H(t,x) := / h«(t,p)dp. (305)

— 00

Proof. By (278) and (280) there exist a subsequence (not relabeled) and a function
H: (0,00) — L*(R) such that H € H'((0,7T); L*(R)) for every T > 0 and (304) holds.
It suffices to prove that H equals the right-hand side of (305).

Let ¢ € C((0,00)) and ¢ € C(R). Then by (304),

/ / x)Hi(t, dxdt—>/ / H(t,z)dzdt

as k — o0o. On the other hand,

/ / x)Hy(t,x) dedt = / // z)hi(t, p) dpdxdt
—>/ // h(t, p) dpdzxdt

as k — oo, where we used the Lebesgue dominated convergence and (281), (290),
(294), and (302). Given the arbitrariness of ¢ and v, we obtain (305). O

Next we study the convergence of the piecewise constant interpolations Hy,.
Proposition 33. Let {f[k}k and H be the subsequence and the function given in
Proposition 32, and let {Hy}r, be defined by (275). Then

Hy(t,-) — H(t,") weakly in L*(R) for everyt>0. (306)

Proof. Let ¢ € L?(R) and define
Y(t) == /R(Hk(t,:c) — H(t,x))p(z) dz.

By Proposition 32, for every T' > 0 the function ¢, € H'((0,T)) and 1, — 0 weakly
in H'((0,7T)). This implies that ¢ (t) — 0 for every t € (0,T). By the arbitrariness of
@ and T, we deduce that
Hy(t,-) — H(t,") weakly in L*(R) for every ¢t > 0. (307)
By (276) and (279), for every ¢ € (¢} ', ti],
VEk(t ) = Hi(t ) 22wy = | Hi(to ) = Hilt )2y < (2Mo)' 27 = 0

as k — oo. Together with (307), this implies (306). O
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Corollary 34. Let h, be as in Proposition 31 and let {Hy}r and H be the subse-
quence and the function given in Proposition 32. Fix t > 0. Then the corresponding
subsequence {hy}r satisfies
hi(t,) = h(t,-) wuniformly in R, (308)
hi(t,-) = h'(t,-) weakly star in L™(R). (309)
Proof. Since hy(t,-) = Hj(t,-) — H'(t,-) = h.(t,-) weakly in H~(R) in view of the

previous proposition, and {hx(¢, )} is bounded in W1>°(R), the conclusion follows.
O

In the remaining of this section we always assume that the sequences {a }x, {8k},
{hi}r, {Hr}r satisfy (289), (290), (294), (295), and (304), (306), (308), and (309),
and that h(t,-) is the restriction of h,(t,-) to («a(t), 5(t)).

Lemma 35. Let {t;}r be a sequence of nonnegative numbers converging to some
to > 0. Then

Pi(te,-) = halto, ),  hi(te,-) = ha(to,-)  uniformly in R. (310)
Moreover, if a(ty) < a <b < B(ty), then

W (tes-) = W (to,), By(te,-) = h'(to,-) uniformly on [a,b]. (311)

Finally, if {zr}r is a sequence in R converging to some xg € R such that dy(ty) <
xr < Pr(ty), then a(ty) < zo < B(to) and

Wy (th, 1) = B (to, 20) (312)

Proof. Since Lip hy(tg,-) < Lo for every k, by (302) we can apply the Ascoli-Arzela
theorem to obtain that up to a subsequence (not relabeled)

hi(tg, ) — ¢g(-) uniformly in R
for some Lipschitz continuous function g. On the other hand, by (279),
| H(tr, ) — Hi(to, )| p2ry < (2Mo) 2|t — to]*/?
and in view of (304) we have that
Hy(to,-) — H(to,-) weakly in L*(R).
The last two properties imply that

Hy(ty,-) — H(tog,-) weakly in L*(R).
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Since Hj (tx,-) = hp(ty,-), it follows that g(-) = H'(to, ) = h«(to,-). Since the limit
does not depend on the subsequence, this concludes the proof of (310).
By (283),

b
/ W () [P < My

for all k sufficiently large. By Hélder’s inequality this bound implies that hj (,-) are
Holder continuous of exponent % on [a, b] uniformly with respect to k. By the Ascoli—
Arzela theorem again and by (310) we obtain (311). In particular, if a(ty) < = < B(to),
then
h%(tk, LL‘) — hl(to, (E) . (313)
If a(ty) < zo < B(to), then we can choose a and b with a(tp) < a < o < b < S(tg)
and (312) follows from (311). It remains to consider the cases zg = a(tg) or o = S(to).
We consider only the case zg = a(tp). Fix 0 < ¢ < B(to) — a(tp) and observe that
Gr(ty) <z +e < Bk(tk) for all k sufficiently large. By what we just proved

By, (t, zr + €) — B (to, w0 +€) - (314)
By the fundamental theorem of calculus, Holder’s inequality, and (283),

:Ek+€

1/2
|ﬁ§€(tk,xk+5)—ﬁ§c(tk,:vk)§51/2</ |ﬁg(tk,x)|2> <M.

k

Similarly,
1 (to, w0 + €) — I (to, x0)| < £/2M372.
Therefore, by (314),

limsup [ (t, 24) — I (to, x0)| < 26"/2M,7.
k—o0
Letting € — 07, we obtain (312). O

In what follows Cy,(R) is the space of bounded continuous functions in R with the
supremurm norm.
Lemma 36. The function t — h.(t,-) from [0,00) into Cp(R) is continuous.

Proof. Let {t,}n be a sequence in [0,00) converging to to. Since h, €
C3/19([0,00); L*(R)) we have h.(tn,-) — hi(to,-) in L?*(R). On the other hand,
Lip hi(tn,-) < Lo for every n and by (293) the supports of the functions h.(t,,-)
are contained in a compact set independent of n. Hence, the Ascoli-Arzela theorem
implies hy(tn, ) = hs(to,-) in Cp(R). O

Lemma 37. Fiz a bounded interval I C [0,00) and let a < b be such that
a(t) <a<b<p(t)

for all t € I. Then the function t — W' (t,-) from I into C°([a,b]) is continuous
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Proof. Let {t,}» be a sequence in I converging to tg € I. By Lemma 36, h(t,, ) —
h(to,-) in C%([a,b]). On the other hand, by (297), the sequence {h(t,,")}n is bounded
in H2((a,b)) and it converges weakly to h(to, ) in H?((a,b)) and so b/ (t,,-) — h'(to,")
in C%([a, b]). O

Since h(t,-) is defined only in [«(t), B(t)], its space derivatives at the endpoints are
one-sided.
Lemma 38. The functions t — h'(t,a(t)) and t — Rh'(t,B(t)) are continuous on
[0, 00).

Proof. Tt is enough to give the proof for t — h'(t, a(t)). Let {t,}, be a sequence in
[0, 00) converging to tg and let 2 € (a(to), B(to)). By continuity of o and S there exist
an open bounded interval I C [0,00) and a < b such that

at) <a<z<b<B(t)

for all t € I. By Lemma 37,
B (tn,x) — B (to, x)

as n — oo. By (298),

1 (tn, o(tn)) = I (to, a(to))| < B (tn, altn)) — B (tn, )| + B (tn, @) — b/ (t, @)]
+ |hl(t07l') — h/(to, a(to))|
< M3 ?|a(tn) — 2|2 + B (tn, @) — I (to, )| + M3 *|a(te) — z['/2.

Letting n — oo gives

limsup |1 (£, a(tn)) — B (to, a(to))| < 2M5"*a(te) — z['/2.

n—roo

Taking the limit as  — «a(tg)™ we conclude the proof. O

Theorem 39. Under the assumptions (285)—(288), there exists Ty > 0 such that for
all t € [O, T()L

h(t,z) >0 for all z € (a(t),5(t)), (315)
R (t,a(t)) >0 and h'(t,B(t) <O0. (316)

Proof. Fix 0 < ¢ < min{h{(ag), —h{(Bo)}. By Lemma 38 there exists T} > 0 such that
B (t,a(t)) > e and RB'(t,B(t) < —¢
for all t € [0,T}]. Fix 6 > 0 such that M§/251/2 < e. By (298),

Wt x) > B (t at) — Ma?le — a(t))/? > e — My/?6Y/% > 0
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for all a(t) <z < a(t)+4. Since h(t, a(t)) = 0 by the previous inequality we have that
h(t,z) >0 for all a(t)<z < a(t)+d and for all 0 <t < T7y. (317)
Moreover,
h(t,z) >0 forall 5(t) —0 <a<f(t) and for all 0 < ¢t <Tj. (318)

Fix a < bsuch that ag < a < ag+9d and Bg—6& < b < By. Then there exists 0 < Ty < T}
such that

at) <a<a(t)+d and B(t)—0<b< p(t) forevery 0<t<Tp. (319)

Let 1 := minf, 3 ho > 0. By Lemma 36 there exists 0 < T3 < T3 such that

h(t,x) >

g foralla <z <bandforall 0 <t<T3. (320)

Combining (317)—(320), we obtain h(t,z) > 0 for all z € (a(t),B(t)) and for all
0<t<T;. O

Proposition 40. Under the assumptions of Theorem 39, there exist kg € N and
0 <mno <1 such that

(hi)'(ag,) > 2m0  and  (hi)'(B}) < —2m0 (321)

for all k > ko, and all 0 < i < kTp.

Proof. Since the function ¢ — h/(¢,«(t)) is continuous by Lemma 38, Theorem 39
implies that there exists 0 < 7179 < 1 such that

B (t,a(t)) > 2ny  for every t € [0,Tp] . (322)
We claim that there exists kg € N such that
(Re) (ak) > 2ny forall k> ko and 0 <4 < KTy . (323)
If not, then for every n € N there exist k, > n and 0 <14, < k, Ty such that
(hi) (@) < 2mo. (324)

Define t,, := t;g; = in/ky. Since 0 < t,, < Tp, up to a subsequence, t,, — to for some
to € [0,Tp], and by (290),

a;;; = ay, (tn) = a(ty) . (325)
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By (267), we have hZ; () = hg,(tn,z) for every z € [ozfc’;7 ,2:], and so
(h;c)’(azn) = hj, (tn, az’;), where hy, (tn, oz?;;) is the right derivative of hj (t,,-) at
a?g;. Fix a(ty) < z < B(to) and let a,b € R be such that a(ty) < a <z < b < S(to).
By (311),

R, (tn, ) = I (to, ) - (326)

By (284) and (298),
(R ) (e ) — I (to, alto))| < |(hiy ) (g ) — (B ) ()
+|h;€n (tn,z) — B (to, )| + |W (to, z) — B/ (to, a(to))]
< My P, (tn) — 2|2+ |B), (tn,x) — B (to, )] + My ?|a(ty) — 2|/

Letting n — oo and using (325) and (326), we get

limsup [ (k)" ) (o) = B (to, a(to))] < 2M3"?|a(to) — x| M/2.

n— oo

Taking the limit as * — (o)™ we obtain that

(h;g;)/(a;;;) - h/(tO’ Oé(to)) )
contradicting (322) and (324). This proves the claim. A similar argument holds for 3,
and so (321) is satisfied. O

Proposition 41. Under the assumptions of Theorem 39, let 1y be as in Proposition
40, and let
1
0<d< - mi t) —a(t)). 327
<6<z, min (8(t) = a() (327)
Then there exist k1 > ko and 0 < n; < 1 such that

Rt (x) > 2n  for all x € [af + 6, 8% — 0], (328)
hi(z) >0 for all z € (a},Bh), (329)

forallk > k1 and 0 <1 < KTy.

Proof. To prove (328), we argue by contradiction and assume that every n € N there
exist k, > n, 0 < i, < k,Ty, and z,, € [042’; + 4, ﬂ,iz — 0] such that h}g; (xn) < 1/n.
Define t,, := t}g; Since 0 < ¢, < Tp, up to a subsequence (not relabeled), t,, — to for
some 0 < tg < Tp. By (290),

a = ag, (ta) = alte), B = Br, (ta) — B(to).

Extracting a further subsequence (not relabeled), we have that z,, — z¢ for some
o € [Oé(to) + 5,ﬁ(t0) — 5] Since

1/n> h}g; (xn) = hg, (tn, Tn) = ha(to, o)
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by (310), we obtain a contradiction by Theorem 39.
To show (329), fix 0 < & < & mingejo,7,)(8(t) — (t)) such that M§/251/2 < 2np.
By (284) and (323),

(h)' () > (h)' () — My | — @ |72 > 2mg — My"%e!/2 > 0
for all o} <z < al + ¢ and k > ko. Hence,
Ri(z) >0 foral <z <al+eandk >k, (330)
and in the same way we can show that
hi(z) >0 for B —ec <z < B and k> kg . (331)

The positivity of b} (z) for z € [a} +&, Bi —¢] is a consequence of (328) with § =e. O

Theorem 42. Under the assumptions (285)—(288), there exists 0 < Ty < Ty such
that

Liph.(t,) < Lo (332)
for every t € [0,T1].

Proof. Fix Ly with Liphg < L1 < Lg. By Lemma 38 the function ¢ — h/(¢, a(t)) is
continuous and since h'(0, a(0)) = h{(ao) < L1, there exist Ty > 0 such that

h'(t,a(t)) < Ly for all t € [0,Ty].
Fix 6 > 0 such that M,/?61/2 < Lo — L;. By (298),
I (t,2)] < B (t, at)) + M3/?6Y/2 < Ly + MY?5V% < L,

for every t € [0,71] and every a(t) < x < «(t) + 6. Similarly, taking 7} smaller, if
needed, we obtain

[P/ (t,z)| < Ly for every t € [0,T}] and every B(t) —d < x < S(t).
It remains to prove that

max K (t,x)| < Lg. 333
el g I ) < Lo (333)

Let g(t) denote the left-hand side of (333). To prove that g is continuous, fix 0 < tg <
Ty and a, b with a(ty) < a < a(tg)+d and B(tg)—d < b < B(tp). By continuity of o and
B there exists an open interval I containing ¢q such that a < a(t)+0 and S(t) —d < b
for all t € I. By Lemma 37, t — h/(¢,-) from I into C°([a,b]) is continuous. Since «
and [ are continuous, it follows that ¢ is continuous in I. By the arbitrariness of ¢y,
we conclude that g is continuous in [0,77]. Using the fact that ¢(0) < Lipho < Lo,
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taking 77 even smaller, if needed, we obtain that g(t) < Lo for all ¢ € [0,77]. This
concludes the proof. O

Proposition 43. Let Ty be as in Theorem 42 and ki be as in Proposition 41. Then
there exists ko > k1 such that

Lip hu(t,-) < Lo (334)

for all k > ka2, and all t € [0,T1].

Proof. Assume by contradiction that (334) does not hold. Recalling that Lip hy(t,-) <
Lo and that hy(t,-) € CY2((ax(t), Bi(t))) for every t, for every n € N there exist
kn >mn, t, € [0,T1] and x,, € [éx, (tn), B, (tn)] such that

R}, (tny20)| = Lo (335)
Up to a subsequence, t, — to for some tg € [0, 7], and by (291),

A, (tn) = alto) and By, (t.) = B(to) - (336)

Hence, up to a subsequence (not relabeled), x,, — xo for some zg € [a(to), B(to)]- By
(312) we have that hj (t,,z,) — h'(to,v0). By (335) and Theorem 42 we obtain a
contradiction. O

Let T; be as in Theorem 42. For every ¢ € [0,71], let u(t,-,-) be the unique
minimizer of the problem

min {/Q W(Ev(z,y)) dedy : v e Ae(a(t),ﬂ(t),h(t,-))} , (337)
h(t,)

where A, is defined in (9).

Proposition 44. Let Ty be as in Theorem 42 and let {t;}r be a sequence in [0,T}]
converging to some to. Assume that for every k there ewists ip € N U {0} such that
ty = t;*. Then {u;*}1 converges to u(to,-,-) weakly in H'(Q;R?) for every open set
Q C Uy, with dist(€, graph(h(to, -)) > 0.

Proof. Let uy := u;j By minimality,

J

where T is the 2 x 2 identity matrix and we used (6). Let a(ty) < a < b < S(to)
and let Q be an open set with boundary of class C* such that [a,b] x {0} € 9Q and
dist(Q, graph(h(to,-))) > 0. By (290) and (310) we have dist(€, graph(hy(tx,-))) > 0
and ug(z,0) = (egx, 0) for all z € [a, b] and all k sufficiently large. By Korn’s inequality
(see Lemma 3) we have that {uz}y is bounded in H'(Q;R?). Then there exist a

W (Eug(z,y)) dedy < / W(eol) dedy = W(eol) Ay, (338)

hi(tg,-) Qg (1)
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subsequence (not relabeled) and a function v € H'(Q; R?) such that u, — v weakly
in H'(; R?).

Take an increasing sequence of domains {Qn}n as above such that their union is
Qp(t,,.)- By a diagonal argument, we can extract a further subsequence (not relabeled)
and construct a function v € H110C(Qh(t0,~)5 RR?) such that uj, — v weakly in H'(,,; R?)
for every Q,,. By (17), (338), and a lower semicontinuity argument we have that

/ |Bu(a, y)Pdady < Coy W (eol) Ao

n

for every n. By letting n — oo we obtain

[ 1) Pdndy < CoW(eal) Ao,
Q

h(tg,-)

In view of (315), (316), and Theorem 42, the set €2j,,,.) has Lipschitz continuous
boundary and since, by construction, v(z,0) = (egz,0) for all © € (ay,,b,) for all n,
we can apply Korn’s inequality (see Lemma 3) to conclude that v € Hl(Qh(tm_); R?).

It remains to show that v = wu(ty,-,-). Let w € Ac(alto), B(to), h(to,-)). Since
h(to,-) € C1([a(to), B(to)]) by Proposition 31 and (316) holds we can argue as at the
end of Step 1 in the proof of Theorem 6 to extend w to a function w € H'(U;R?), where
U := (a(ty)—1, B(to)+1)x (0, 00) and w(z,0) = (egx, 0) for all x € (a(to)—1, B(to)+1).
By the minimality of uy in Q, (4, .) we have

[ wewe iy [ WEBae) ddy.
Dty Qg (b

Letting k£ — oo and using (310) we obtain

lerEo W(Ew(z,y)) dedy = / W(Ew(z,y)) dedy .

Qi (b1, Qn(ig,)

On the other, by lower semicontinuity

/ W (Ev(x,y)) dedy < liminf/ W (Eug(z,y)) dedy
Q.. k—o0 Q,

< lim inf W (Euk(x,y)) dedy
k— o0 Qhk (tk 9

for every n. Taking the limit as n — oo we obtain

| wEwdsy< [ W(Bu(ey) dedy,
Qn(eg,) Qn(tg,)
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which proves the minimality of v. By uniqueness, v = u(tg, -, -), and since the limit is
independent of the subsequence, the entire sequence {uy}x converges to u(tp,-,-) as
in the statement. O

In what follows

p1:=min{6/5,po/(4 — 2po)} and g =4p1/(2+p1), (339)

where pg is defined in (156). We observe that 1 < p; < 6/5 and 4/3 < ¢; < 3/2.
Theorem 45. . Under the assumptions (285)—(288), let Ty be as in Theorem 42 and
let ko be as in Proposition 43. Then there exists My > 0 such that

o P oo (2=5p1)/(4—2p1)) L TPY/2
. . < _ A —5p1 —2p1
/0 It )‘Lh((ak(t),ﬁk(t)))dt*M‘*(/O (5:(0) = (1) ) +Ma,
(340)

T Bk(t) .
/ / (W) (¢, @) |Prdasdt < My, (341)
0 A (1)

for all k > k.

Proof. Step 1. In this proof C' denotes a constant, independent of k£ and i, whose
value can change from formula to formula. Let ¢ := max{p;, 5p1/2—1,3p; —2,2p; —1}.
Since p; < 6/5, by Remark 7 we have ¢ < 2, hence, by (261) and (273),

B‘rk(Hlileiiaazwaiilvﬁliﬂ Iicil)d <4+ CHHk(t7 ')H%?(]R) + 4|dk(t)|2 + 4|Bk(t)‘2 :

By Proposition 29, (o, 8L, h}) satisfies (64) with M = M3 > 1. By Proposition 40
there exists 0 < 19 < 1 such that (af, B, hi) satisfies (62) for all k > ko and all 0 <
i < kTy. By (303) and (322) for ¢ € [0, Tp] we can apply Lemma 7 to (a(t), 8(¢), h(t,-))
obtaining 8(t) —a(t) > 16n2/Ms, hence (327) is satisfied by do = n3/(4Ms3). Therefore,
by Proposition 41 there exists 0 < n; < 1 such that (o}, 85, hi) satisfies (63) and the
second inequality in (37) for all & > k; and all 0 < ¢ < kTy. Moreover, Proposition 43
implies that h}c satisfies the first inequality in (37) for all k > ko and all 0 <4 < kTy.
We conclude that all assumptions of Theorem 6 are satisfied for all k¥ > ko and all
0<i<kKkT.

Hence, by Theorem 24, we have

Be
/, |(h}c)(W)( )lpld$<c9BTk(Hkal ! O‘kv kaa )
o,

< O+ C|lHx(t, ~)II%2(R) +Clax(®)? + ClBit).

Integrating in time over [t; !, #i] and summing over all 1 < i < kT we obtain
T n
/ /ak(t) Ih t (t,z)[Prdxdt < CTy + C’/ || Hy(t, ')||2L2(R)dt (342)
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T1 Tl .
+ c/ e (8) 2t + C/ Be(O)Pdt < C,
0 0

where in the last inequality we used (271) and (278). This proves (341).
Step 2: By standard interpolation results ([44, Theorem 7.41]) for every ¢ € [0, T1],

”i]’g/(ta ')HL‘H((dk( t), ﬁk t))) = (ﬂk( )) - dk(t))l/q173/2”ilg(ta ')||L2((dk(t),[§k(t)))
5 (iv)
+ CIREE M e2ano, sy + CIR" o (oo ey

In turn,
"
/0 I3 s (oo ooy
T
< A A (N\L/2=5p1 fA B (P A
<C [ (B(t) = ax(t) 1k (8 M a0, 1y 2
T1 Tl
// lV
+C/ IBECE T oy, +C/ 147, Mo (@@

By Hélder’s inequality, (283), and (341),
T
"
| N oo

Ty 17171/2 Ty p1/2
s0</0 (ﬁm)—ak<t)><2—5pl>/<4‘2“>) (/ 1B a0 m»ﬂ)

. p1/2
1-p1/2 h
Lot p1/ </0 Ay (¢, )”L?((ak (t), Bk(t)))d )

(1v) Pl
+C/ |h L, LPl((ak(t) Bk(t)))d

T] 1 p1/2
< C(Ty M3)P/? ( / (Br(t)) — dk(t))(2—5pl)/(4—2p1)> +CT M 4+ My
0
This proves (340). O

Theorem 46. Under the assumptions (285)—(288), let Ty be as in Theorem 42. Then
for a.e. t € (0,T1) we have

o  W(to) (H'()

0 = Ty 0 (e ) @@ 68)
. h(t,

0d(0) =~ e o0 - o 0O (B ), e



where J(t,-) is defined in (42) using h(t,-).
Remark 9. To express (343) and (344) in an intrinsic way, for every t € [0,11] we
define s(t,x) for a(t) <z < B(t) by

s(t,x) := /1) V 1+ (R (¢ p))3dp (345)

The inverse of s(t,-), defined for 0 = s(t,a(t)) < s < s(t,5(t)), is denoted by x(t,-).
Let r(t,-) : (s(t,a(t),s(t, B(t))) — R be the signed curvature of the graph of h(t,-),
considered as a function of arclength. To be precise, we have

R (t,x(t, s))

k(t,s) == 32 (346)
(1 + (W(t,2(t, 5))) )
hence Wt )
k(t,s(t,x)) = Tt2)?
Since W)\
<W) () = Buri(t, s(t,2)) T (t, ) ,
we can rewrite (343) and (344) as
00 (t) = 7 cos0a(t) — Y0 + 100sk(t, s(t, au(t))) sin o (1),
o0B(t) = —vcos(t) + 7o — vOsk(t,s(t, B(t))) sinba(t)
where
_ B (t, ot)) . W (t, B(t))
0, (t) := arcsin and 6 := arcsin ,
" Ftampe Y e

are the oriented angles between the oriented x-axis and the tangent to the graph of
h(t,-) at (a(t),0) and (8(t),0), respectively.

Proof of Theorem 46. Fix t € [0,T1] and k > ko, where ks is as in Proposition 43, and
find i such ¢ ' <t <. By (202),

i i—1 P\ (A Y/
ap — % 7 (hy.)"(ag) ¢ ()" N,
0o ™ = Ji(al) Yo + Vo )2 ( Jli)g) (o),

—~

(Ji(ag)

—~

where Ji(x) := (14 ((hi) (x))?)"/2. Introducing Ji(t,x) := (1 + (ﬁ;(t,x))z)l/Q, for
every 0 <t <7T; we have




where éy,(t—) is the left derivative. We claim that

7 i strongly in L2((0,T1)) . (349)

Ti(an(-) (LG a))?)/?

Since the function s ~ 1/(1 + s2)'/2 is 1-Lipschitz continuous, by (312) we have

1 1

Je(t,an(t) (L4 (W (ta(1))?) /2 < | (t, G () = 1 (8, a(t)] = 0,

which gives (349) by the dominated convergence theorem.
To study the last term in (348) we observe that

G e e ) = ZERE S, u(0).
where we used (201). We claim that
hi' (- 60(-)) = B (-,a(+))  weakly in LP*((0,T1)). (350)

By the fundamental theorem of calculus,

x

B (1)) = BY(t, ) — / R (¢, p) dp,

G (t)

where Gy (t) < # < fi(t). By Lemma 1 and the uniform continuity of a and 3 (see
(289)), we can subdivide [0, T}] into a finite number of intervals I such that for each
of them there exist a,b € R such that a(t) < a < b < g(t) for all t € I. To prove (350)
it suffices to prove weak convergence in LP'(I) for every such I. Fix I = [t1,t2] and
the corresponding a, b. By Holder’s inequality

. . Br(t)
R (¢, ()P < CIRY (t, )P + C M (¢, p)|Prdp.

Qg (t)

Averaging in z over (a,b) and integrating in ¢ over (t1,t) gives

ta C ta b ta pBr(t)
[ o< = [ [ ieapdsaeee [ 6o dpdr.
—a a tl dk(t)

t1 t1

Note that the first integral on the right-hand side is bounded because p; < ¢; and in
view of (340), while the second integral is bounded by (341).
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Let ¢ € C2°((a,b)) with [ ¢(z)da # 0 and ¢ € C°((t1,2)). Then

b t2 ta  ra
/ o(x) di / (2, (1)) (1) dt = / / B (b, ) (1) dudt

ta  ra o
,/t /b/}Rhgv)(t,P)X(@k(t),x)(PW(ﬂfW(t)dpdxdt,

where /Azl(civ)(t7 P)X(ax(t),z)(p) is interpreted to be zero for p ¢ (G (t),x). By (291), (308),
and (341), we have

hfgiV)(tv p)X(&k(t),x)(p)¢(x) - h(iV) (ta p)X(a(t),w) (p)gﬁ(.’[) Weakly in L ((tla t2) X R)
for every fixed z. On the other hand, by (340),
Ay (t,x) — B (t,z) weakly in LP*((ty,t2); L% ((a,b)).

Therefore,

/ab Ha) do /t it | / "W, ) b)) dudt
/ t?/ / ® hE(t, p)(p)d () (t) dpdadt

_ / 6(x)de / W )l db

t1

Dividing by fab ¢(x) dx, we get

ta

/ ’ Ry (t, G () (t) dt — R (t, (b)) (t) dt .

t1 t1

By the arbitrariness of 1 we obtain the weak convergence in I, which suffices to prove
(350).
Arguing as in the first part of the proof

GO Iy N i (t, G (t)) Mol weakdy in LP .
Rl G e AR

Combining (348), (349), and (351), from (289) we obtain (343). O
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Next we introduce the time derivative of h.
Proposition 47. For a.e. t € [0,+00) there exists an element of H~*((a(t), B(t))),
denoted by h(t,-), such that

h(87 ) — h(ta )

- — h(t,-) strongly in H™*((a,b)) (352)

for every a(t) < a < b< B(t).

Proof. Let us fix T > 0. By Proposition 32, H € H*((0,T); L*(R)) and H' = h,. It
follows that

h. € H'((0,T); H '(R)), (353)
and so for a.e. t € (0,T),

ha(s,-) — ha(t,")

s—t

— hy(t,-) strongly in H '(R). (354)

In particular, if ¢ € [0,77] satisfies (354) and a(t) < a < b < B(t), by the continuity
of a and 8 (see Proposition 30), we have a(s) < a < b < j(s), for all s close to t.
Therefore (354) implies (352). O

Theorem 48. Under the assumptions (285)—(288), let Ty be as in Theorem 42. Then
for a.e. t € (0,T1) we have

. 1R\ L RN 5 1 R (AN 1

b= [=5(F) +n3(F) e (5F) 3] e
in D'((a(t), B(t))), where W is defined in (42).
Remark 10. To express (355) in an intrinsic way, besides the functions s(t, ), z(t,-),
and k(t,-) considered in Remark 9, for 0 = s(t,a(t)) < s < s(t, 5(t)) we introduce the

normal velocity 17(15, s) of the time dependent curve T'y.y at the point corresponding
to the arclength parameter s, given by

h(t,z(t, s))
\/1 (W' (¢, 2(t, s)))

Moreover, we introduce the chemical potential {(t,-): (s(t, a(t)), s(t,ﬁ(t))) — R given
by

O A
C(t,s) == —yk(t,s) + 1o (855,«;(1?, s)+ @) +Wi(t,s),
where .
W(t,s) =W (Eu(t,x(t,s), h(t,z(t, s))) .
By direct computations (see [10, Remark 3.2 and Lemma 6.7]) we obtain that (355)
s equivalent to

‘7(?5, ) = 655C(t7 )
in D((s(t, a(t)), s(t, B(t)))
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Proof. By the continuity of o and S (see Proposition 30), it suffices to prove that,
given a < b and a time interval [¢1, t2] such that a(t) < a < b < B(t) for all ¢ € [t1, 2],
the equality (355) holds in D’((a,b)) for a.e. t € [t1,t2]. Let & > 0 be such that
a(t)+30 <a <b< p(t)—3d forall t € [t1,1t2]. By (290), a(t)+26 < a < b < Bi(t)—26
for all ¢ € [t1,t2] and all k > k* for some k*. Hence, by Proposition 41 there exist
¢ >0 and k > k* such that

hi(t,z) > ¢ forallt € [ty,ts], z €[a—0,b+6], and k > k.
Letting k — oo, by (294) we obtain that
h(t,z) > ¢ forallt e [t1,ta], x € [a—0d,b+4].
In view of these inequalities and of (41) we can repeat the proof of [10, Theorem
3.8] to prove (355) in D’'((a, b)) for a.e. t € [t1,t2]. We observe that since here we do

not have periodic boundary conditions in x, the argument used in [10] needs to be
modified accordingly. To be precise, the inequality (3.16) in [10] must be replaced by

3/4 1/4
IR (72, ) = B (71, Ml sy < IR, ) = B IS oy () = P L
+ Cllhi (72, ) = P (71, )| 22 ((a b))
S C|T2 — T1|1/32 +C|T2 - 7_1‘1/8

for every 71,7 € [t1,t2]. Similarly, in the proof of [10, Corollary 3.7] the second
displayed inequality must be replaced by

ta
[ ) = Lyt < C sup (6 — b6,

t1 te[tl,tg] Loo((a b
+osup [t ) = R (62 0y = O
tE[tl,tz]
as n,m — oo. O

The following theorem summarizes the main results obtained in this section.
Theorem 49. Under the assumptions (285)—(288), there exists T > 0 such that the
following items hold:

(i) there exist two functions o, B € H'((0,T)), with a(t) < B(t) for every t € [0,T)],
such that a(0) = ag, £(0) = Bo, and

B(t) — alt) > \/240/Lo  for every t € [0,T]. (356)
(ii) There exist 1 < p1 < 6/5 and a continuous function h > 0, defined fort € [0, T] and

x € [a(t), B(t)], such that h(0,z) = ho(z) for every x € [, Bol, h(t,x) > 0 for every
t €10,T] and every x € (a(t), B(t)), h(t,a(t)) = h(t,B(t)) =0, h'(t,a(t)) > 0, and
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K (t,B(t)) <0 for every ¢t € [0,T], and

h(t,-) € H*((a(t), B(t))) for everyt € [0,T], (357)
h(t,-) € W*Pr((a(t), B(t))) for a.e. t € [0,T], (358)
/B(t) h(t,x)dx = Ay  for every t € 0,77, (359)
a(t)
Liph(t,-) < Ly for every t € [0,T]. (360)

Moreover, if we denote by h, the extension of h obtained by setting h.(t,x) := 0 for
x € R\ (a(t),B(t)), then

ha € COSI9([0, T); L2(R)) 1 H'((0,T); H\(R). (361)
(#ii) The function u introduced in (337) is such that
u(t,-,) € C31-m (ﬁi’b) fora.e. t €0, T] and a(t) <a <b< B(t), (362)

and u(t,-,-) solves the boundary value problem

—divCEu(t,z,y) =0 in Qp,.y
CEu(t,z, h(t,z))V"(t,z) = 0 for x € (a(t), (1)), (363)
u(t,z,0) = (epz,0) for x € (a(t), B(1)),

for a.e. t € (0,7).
(iv) Considering the functions s, K, 04, 05, and ¢ introduced in (345), (346), (347), and
(356), respectively, we have

00d(t) = ycos 04 (t) — Y0 + 100sk(t, s(t, au(t))) sin o (t) for a.e. t € [0,T], (364)
t

o0B(t) = —vcoss(t) + o0 — vOsk(t, s(t, B(t))) sinba(t) for a.e. t € (0,77,
(365)

V(t,) = 05sC(t,-) in D((s(t,a(t)),s(t, B(t)) for a.e. t €0,T]. (366)

Proof. Item (i) follows from Proposition 30.

Let h and h, be the functions introduced in Proposition 31 and let T be the con-
stant 77 introduced in Theorem 42. By Proposition 31 and Theorem 39, we have
that h(t,-) is strictly positive in («(t),5(t)) and vanishes at the endpoints, with
K (t,a(t)) > 0, and h'(t,5(t)) < 0, for every ¢t € [0,T]. Property (357) follows from
(297); (358) from (308) and (341); (360) from (332); (359) from (296); and (361) from
Proposition 31 and (353).

Let u be the function introduced in (337). Then (362) follows from elliptic regularity
([39, Theorem 9.3)), since h(t,-) € C31=1/Pi([a(t), B(t)]) for a.e. t € [0,T] by (358).
In turn, by taking variations in (337), we obtain that (363) holds.
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Finally, considering the functions s, &, 64, 03, and ¢ introduced in (345), (346),
(347), and (356), respectively, we have that (364) and (365) follow from Theorem 46
and Remark 9 , while (366) follows from Theorem 48 and Remark 10. O
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