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Abstract

This paper addresses a two-dimensional sharp interface variational model for
solid-state dewetting of thin films with surface energies, introduced by Wang,
Jiang, Bao, and Srolovitz in [1]. Using the H−1-gradient flow structure of the
evolution law, short-time existence for a surface diffusion evolution equation with
curvature regularization is established in the context of epitaxially strained two-
dimensional films. The main novelty, as compared to the study of the wetting
regime, is the presence of moving contact lines.
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1 Introduction

Understanding the dewetting process and its underlying mechanisms is essential for
controlling the morphology and properties of thin films, which have many applica-
tions in microelectronics, optics, and other fields (see [2]). This type of dewetting is
distinct from liquid dewetting and is primarily driven by surface diffusion-controlled
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mass transport at temperatures below the melting point of the film. The move-
ment of the contact line, where the film, substrate, and vapor phases meet, plays
a crucial role in this process. Mathematically modeling the morphology evolution of
solid-state dewetting involves treating it as a surface-tracking problem. The mini-
mization of interfacial energy guides the process and consists of a combination of
surface diffusion-controlled mass transport and the movement of the contact line.
While moving contact line problems have been extensively studied in fluid mechan-
ics, incorporating surface diffusion-based geometric evolution equations with moving
contact lines presents significant challenges in materials science, applied mathematics,
and scientific computing.

This paper studies a two-dimensional sharp interface variational model for sim-
ulating solid-state dewetting of thin films with surface energies, proposed by Wang,
Jiang, Bao, and Srolovitz in [1], (see also [3]). The morphology evolution is driven
by surface diffusion and contact points migration, coupled with elastic deformation.
We restrict our consideration to a single island whose profile is given by a function
h : [α, β] → [0,∞), where α and β are the contact points, h(α) = h(β) = 0, and
h(x) > 0 for every x ∈ (α, β). The region occupied by the island is

Ωh := {(x, y) ∈ R2 : α < x < β, 0 < y < h(x)} .

We assume that the region R×(−∞, 0] is filled by a rigid substrate and (R×(0,∞))\Ωh
by a vapor.

The elastic displacement within the island is described by a function u : Ωh → R2,
which satisfies the boundary condition

u(x, 0) = (e0x, 0) for x ∈ (α, β) . (1)

The parameter e0 6= 0 reflects the mismatch between the crystalline structures of the
thin film and the substrate. The underlying energy is

W(u,Ωh) + γ length(Γh)− γ0(β − α) +
ν0

2

∫
Γh

κ2ds , (2)

where W(u,Ωh) is the linearized elastic energy of the displacement u, Γh is the graph
of h, κ is the curvature, and s is the arclength parameter on Γh. The constant γ =
γFV > 0 is the surface energy density between film and vapor, while γ0 = γV S −
γFS , where γV S is the surface energy density between vapor and substrate, and γFS
between film and substrate. The constant ν0 > 0 is a small parameter in the curvature
regularization, which is commonly used in the literature ([4], [5]). The dewetting regime
(Volmer–Weber) is characterized by the inequality γ > γ0, which favors the exposure
of the substrate.

We will assume that at each time the displacement u satisfies the elastic equilibrium
problem on Ωh with natural boundary conditions on Γh and the Dirichlet boundary
condition (1) in the rest of the boundary.

The time evolution of (α, β, h) is obtained as gradient flow of the energy (2) with
the area constraint |Ωh| = A0 > 0, where for the dynamics of h we use a type of
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H−1(Γh) norm (see [6], [7]). To describe the equations of this evolution system, we
introduce the chemical potential ζ defined in terms of the arclength parameter s of
Γh by

ζ = −γκ+ ν0

(
∂ssκ+

κ3

2

)
+ W̃ , (3)

where W̃ is the value of the elastic energy density of u at the point of Γh corresponding
to s.

The equation for h is given by

Ṽ = ρ0∂ssζ on Γh , (4)

where Ṽ denotes the normal velocity of the time dependent curve Γh at the point
corresponding to s and ρ0 > 0 is a material constant.

The equations for the contact points migration are

σ0α̇ = γ cos θα − γ0 + ν0∂sκα sin θα , (5)

σ0β̇ = −γ cos θβ + γ0 − ν0∂sκβ sin θβ ,

where σ0 > 0 is a material constant, the dot denotes the time derivative, θα and θβ
are the oriented angles between the x-axis and the tangent to Γh at (α, 0) and (β, 0),
both oriented with increasing values of x, while ∂sκα and ∂sκβ are the derivatives
with respect to s of the curvature κ of Γh at the values of s corresponding to (α, 0)
and (β, 0). Observe that if we neglect the curvature regularization, that is, we take
ν0 = 0, then the resulting equations reduce to the usual Young’s law ([8], [9], [2]).

The main result of this paper is that for every initial condition (α0, β0, h0) there
exists a small time T > 0 such that the evolution equations (4) and (5) admit a weak
solution on [0, T ]. Our approach does not allow us to obtain the uniqueness of solutions.

The existence proof relies on a minimizing movements argument: we consider a
time discretization and construct an approximate solution via incremental minimum
problems involving the energy (2). While this approach is not novel for epitaxial
growth (see [10], [11], [12]), the major challenge here is that the domain Ωh has
evolving corners. This requires a delicate W 2,p(Ωh) estimate of the solution for the
Lamé system, with a precise dependence on the time step of the discretization. This
estimate plays a central role in the study of the convergence of the discretized solutions
for the generalized Young’s law (5). We refer to [13] for a stress-driven grain boundary
diffusion problem, where the analysis of the singularities of the solutions to the Lamé
system near triple junctions plays a crucial role.

There is an extensive body of literature in two and three dimensions for the static
problem both in the wetting (γ < γ0) and dewetting (γ > γ0) regimes. We refer to
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23],[24], [25], [26], [27], [28], [29], and the
references therein for the wetting regime; and [8], [30] for the dewetting regime. We
also refer to [31] for a study of the Lamé system in the presence of cracks.

For the evolution case in the wetting regime, we refer to [10], [11], [32], [33], [12],
[34]. Observe that in the papers [32], [33] the curvature regularization is omitted.
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While moving contact line problems have been studied in the fluid mechanics
community (see, e.g., [35],[36], [37] and the references therein), to our knowledge our
work is the first to prove the generalized Young’s law in a problem involving elasticity.

2 Preliminaries

Throughout this paper, we fix the physical parameters γ, γ0, σ0, A0, e0 ∈ R, with
γ > 0, γ > γ0, σ0 > 0, A0 > 0, e0 6= 0, the Lamé coefficients λ and µ, with µ > 0 and
λ + µ > 0, and the regularizing parameters L0 ≥ 1 and ν0 > 0. We renormalize the
parameter ρ0 in (4) to be one. We use standard notation for Lebesgue and Sobolev
spaces, as well as for spaces of Hölder continuous and differentiable functions.

We introduce the class of admissible surface profiles, As, as the set of all (α, β, h)
such that α < β, h ∈ H2((α, β)) ∩H1

0 ((α, β)), with h ≥ 0 in (α, β), Liph ≤ L0, and∫ β

α

h(x) dx = A0 . (6)

Moreover, if (α, β, h) ∈ As then ȟ is the extension of h by zero outside of [α, β], and
we set

H(x;α, β, h) :=

∫ x

−∞
ȟ(ρ) dρ =

∫ x

α

ȟ(ρ) dρ , x ∈ R , (7)

and
Ωh := {(x, y) ∈ R2 : α < x < β, 0 < y < h(x)} . (8)

Furthermore, the admissible class Ae(α, β, h) of elastic displacements in Ωh is defined
as

Ae(α, β, h) := {u ∈ H1(Ωh;R2) : u(x, 0) = (e0x, 0) for a.e. x ∈ (α, β)} . (9)

Finally the admissible class A for the total energy is

A := {(α, β, h, u) : (α, β, h) ∈ As, u ∈ Ae(α, β, h)} . (10)

In what follows we will use the result below.
Lemma 1. We have

β − α ≥
√

2A0

L0
(11)

for every (α, β, h) ∈ As.

Proof. Since h(α) = h(β) = 0 and Liph ≤ L0, we have h(x) ≤ L0
β−α

2 for every
x ∈ (α, β). Hence, by (6),

A0 =

∫ β

α

h(x) dx ≤ L0

2
(β − α)2,

which concludes the proof.
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For (α, β, h) ∈ As we define the surface energy as

S(α, β, h) := γ

∫ β

α

√
1 + (h′(x))2dx− γ0(β − α) +

ν0

2

∫ β

α

(h′′(x))2

(1 + (h′(x))2)5/2
dx . (12)

Note that since γ > 0 and γ > γ0, we have

γ

∫ β

α

√
1 + (h′(x))2dx− γ0(β − α) ≥ (γ − γ0)(β − α) ≥ 0 (13)

and so
S(α, β, h) ≥ 0 . (14)

For (α, β, h) ∈ As and u ∈ Ae(α, β, h) we define the elastic energy as

E(α, β, h, u) :=

∫
Ωh

W (Eu(x, y)) dxdy , (15)

where W : R2×2 → [0,∞) is given by

W (ξ) :=
1

2
Cξ · ξ , with Cξ := µ(ξ + ξT ) + λ(tr ξ)I , (16)

where µ, λ ∈ R are the Lamé coefficients and I is the 2× 2 identity matrix. Note that
Cξ = Cξsym ∈ R2×2

sym for every ξ ∈ R2×2, where ξsym := (ξ + ξT )/2.
We assume that µ > 0 and λ+ µ > 0 so that there exists a constant CW > 0 such

that
1

CW
|ξ|2 ≤W (ξ) ≤ CW |ξ|2 (17)

for all ξ ∈ R2×2
sym.

In order to study the incremental problem, we introduce the following functionals.
Given τ > 0 and (h0, α0, β0) ∈ As, for every (h, α, β) ∈ As we define

Tτ (α, β, h;α0, β0, h0) :=
1

2τ

∫
R

(H−H0)2
√

1 + ((ȟ0)′)2dx+
σ0

2τ
(α−α0)2+

σ0

2τ
(β−β0)2,

(18)
where we abbreviate

H(x) := H(x;α, β, h) , H0(x) := H(x;α0, β0, h0) , (19)

and H is given in (7). Observe that

1

2τ

∫
R

(H −H0)2
√

1 + ((ȟ0)′)2dx =
1

2τ

∫ max{β,β0}

min{α,α0}
(H −H0)2

√
1 + ((ȟ0)′)2dx (20)

since by construction and (6), H −H0 = 0 for x /∈ (min{α, α0},max{β, β0}).
The existence of a minimizer for the incremental problem will be a consequence of

the following result.
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Theorem 2. For every τ > 0 and every (α0, β0, h0) ∈ As there exists a minimizer
(α, β, h, u) ∈ A of the total energy functional

F0(α, β, h, u) := S(α, β, h) + E(α, β, h, u) + Tτ (α, β, h;α0, β0, h0) . (21)

Moreover, there exists a constant C > 0, depending only on the structural parameters
A0, e0, λ, µ, and L0, such that

‖u‖H1(Ωh) ≤ C (22)

for every minimizer (α, β, h, u) of F0 in A.
The proof of the theorem relies on the following Korn’s inequality.

Lemma 3. Let (α, β, h) ∈ As, let Ωh be as in (8), and let 1 < p < ∞. Then there
exists a constant C > 0, depending only on p and L0, such that∫

Ωh

|∇u|p dxdy ≤ C
∫

Ωh

|Eu|p dxdy + Cep0A0

for every u ∈W 1,p(Ωh;R2) such that u(x, 0) = (e0x, 0) for x ∈ (α, β) (in the sense of
traces).

Proof. By a translation we can assume that α = 0. Define v(x, y) := u(x, y)− (e0x, 0)
in Ωh and v := 0 in (0, β)× (0,−∞), and

w(x, y) = v(βx, βy)

for (x, y) ∈ Dhβ , where

Dhβ := {(x, y) ∈ R2 : 0 < x < 1 , y < hβ(x)}

and hβ(x) := h(βx)/β. Note that

|hβ(x1)− hβ(x2)| ≤ 1

β
|h(βx1)− h(βx2)| ≤ L0|x1 − x2|

for all x1, x2 ∈ (0, 1). Applying Theorem 4.2 in [23] to w we can find a constant C
depending only on p and L0 such that∫

Dhβ

|∇w|p dxdy ≤ C
∫
Dhβ

|Ew|p dxdy .

By the change of variables (x′, y′) = (βx, βy) we have∫
Ωh

|∇v|p dxdy ≤ C
∫

Ωh

|Ev|p dxdy ,
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where we used the fact that v = 0 in (0, β) × (−∞, 0). Recalling that v = u − w0, it
follows that∫

Ωh

|∇u|p dxdy ≤ C
∫

Ωh

|Eu|p dxdy + Cep0L2(Ωh) = C

∫
Ωh

|Eu|p dxdy + Cep0A0

by (6).

Proof of Theorem 2. Let {(αn, βn, hn, un)}n be a minimizing sequence in A for (21).
Then there exists a constant M > 0 such that

F0(αn, βn, hn, un) ≤M (23)

for all n. Since all the terms in F0 are nonnegative (see (14)), by (18) and (23) there
exist two constants Ml ∈ R and Mr ∈ R such that

Ml ≤ αn < βn ≤Mr (24)

for every n. Hence, up to a subsequence, not relabeled, we can assume that

αn → α and βn → β (25)

as n→∞, with α ≤ β. Since Liphn ≤ L0 for every n, the extension ȟn by zero of hn
outside of [αn, βn] satisfies Lip ȟn ≤ L0. Using (25), up to a further subsequence, not
relabeled, there exists a nonnegative Lipschitz continuous function ȟ : R → R such
that ȟn → ȟ uniformly and ȟ = 0 outside (α, β). In particular this implies that the
restriction h of ȟ to (α, β) belongs to H1

0 ((α, β)) and that (6) is satisfied. Since A0 > 0
we deduce that α < β. By (12), (23), and the fact that Lip ȟn ≤ L0 for every n,

sup
n

∫ βn

αn

|h′′n|2dx <∞ . (26)

By (25) this implies that h ∈ H2((α, β)), and so (h, α, β) ∈ As and h ∈ C1([α, β]).
Moreover, since ȟ = 0 outside (α, β), from (25) and (26) we deduce that

ȟ′n(x)→ ȟ′(x) (27)

for every x ∈ R \ {α, β}.
By (15), (17), and (23),∫

Ωhn

|Eun(x, y)|2dxdy ≤MCW (28)

for every n. By Korn’s inequality (see Lemma 3)∫
Ωhn

|∇un|2 dxdy ≤ C
∫

Ωhn

|Eun|2 dxdy + Ce2
0A0 ≤ CMCW + Ce2

0A0 . (29)
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Since un(x, 0) = (e0x, 0) for x ∈ (α, β), by Poincaré’s inequality we find that∫
Ωhn

|un(x, y)|2 dxdy ≤ C (30)

where C > 0 is independent of n. By (29), (30), and a standard diagonal argument,
using the increasing sequence of sets Ωhε , where hε := (h−ε)∨0, we conclude that there
exist a subsequence, not relabeled, and a function u ∈ H1(Ωh;R2) such that un ⇀ u
weakly in H1(Ωhε ;R2) for every ε. Note that the trace of u satisfies u(x, 0) = (e0x, 0)
for a.e. x ∈ {h > 0}. In conclusion, we have shown that (h, u, α, β) ∈ A, where A is
given in (10).

Next we claim that

lim inf
n→∞

S(αn, βn, hn) ≥ S(α, β, h) , (31)

where S is given in (12). It is convenient to write

S(α, β, h) + γ0(Mr −Ml)

=

∫ Mr

Ml

g(ȟ(x))

√
1 + (ȟ′(x))2dx+

ν0

2

∫ β

α

(h′′(x))2

(1 + (h′(x))2)5/2
dx , (32)

where

g(y) :=

{
γ if y > 0 ,

γ0 if y = 0 ,

and similarly for S(αn, βn, hn) + γ0(Mr −Ml).
By (27), ȟ′n(x)→ ȟ′(x) for a.e. x ∈ R. Moreover,

lim inf
n→∞

g(ȟn(x)) ≥ g(ȟ(x))

for every x ∈ R, since ȟn → ȟ uniformly and g is lower semicontinuous in view of the
inequality γ > γ0. Therefore, by Fatou’s lemma we have

lim inf
n→∞

∫ Mr

Ml

g(ȟn(x))

√
1 + (ȟ′n(x))2dx ≥

∫ Mr

Ml

g(ȟ(x))

√
1 + (ȟ′(x))2dx . (33)

On the other hand for every [a, b] ⊂ (α, β), by (25), (26), and (27) we can apply a
weak-strong lower semicontinuity theorem (see [38, Theorem 2.3.1]) to get

lim inf
n→∞

∫ βn

αn

(h′′n(x))2

(1 + (h′n(x))2)5/2
dx ≥ lim inf

n→∞

∫ b

a

(h′′n(x))2

(1 + (h′n(x))2)5/2
dx

≥
∫ b

a

(h′′(x))2

(1 + (h′(x))2)5/2
dx .
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Taking the supremum over all [a, b] ⊂ (α, β), we obtain

lim inf
n→∞

∫ βn

αn

(h′′n(x))2

(1 + (h′n(x))2)5/2
dx ≥

∫ β

α

(h′′(x))2

(1 + (h′(x))2)5/2
dx .

Therefore, from (32) and (33) we deduce (31).
Now we prove that

lim inf
n→∞

E(αn, βn, hn, un) ≥ E(α, β, h, u) , (34)

where E is defined in (15). Fix an open set U b Ωh. Since un ⇀ u weakly in H1(U ;R2),
by (16) and (17) we have

lim inf
n→∞

∫
Ωhn

W (Eun(x, y)) dxdy ≥ lim inf
n→∞

∫
U

W (Eun(x, y)) dxdy

≥
∫
U

W (Eu(x, y)) dxdy

and letting U ↗ Ωh we obtain (34).
Finally, by (7), (19), (20), and (25), the fact that hn → h uniformly, it follows from

Lebesgue’s dominated convergence theorem that

lim
n→∞

Tτ (αn, βn, hn;α0, β0, h0) = Tτ (α, β, h;α0, β0, h0) .

This, together with (21), (31), and (34), allows us to conclude that

lim inf
n→∞

F0(αn, βn, hn, un) ≥ F0(α, β, h, u) .

Since (α, β, h, u) ∈ A and {(αn, βn, hn, un)}n is a minimizing sequence, we deduce
that (α, β, h, u) is a minimizer.

The proof of (22) can be obtained from Korn’s and Poincaré’s inequalities, arguing
as in the estimates for the minimizing sequence.

3 Euler–Lagrange Equations

Given (α, β, h) ∈ As and α ≤ a < b ≤ β, we define

Ωa,bh := {(x, y) ∈ R2 : a < x < b , 0 < y < h(x)} , (35)

Theorem 4 (Euler-Lagrange equations). Let τ > 0, let (α0, β0, h0) ∈ As, and let
(α, β, h, u) ∈ A be a minimizer of the total energy functional

F0(α, β, h, u) := S(α, β, h) + E(α, β, h, u) + Tτ (α, β, h;α0, β0, h0) . (36)
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Assume that
Liph < L0 and h(x) > 0 for all x ∈ (α, β) . (37)

Then

h ∈ C4,1((α, β)) ∩ C5((α, β) \ {α0, β0}) , (38)

u ∈ C3,1/2(Ω
a,b

h ;R2) for every α < a < b < β , (39)

and u satisfies the elliptic boundary value problem
−divCEu(x, y) = 0 in Ωh ,

CEu(x, h(x))νh(x) = 0 for x ∈ (α, β) ,

u(x, 0) = (e0x, 0) for x ∈ (α, β) ,

(40)

where νh(x) denotes the outer unit normal to ∂Ωh at (x, h(x)). Moreover,

1

τ
(h− h0) =

[
− γ 1

J0

(h′
J

)′′
+ ν0

1

J0

(h′′
J5

)′′′
+

5

2
ν0

1

J0

(h′(h′′)2

J7

)′′
+

1

J0
W ′
]′
, (41)

for every x ∈ (α, β) \ {α0, β0}, where

J(x) :=
√

1 + (h′(x))2 , J0(x) :=

√
1 + ((ȟ0)′(x))2 ,

and W (x) := W (Eu(x, h(x))) . (42)

Proof. Step 1: We first observe that standard variations with respect to u in Ωh lead
to the weak form of (40). Since h ∈ C1,1/2((α, β)) and h > 0 in (α, β), by elliptic
regularity (see [39, Theorem 9.3]), we have that

u ∈ C1,1/2(Ω
a,b

h ;R2) for every α < a < b < β .

Fix α < a < b < β and extend u to a function defined on Ωh∪([a, b]×R), still denoted
by u, such that u ∈ C1([a, b]×R;R2). Let ϕ ∈ C∞c ((α, β)) be such that suppϕ ⊂ [a, b]
and ∫ β

α

ϕ(x) dx = 0 . (43)

Since Liph < L0 and h is bounded away from zero on [a, b], we have that (α, β, h +
εϕ) ∈ As and h(x) + εϕ(x) > 0 for all x ∈ (α, β), if |ε| is sufficiently small. In turn,
(α, β, h + εϕ, u|Ωh+εϕ) ∈ A. Taking the derivative with respect to ε of F0(α, β, h +

εϕ, u|Ωh+εϕ) at ε = 0, we obtain

γ

∫ β

α

h′(x)ϕ′(x)

(1 + (h′(x))2)1/2
dx+ ν0

∫ β

α

h′′(x)ϕ′′(x)

(1 + (h′(x))2)5/2
dx
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− 5

2
ν0

∫ β

α

h′(x)(h′′(x))2ϕ′(x)

(1 + (h′(x))2)7/2
dx+

∫ β

α

W (Eu(x, h(x)))ϕ(x) dx (44)

+
1

τ

∫
R

(H(x)−H0(x))

√
1 + ((ȟ0)′(x))2

(∫ x

−∞
ϕ(s) ds

)
dx = 0 .

Since ϕ belongs to C∞c (R) and satisfies (43), using integration by parts the integral
over R becomes

−1

τ

∫ β

α

(∫ x

−∞
(H(s)−H0(s))

√
1 + ((ȟ0)′(s))2 ds

)
ϕ(x) dx . (45)

This allows us to rewrite (44) as∫ β

α

(Ah′′ϕ′′ +Bh′ϕ′ + fϕ) dx = 0

for all ϕ ∈ C∞c ((α, β)) with suppϕ ⊂ [a, b] satisfying (43), where

A(x) :=
ν0

(1 + (h′(x))2)5/2
, (46)

B(x) := γ
1

(1 + (h′(x))2)1/2
− 5

2
ν0

(h′′(x))2

(1 + (h′)2)7/2
, (47)

f(x) := W (Eu(x, h(x)))− 1

τ

∫ x

α

(H(s)−H0(s))

√
1 + ((ȟ0)′(s))2ds . (48)

By introducing a Lagrange multiplier m for (43), we obtain∫ b

a

(Ah′′ϕ′′ +Bh′ϕ′ + fϕ) dx = m

∫ b

a

ϕdx

for all ϕ ∈ C∞c ((a, b)).
Note that A ∈ C0,1/2([α, β]), A ≥ a0 for some constant a0 > 0, B ∈ L1((α, β)),

and f ∈ C0([a, b]) since u ∈ C1([a, b]× R). Let us fix x0 ∈ (a, b). Integrating by parts
once we get ∫ b

a

(Ah′′ϕ′′ + (Bh′ − Fm)ϕ′) dx = 0 , (49)

where

Fm(x) :=

∫ x

x0

(f(s)−m) ds . (50)

For every ψ ∈ C∞c ((a, b)) with
∫ b
a
ψ dx = 0, setting ϕ(x) :=

∫ x
a
ψ ds, from (49) we

obtain ∫ b

a

(Ah′′ψ′ + (Bh′ − Fm)ψ) dx = 0 .

11



By the arbitrariness of ψ we obtain

A(x)h′′(x) =

∫ x

x0

(B(s)h′(s)− Fm(s)) ds+ p1 (51)

for all x ∈ [a, b], where p1 is a polynomial of degree one associated with the constraint∫ b
a
ψ dx = 0. Observe that since A, B, and Fm are independent of a and b, with α <

a ≤ x0 ≤ b < β, so is p1, hence (51) holds for all x ∈ (α, β). Since A ∈ C0,1/2([α, β]),
A ≥ a0, B ∈ L1((α, β)), and Fm ∈ C1((α, β)), (51) implies that h′′ ∈ C0((α, β)). In
turn, this gives A ∈ C1((α, β)) and B ∈ C0((α, β)). Hence, the right-hand side of (51)
is C1((α, β)), therefore h′′ ∈ C1((α, β)). In turn, A ∈ C2((α, β)) and B ∈ C1((α, β))
by (46) and (47), and so h′′ ∈ C2((α, β)) by (51).

By elliptic regularity ([39, Theorem 9.3]) it follows that u ∈ C3,1/2(Ω
a,b

h ) for every
α < a < b < β, which gives (39). In turn, (40) hold in the classical sense.

By (39) and (48) we have f ∈ C0,1((α, β)) ∩ C1((α, β) \ {α0, β0}). Hence, Fm ∈
C1,1((α, β)) ∩ C2((α, β) \ {α0, β0}) by (50). Moreover, again by (46) and (47), A ∈
C3((α, β)) and B ∈ C2((α, β)) and, by (51), h′′ ∈ C2,1((α, β))∩C3((α, β) \ {α0, β0}),
which proves (38).

Step 2: We prove (41). Fix α < a < b < β and let ϕ ∈ C∞c ((α, β)) be such that
suppϕ ⊂ [a, b] and (43) holds. Define

H(x) :=

∫ x

−∞
(H(s)−H0(s))

√
1 + ((ȟ0)′(s))2 ds , (52)

By (42), (44), and (45), we have

γ

∫ b

a

h′ϕ′

J
dx+ ν0

∫ b

a

h′′ϕ′′

J5
dx− 5

2
ν0

∫ b

a

h′(h′′)2ϕ′

J7
dx+

∫ b

a

Wϕdx− 1

τ

∫ b

a

Hϕdx = 0 ,

where J is defined in (42). We integrate by parts once the integrals containing ϕ′ and
twice the integral containing ϕ′′ to obtain

−γ
∫ b

a

(h′
J

)′
ϕdx+ ν0

∫ b

a

(h′′
J5

)′′
ϕdx+

5

2
ν0

∫ b

a

(h′(h′′)2

J7

)′
ϕdx

+

∫ b

a

Wϕdx− 1

τ

∫ b

a

Hϕdx = 0 ,

By the arbitrariness of ϕ ∈ C∞c ((a, b)) satisfying (43) we obtain

−γ
(h′
J

)′
+ ν0

(h′′
J5

)′′
+

5

2
ν0

(h′(h′′)2

J7

)′
+W − 1

τ
H = m (53)

where m is a Lagrange multiplier due to (43). Using (52) and differentiating

−γ
(h′
J

)′′
+ ν0

(h′′
J5

)′′′
+

5

2
ν0

(h′(h′′)2

J7

)′′
+W

′ − 1

τ
(H −H0)J0 = 0 ,

12



where J0 is defined in (42). Dividing by J0 and differentiating once again we obtain
(41).

Remark 1. From the special form of C, it follows that

µ∆u+ (λ+ µ)∇ div u = 0 in Ωh ,

2µ(Eu)νh + λ(div u)νh = 0 on Γh ,

where Γh is the graph of h in (α, β) and νh is the outward unit normal.
Given (α, β, h) ∈ As, α ≤ a < b ≤ β, and η > 0 we define

Ωa,bh,η := {(x, y) ∈ R2 : a < x < b , h(x)− η < y < h(x)} .

Theorem 5. Let (α, β, h) ∈ As, let u ∈ Ae(α, β, h) be the minimizer of the functional
E(α, β, h, ·) defined in (15), let δ > 0, η > 0, and M > 1. Assume that there exist
α < a < b < β, with b− a > 4δ, such that

h(x) ≥ 2η for all x ∈ [a, b] , (54)∫ β

α

|h′′(x)|2dx ≤M . (55)

Then there exists a constant C = C (δ, η,M) > 0 (independent of α, β, a, b, h, h0,
and τ) such that

‖u‖
C1,1/2(Ω

a+δ,b−δ
h,η )

≤ C . (56)

Proof. In what follows C denotes a positive constant whose value changes from formula
to formula and which depends only on δ, η, M and the fixed parameters λ, µ, γ, γ0, σ0,
A0, e0, L0, and ν0 of the problem. Let Ω−h := {(x, y) ∈ R2 : α < x < β , −h(x) < y <
0} and let v be the function defined by v(x, y) := u(x, y+h(x)) for every (x, y) ∈ Ω−h.
Then v ∈ H1(Ω−h;R2) and by (22) we have

‖v‖H1(Ω−h) ≤ C . (57)

It can be shown that v is a weak solution to the boundary value problem{
div(A∇v) = 0 in Ω−h,
(A∇v)e2 = 0 on (α, β)× {0} , (58)

where

(Aξ)11 = 2µ(ξ11 − ξ12h
′) + λ(ξ11 − ξ12h

′ + ξ22) ,

(Aξ)12 = −2µ(ξ11 − ξ12h
′)h′ + λ(ξ11 − ξ12h

′ + ξ22)h′ + µ (ξ12 + ξ21 − ξ22h
′) , (59)

(Aξ)21 = µ (ξ21 + ξ12 − ξ22h
′) ,

(Aξ)22 = −µ (ξ21 + ξ12 − ξ22h
′)h′ + 2µξ22 + λ(ξ11 + ξ22 − ξ12h

′) .
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Define Ωa,b−h := {(x, y) ∈ R2 : a < x < b , −h(x) < y < 0}. Since h ∈ C1,1/2([α, β])
in view of (55), we have that

‖A‖
C0,1/2(Ω

a,b
−h)
≤ C . (60)

Moreover, recalling that C satisfies the Legendre–Hadamard condition and the latter is
preserved by changes of variables, we deduce that A satisfies the Legendre–Hadamard
condition. Hence, we are in a position to apply Theorem 9.3 in [39] in each rectangle
of the form (x− 2δ, x+ 2δ)× (−2η, 0) with a+ 2δ ≤ x ≤ b− 2δ. Using (57) we obtain
that v ∈ C1,1/2([x − δ, x + δ] × [−η, 0];R2) with ‖v‖C1,1/2([x−δ,x+δ]×[−η,0]) ≤ C. This
implies that ‖v‖C1,1/2([a+δ,b−δ]×[−η,0]) ≤ C and, in turn, (56).

Let us define

Bτ (H,H0, α, α0, β, β0) := 1 +
1

τ

∫
R
|H −H0| dx+

1

τ
|α− α0|+ 1

τ
|β − β0| , (61)

where H and H0 are defined in (19).
Theorem 6. Under the assumptions of Theorem 4, suppose in addition that there
exist 0 < η0 < 1, 0 < η1 < 1, and M > 1 such that

2η0 ≤ h′(α) , h′(β) ≤ −2η0 , (62)

h(x) ≥ 2η1 for all x ∈ [α+ δ0, β − δ0] , (63)∫ β

α

|h′′(x)|2dx ≤M , (64)

where
δ0 := η2

0/(4M) < 1/4 . (65)

Then W (Eu(·, h(·))) ∈ L1((α, β)), h ∈ W 4,1((α, β)), and there exists a constant c0 =
c0(η0, η1,M) > 1 (independent of α, β, h, h0, and τ) such that∫ β

α

W (Eu(x, h(x))) dx ≤ c0Bτ (H,H0, α, α0, β, β0) , (66)

‖h′′‖L∞((α,β)) ≤ c0Bτ (H,H0, α, α0, β, β0) , (67)

‖h′′′‖L∞((α,β)) ≤ c0Bτ (H,H0, α, α0, β, β0)2, (68)

‖h′′′‖L1((α,β)) ≤ c0Bτ (H,H0, α, α0, β, β0) , (69)

‖h(iv)‖L1((α,β)) ≤ c0Bτ (H,H0, α, α0, β, β0)2. (70)

Unless otherwise indicated, in the proofs of the rest of the paper C denotes a
constant depending only on the constants η0, η1, and M of the previous theorem (and
on the structural constants e0, λ, µ, and L0, and possibly on the exponents considered
in the statements). The value of C can change from formula to formula.

In the proof of Theorem 6 we use the following estimate.
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Lemma 7. Let η0 > 0, M > 0, α < β, and h ∈ H2((α, β))∩H1
0 ((α, β)). Assume that

2η0 ≤ h′(α) , h′(β) ≤ −2η0 , (71)∫ β

α

|h′′(x)|2dx ≤M . (72)

Then
β − α ≥ 16η2

0/M . (73)

Proof. By the fundamental theorem of calculus and by (71) for every x ∈ (α, β) we
have

h′(x) = h′(α) +

∫ x

α

h′′(s) ds ≥ 2η0 −
∫ x

α

|h′′(s)| ds . (74)

We claim that there exists xα ∈ (α, β) such that∫ xα

α

|h′′(s)| ds = 2η0 and

∫ x

α

|h′′(s)| ds < 2η0 for x ∈ (α, xα) . (75)

If not, by (74) we would have h′(x) > 0 for every x ∈ (α, β), which contradicts the
assumption h ∈ H1

0 ((α, β)) and proves the claim. By (74) and (75) we have h′(x) > 0
for every x ∈ (α, xα).

In the same way we prove that there exists xβ ∈ (α, β) such that∫ β

xβ

|h′′(s)| ds = 2η0 and h′(x) < 0 for x ∈ (xβ , β) . (76)

Since xα ≤ xβ , from (75) and (76) we deduce that

4η0 ≤
∫ β

α

|h′′(s)| ds .

By Hölder’s inequaliy we get

4η0 ≤M1/2(β − α)1/2 ,

which gives (73).

Proof of Theorem 6. Step 1: A Variation of (α, β, h, u). Extend h to a function
h ∈ H2((α− 1, β)) by setting h(x) := h′(α)(x− α) for x ∈ (α− 1, α]. Using Hölder’s
inequality for x ∈ (α, β) we have

h′(x) ≥ h′(α)− (x− α)1/2

(∫ x

α

|h′′(s)|2ds
)1/2

≥ 2η0 − (x− α)1/2M1/2 ≥ η0 (77)

provided x− α ≤ η2
0/M .
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Then, using also the fact that h(x) := h′(α)(x− α) for x ∈ (α− 1, α], we have

η0 ≤ h′(x) ≤ L0 for every x ∈ [α− δ0, α+ 2δ0] . (78)

Since h(α) = 0 and α+ 4δ0 < β by Lemma 7, we obtain

η0(x− α) ≤ h(x) for every x ∈ [α, α+ 4δ0] , (79)

|h(x)| ≤ L0|x− α| for every x ∈ [α− δ0, α+ 2δ0] . (80)

Take ϕ0 ∈ C∞(R) with ϕ0(0) = 1, ϕ0(x) ≥ 1/2 for every x ∈ [−δ0/2, δ0/2],∫ δ0
0
ϕ0 dx = 0, and suppϕ0 ⊂ (−δ0, δ0). Define

ϕ(x) := ϕ0(x− α) , x ∈ R . (81)

Let ε0 := min{1, 1
2δ0η0/‖ϕ0‖C1}. Then for every ε ∈ R with |ε| ≤ ε0 we have

h′(x) + εϕ′(x) ≥ η0/2 for all x ∈ [α− δ0, α+ δ0] , (82)

h(α− δ0) + εϕ(α− δ0) < 0 < h(α+ δ0) + εϕ(α+ δ0) .

This implies that there exists a unique αε such that

αε ∈ (α− δ0, α+ δ0) and h(αε) + εϕ(αε) = 0 . (83)

Moreover, by the Implicit Function Theorem the function ε 7→ αε is of class C1 and
so we can differentiate the previous identity to get

dαε
dε

= − ϕ(αε)

h′(αε) + εϕ′(αε)
. (84)

By (82), ∣∣∣∣dαεdε
∣∣∣∣ ≤ 2‖ϕ0‖C0

η0
for all ε ∈ [−ε0, ε0] ,

and, since α0 = α, this implies that

|αε − α| ≤
2‖ϕ0‖C0

η0
|ε| . (85)

Since ϕ0(x) ≥ 1/2 for |x| ≤ δ0/2, we have
ϕ(x) ≥ 1/2 for |x−α| ≤ δ0/2. This, together with (85) implies that ϕ(αε) ≥ 1

2 for
|ε| ≤ ε1, where ε1 := min{δ0η0/(4‖ϕ0‖C0), ε0}. In turn, by (82) and (84),

dαε
dε

< 0 for |ε| ≤ ε1 . (86)

Observe that (82) implies that h + εϕ > 0 in (αε, α + δ0). On the other hand
h+ εϕ = h ≥ 0 on [α+ δ0, β].
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In order to satisfy the area constraint (6) we fix a function ψ0 ∈ C∞(R) such that

suppψ0 ⊂ (δ0, 2δ0) and
∫ 2δ0
δ0

ψ0 dx = 1, and we define ψ(x) := ψ0(x − α), x ∈ R.

Consider the function hε ∈ H2((αε, β)) ∩H1
0 ((αε, β)) defined by

hε(x) := h(x) + εϕ(x) + ωεψ(x) , (87)

where ωε ∈ R is the unique constant such that∫ β

αε

hε dx = A0 . (88)

Since
∫ β
α
ϕdx = 0, from (6) and (88) it follows that

∫ β

αε

(h(x) + εϕ(x) + ωεψ(x)) dx = A0 =

∫ β

α

(h(x) + εϕ(x)) dx .

Hence, using the fact that
∫ β
αε
ψ dx = 1, we get

∫ β

α

(h(x) + εϕ(x)) dx+

∫ α

αε

(h(x) + εϕ(x)) dx+ ωε =

∫ β

α

(h(x) + εϕ(x)) dx ,

and so
ωε
ε

= −1

ε

∫ α

αε

h(x) dx−
∫ α

αε

ϕ(x) dx .

To estimate the right-hand side we use (85) to get∣∣∣∣∫ α

αε

ϕ(x) dx

∣∣∣∣ ≤ 2‖ϕ0‖2C0

η0
|ε| ,

while, using also (80), we obtain∣∣∣∣∫ α

αε

h(x) dx

∣∣∣∣ ≤ 4‖ϕ0‖2C0

η2
0

ε2(L0 + 21/2δ
1/2
0 M1/2) .

Combining these inequalities we have∣∣∣ωε
ε

∣∣∣ ≤ C|ε| . (89)

Let ε2 := min{ η0
2‖ϕ0‖C1+2C‖ψ0‖C1

, ε1}. We claim that for all |ε| ≤ ε2 we have

h′ε ≥ η0/2 in (αε, α+ 2δ0) . (90)
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Fix |ε| ≤ ε2. Then by (78),

h′ε = h′+εϕ′+ωεψ
′ ≥ η0−|ε|‖ϕ0‖C1−Cε2‖ψ0‖C1 ≥ η0−|ε|(‖ϕ0‖C1+C‖ψ0‖C1) ≥ η0/2 ,

which proves the claim.
Since suppψ ⊂ (α+ δ0, α+ 2δ0) and αε ∈ (α− δ0, α+ δ0), we have ψ(αε) = 0. By

(83) and (87), this gives hε(αε) = 0, hence (90) implies that hε > 0 in (αε, α + 2δ0).
Moreover, since suppϕ ⊂ (α− δ0, α+ δ0) and suppψ ⊂ (α+ δ0, α+ 2δ0) we have that

hε = h on [α+ 2δ0, β] . (91)

We conclude that hε ≥ 0 in (αε, β). In turn, also by (88), (αε, β, hε) ∈ As.
Let U be the interior of the set Ωh ∪ ([α − δ0, β] × [−1, 0]) and let û : U → R2 be

the function defined by

û(x, y) :=

{
u(x, y) if (x, y) ∈ Ωh ,

(e0x, 0) if (x, y) ∈ [α− δ0, β]× [−1, 0] .

Since the two definitions match on [α, β]×{0}, we have û ∈ H1(U ;R2). Recalling that
U has Lipschitz boundary, we can extend û to a function defined on R2, still denoted
by û, such that û ∈ H1(R2;R2).

Hence, if we let uε be the restriction of û to Ωhε , we have uε(x, 0) = (e0x, 0) for
a.e. x ∈ (αε, β), which gives (αε, β, hε, uε) ∈ A.
Step 2: Evaluation of derivatives. We claim that

lim inf
ε→0

S(αε, β, hε)− S(α, β, h)

ε

≥ γ
∫ β

α

h′ϕ′√
1 + (h′)2

dx+ γ
√

1 + (h′(α))2
1

h′(α)
− γ0

1

h′(α)

+ ν0

∫ β

α

h′′ϕ′′

(1 + (h′)2)5/2
dx− 5

2
ν0

∫ β

α

h′(h′′)2ϕ′

(1 + (h′)2)7/2
dx . (92)

Since (αε, β, hε) ∈ As and ϕ(α) = 1, by (84), (87), and (89) we have

lim inf
ε→0

S(αε, β, hε)− S(α, β, h)

ε
= γ

∫ β

α

h′ϕ′√
1 + (h′)2

dx+ γ
√

1 + (h′(α))2
1

h′(α)
(93)

− γ0
1

h′(α)
+
ν0

2
lim inf
ε→0

Iε ,

where

Iε :=
1

ε

[∫ β

αε

(h′′ε )2

(1 + (h′ε)
2)5/2

dx−
∫ β

α

(h′′)2

(1 + (h′)2)5/2
dx

]
.
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Write

Iε =
1

ε

[∫ β

αε

(h′′ε )2

(1 + (h′ε)
2)5/2

dx−
∫ β

αε

(h′′)2

(1 + (h′)2)5/2
dx

]

+
1

ε

∫ α

αε

(h′′)2

(1 + (h′)2)5/2
dx =: Iε,1 + Iε,2 .

By (87) and (89),

lim
ε→0

Iε,1 = 2

∫ β

α

h′′ϕ′′

(1 + (h′)2)5/2
dx− 5

∫ β

α

h′(h′′)2ϕ′

(1 + (h′)2)7/2
dx . (94)

By (86), αε < α for ε > 0 and αε > α for ε < 0, provided |ε| ≤ ε2. This implies that

lim inf
ε→0

Iε,2 ≥ 0 .

From this inequality and from (93) and (94) we conclude that (92) holds. Since Liph ≤
L0, from (64), (65), and (73), we deduce that

lim inf
ε→0

S(αε, β, hε)− S(α, β, h)

ε

≥ −(γL0δ0 + ν0M
1/2δ

1/2
0 + (5/2)ν0L0M)‖ϕ0‖C2 − γ/(2η0) . (95)

For simplicity of notation we abbreviate

T 0(·, ·, ·) := Tτ (·, ·, ·;α0, β0, h0)

To evaluate d
dεT

0(αε, β, hε)
∣∣
ε=0

we define

Hε(x) :=

∫ x

αε

ȟε(ρ) dρ , Φ(x) :=

∫ x

α

ϕ̌(ρ) dρ , (96)

where ȟε and ϕ̌ are the extensions of hε and ϕ by zero outside (αε, β) and (α, β),

respectively. Since
∫ δ0

0
ϕ0 dx = 0 and suppϕ0 ⊂ (−δ0, δ0), we have

∫ β
α
ϕdx = 0, hence

Φ(x) = 0 for every x /∈ (α, β) . (97)

Observe that if α < x < β then αε < x < β for all |ε| sufficiently small, and so by
(84), (89), and the fact that h(α) = 0,

d

dε
Hε(x)

∣∣∣∣
ε=0

=
d

dε

∫ x

αε

(ĥ+ εϕ+ ωεψ) dρ

∣∣∣∣
ε=0

=

∫ x

α

ϕdρ = Φ(x) . (98)
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On the other hand, if x < α, then x < αε for all |ε| sufficiently small. Hence, Hε(x) = 0
and so d

dεHε(x)
∣∣
ε=0

= 0. Moreover, Hε(x) = A0 for x ≥ β by (88), and so again
d
dεHε(x)

∣∣
ε=0

= 0. By (97) it follows that (98) holds for all x ∈ R \ {α}.
By the regularity of h it follows from the Lebesgue dominated convergence theorem,

(18), (84), and (98) that

d

dε
T 0(αε, β, hε)

∣∣∣∣
ε=0

=
1

τ

∫
R

(H −H0)Φ

√
1 + ((ȟ0)′)2dx− σ0

τ
(α− α0)

1

h′(α)
(99)

≥ −(1 + L0)‖ϕ0‖C02δ0
1

τ

∫
R
|H −H0| dx− σ0

η0

1

τ
|α− α0| ,

where in the second inequality we used (62) and the fact that suppϕ0 ⊂ (−δ0, δ0).
Integrating by parts, and using (52), (96), and (97), we obtain∫

R
(H −H0)Φ

√
1 + ((ȟ0)′)2dx = −

∫ β

α

Hϕdx . (100)

Step 3: Proof of (66). In what follows C denotes a positive constant whose value
changes from formula to formula and which depends only on η0, η1, M , and the fixed
parameters λ, µ, γ, γ0, σ0, A0, e0, L0, and ν0 of the problem.

By Step 1, (αε, β, hε, uε) ∈ A and because (α, β, h, u) ∈ A is a minimizer of the
total energy functional F0, we have that

F0(αε, β, hε, uε)−F0(α, β, h, u) ≥ 0 .

Then

lim sup
ε→0−

F0(αε, β, hε, uε)−F0(α, β, h, u)

ε
≤ 0

and so, by (21), (95), and (99)) we have

lim sup
ε→0−

E(αε, β, hε, uε)− E(α, β, h, u)

ε
≤ CBτ (H,H0, α, α0, β, β0) . (101)

By (85), (86), and the fact that ε < 0 we have that α < αε < α + δ0/2 for all
−ε1 < ε < 0. Since

E(αε, β, hε, uε) =

∫ β

αε

(∫ hε(x)

0

W (Eû(x, y)) dy
)
dx ,

suppϕ ⊂ (α − δ0, α + δ0), and suppψ ⊂ (α + δ0, α + 2δ0), we have that hε = h in
(α+ 2δ0, β), and so for −ε1 < ε < 0 we can write

E(αε, β, hε, uε)− E(α, β, h, u)

ε
= −1

ε

∫ α+2δ0

αε

(∫ h(x)

hε(x)

W (Eû(x, y)) dy
)
dx
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−1

ε

∫ αε

α

(∫ h(x)

0

W (Eu(x, y)) dy
)
dx ≥ −1

ε

∫ α+2δ0

αε

(∫ h(x)

hε(x)

W (Eû(x, y)) dy
)
dx .

(102)

By (79) we have that h(x) ≥ η0 δ0/4 for all x ∈ [α + δ0/4, α + 4δ0]. Hence, we can
apply Theorem 5 to obtain that W (Eu(x, h(x))) ≤ C for all x ∈ [α + δ0/2, α + 2δ0].
By (87), this implies that

lim
ε→0−

1

ε

∫ α+2δ0

α+δ0/2

(∫ h(x)

hε(x)

W (Eû(x, y)) dy
)
dx = −

∫ α+2δ0

α+δ0/2

W (Eu(x, h(x)))ϕ(x) dx ≤ C.

(103)
Together with (101) and (102) this implies that

lim sup
ε→0−

(
− 1

ε

∫ α+δ0/2

αε

(∫ h(x)

hε(x)

W (Eû(x, y)) dy
)
dx
)
≤ CBτ (H,H0, α, α0, β, β0) .

(104)
Using the facts that ϕ ≥ 1/2 in (α, α + δ0/2) and suppψ ⊂ (α + δ0, α + 2δ0) we

obtain that hε = h+ εϕ ≤ h in (α, α+ δ0/2) for every −ε1 < ε < 0. Hence,

−1

ε

∫ h(x)

hε(x)

W (Eû(x, y)) dy ≥ 0

and

−1

ε
χ(αε,α+δ0/2)(x)

∫ h(x)

hε(x)

W (Eû(x, y)) dy →W (Eu(x, h(x)))ϕ(x)

for every x ∈ (α, α+ δ0/2). By Fatou’s lemma, the fact that ϕ ≥ 1/2 in (α, α+ δ0/2),
and (104),

1

2

∫ α+δ0/2

α

W (Eu(x, h(x))) dx ≤ lim inf
ε→0−

(
− 1

ε

∫ α+δ0/2

αε

(∫ h(x)

hε(x)

W (Eû(x, y)) dy
)
dx
)

≤ CBτ (H,H0, α, α0, β, β0) .

A similar argument gives the corresponding estimate over the interval [β−δ0/2, β].
To prove the estimate over the interval [α+ δ0/2, β− δ0/2], we apply Theorem 5 with
a = α + δ0/4, b = β − δ0/4, and δ = δ0/4. We observe that (54) is satisfied with
η = min{η0δ0/8, η1} thanks to (63), (79), and a similar estimate near β. By (17) and
(56) we obtain∫ β−δ0/2

α+δ0/2

W (Eu(x, h(x))) dx ≤ C ≤ CBτ (H,H0, α, α0, β, β0) ,

where we used the fact that 1 ≤ Bτ (H,H0, α, α0, β, β0).
Combining the inequalities on [α, α+ δ0/2], [α+ δ0/2, β − δ0/2], and [β − δ0/2, β]

we obtain (66).
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Step 4: Regularity of h. Observe that by (6) and (63), we have that β−α− 2δ0 ≤
A0/(2η1), and so

β − α ≤ A0/(2η1) + 2δ0 . (105)

Let us fix x0 ∈ (α+ δ0, β − δo). By (51) we have

A(x)h′′(x) =

∫ x

x0

(B(s)h′(s)− Fm(s)) ds+m1 (106)

for all x ∈ (α, β), where A, B, Fm are defined in (46), (47), and (50). In particular
we have

Fm(x) := F (x)−m(x− x0) , where F (x) :=

∫ x

x0

f(s) ds . (107)

By (66) we have that Fm ∈W 1,1((α, β)). Since A ∈ C0,1/2([α, β]), A ≥ ν0/(1+L2
0)5/2,

B ∈ L1((α, β)), and Fm ∈ C0([α, β]), (106) implies that h′′ ∈ C0([α, β]). In turn,
this gives A ∈ C1([α, β]) and B ∈ C0([α, β]) by (46) and (47). Hence, the right-hand
side of (106) is C1([α, β]), therefore h′′ ∈ C1([α, β]). In turn, A ∈ C2([α, β]) and
B ∈ C1([α, β]), and so by (106), h′′ ∈W 2,1((α, β)). By differentiating (106) we get

A(x)h′′′(x) = −A′(x)h′′(x) +B(x)h′(x)− Fm(x) . (108)

By (46), (47), and (105) we have

‖A‖H1((α,β)) + ‖B‖L1((α,β)) ≤ C . (109)

To estimate Fm, we first obtain bounds for the function f defined in (48). In view
of (66) and (105),

‖f‖L1((α,β)) ≤ CBτ (H,H0, α, α0, β, β0) . (110)

Hence, by (107),

‖F‖L∞((α,β)) ≤ CBτ (H,H0, α, α0, β, β0) . (111)

Next we estimate the constant m in (107). Let ζ0 ∈ C∞c ((−δ0/2, δ0/2)) be such that∫ δ0/2
−δ0/2 ζ0(x) dx = 0 and

∫ δ0/2
−δ0/2 ζ0(x)x2dx = 1, and let ζ(x) := ζ0(x − x0). Since

α + δ0 < x0 < β − δ0, we have that ζ ∈ C∞c ((α + δ0/2, β − δ0/2)). Multiplying (106)
by ζ and integrating over (α+ δ0/2, β − δ0/2) we obtain∫ β−δ0/2

α+δ0/2

A(x)h′′(x)ζ(x) dx =

∫ β−δ0/2

α+δ0/2

ζ(x)

∫ x

x0

(B(s)h′(s)− F (s)) ds dx− m

2
,
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where we used the facts that
∫ β−δ0/2
α+δ0/2

ζ(x) dx = 0 and
∫ β−δ0/2
α+δ0/2

ζ(x)(x − x0)2dx = 1.

From (64), (109), (111), and Hölder’s inequality, it follows that

|m| ≤ CBτ (H,H0, α, α0, β, β0) . (112)

Together with (105), (107), and (111), this gives

‖Fm‖L∞((α,β)) ≤ CBτ (H,H0, α, α0, β, β0)

and ‖Fm‖L1((α,β)) ≤ CBτ (H,H0, α, α0, β, β0) . (113)

Using the fact that A ≥ ν0/(1 + L2
0)5/2, (64), (108), (109), (113), and Hölder’s

inequality, we obtain

‖h′′′‖L1((α,β)) ≤ CBτ (H,H0, α, α0, β, β0) . (114)

This proves (69).
For every x ∈ (α, β) we have

|h′′(x)| ≤ (β − α)−1‖h′′‖L1((α,β)) + ‖h′′′‖L1((α,β)) .

By (11), (64), and (114), this inequality yields

‖h′′‖L∞((α,β)) ≤ CBτ (H,H0, α, α0, β, β0) , (115)

and proves (67).
By (46), (47), (105), (114), and (115) we have

‖A′‖L∞((α,β))+‖A′′‖L1((α,β))+‖B‖L∞((α,β))+‖B′‖L1((α,β)) ≤ CBτ (H,H0, α, α0, β, β0) .
(116)

Using again the fact that A ≥ ν0/(1 + L2
0)5/2 and (108), from (113), (115), and (116)

we get
‖h′′′‖L∞((α,β)) ≤ CBτ (H,H0, α, α0, β, β0)2 ,

which proves (68).
Differentiating (108) gives

A(x)h(iv)(x) = −2A′(x)h′′′(x) + (B(x)−A′′(x))h′′(x) +B′(x)h′(x)− f(x) +m.

Using the fact that A ≥ ν0/(1 + L2
0)5/2, (112), (105), (110), (114), (115), and (116)

we obtain
‖h(iv)‖L1((α,β)) ≤ CBτ (H,H0, α, α0, β, β0)2 , (117)

which proves (70) and concludes the proof of the theorem.

23



Remark 2. Since h ∈ C2([α, β]) in view of Step 4 in the previous proof, the limit
inferior of Iε in (93) is actually a limit and, by (84) and (94), it is given by

lim
ε→0

Iε = 2

∫ β

α

h′′ϕ′′

(1 + (h′)2)5/2
dx− 5

∫ β

α

h′(h′′)2ϕ′

(1 + (h′)2)7/2
dx+

(h′′(α))2

(1 + (h′(α))2)5/2

1

h′(α)
.

Hence, (93) becomes

d

dε
S(αε, β, hε)

∣∣∣∣
ε=0

= γ

∫ β

α

h′ϕ′√
1 + (h′)2

dx+ γ
√

1 + (h′(α))2
1

h′(α)
− γ0

1

h′(α)

+ ν0

∫ β

α

h′′ϕ′′

(1 + (h′)2)5/2
dx− 5

2
ν0

∫ β

α

h′(h′′)2ϕ′

(1 + (h′)2)7/2
dx+

ν0

2

(h′′(α))2

(1 + (h′(α))2)5/2

1

h′(α)
.

(118)

4 Flattening the Boundary

In this section we transform the intersection of a neighborhood of (α, 0) with Ωh into
the triangle

Amr := {(x, y) ∈ R2 : 0 < x < r , 0 < y < mx} , (119)

for some r > 0 and m > 0. We fix 0 < η0 < 1 and M > 1 and assume that

α < β, h ∈W 4,1((α, β)) ⊂ C3([α, β]) , (120)

h > 0 in (α, β) , h(α) = h(β) = 0 , (121)

h′(α) ≥ 2η0 , h′(β) ≤ −2η0 , Liph ≤ L0 , (122)∫ β

α

|h′′(x)|2dx ≤M . (123)

For simplicity, in this section we assume that α = 0 and we write h′0 := h′(0), h′′0 :=
h′′(0), and h′′′0 := h′′′(0).

Given r > 0 we set Ir := (0, r) and Ω0,r
h := Ωh ∩ (Ir × R). Assume that

0 < r ≤ δ0 =
η2

0

4M
<

1

4
. (124)

By Lemma 7 we have 64r ≤ β − α. Define for x ∈ Ir,

σ(x) :=
h′0x

h(x)
(125)

and the diffeomorphisms Φ : Ir × R→ Ir × R and Ψ : Ir × R→ Ir × R by

Φ(x, y) := (x, y/σ(x)) and Ψ(x, y) := (x, σ(x)y) . (126)
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Throughout tis section we set m = h′0. Observe that

Ψ(Ω0,r
h ) = Amr , (127)

where Amr is the triangle introduced in (119). By (120) and a direct computation, we
have that σ ∈ C2(Ir) and that

σ′(x) =
h′0h(x)− h′0xh′(x)

(h(x))2
, (128)

σ′′(x) = −h
′
0xh

′′(x)h(x) + 2h′0h(x)h′(x)− 2h′0x(h′(x))2

(h(x))3
, (129)

if x ∈ Ir and

σ(α) = 1 , σ′(α) = − h′′0
2h′0

, σ′′(α) =
(h′′0)2

2(h′0)2
− h′′′0

3h′0
. (130)

In turn,

Φ ∈ C2(Amr ;R2) and Ψ ∈ C2(Ω0,r
h ;R2) . (131)

Lemma 8. Under the assumptions (120)–(123), let r be as in (124). Then there exists
a constant C = C(η0,M) > 0, independent of r, such that

‖σ − 1‖L∞(Ir) ≤
r1/2

η0
‖h′′‖L2(Ir) ≤ Cr‖h′′‖L∞(Ir) , (132)

‖σ′‖L∞(Ir) ≤ C|h′′0 |+ Cr
(
|h′′′0 |+ ‖h(iv)‖L1(Ir)

)
, (133)

‖σ′′‖L∞(Ir) ≤ C
(
|h′′0 |2 + |h′′′0 |+ ‖h(iv)‖L1(Ir)

)
+ Cr2

(
|h′′′0 |2 + ‖h(iv)‖2L1(Ir)

)
. (134)

Moreover,

sup
(x,y)∈Ω0,r

h

|yσ′(x)| ≤ Cr|h′′0 |+ Cr2
(
|h′′′0 |+ ‖h(iv)‖L1(Ir)

)
, (135)

sup
(x,y)∈Ω0,r

h

|yσ′′(x)| ≤ Cr
(
|h′′0 |2 + |h′′′0 |+ ‖h(iv)‖L1(Ir)

)
+ Cr3

(
|h′′′0 |2 + ‖h(iv)‖2L1(Ir)

)
,

(136)

sup
(x,y)∈Amr

|yσ′(x)| ≤ Cr|h′′0 |+ Cr2
(
|h′′′0 |+ ‖h(iv)‖L1(Ir)

)
, (137)

sup
(x,y)∈Amr

|yσ′′(x)| ≤ Cr
(
|h′′0 |2 + |h′′′0 |+ ‖h(iv)‖L1(Ir)

)
+ Cr3

(
|h′′′0 |2 + ‖h(iv)‖2L1(Ir)

)
.

(138)

Proof. Using Taylor’s formula with integral remainder for x ∈ Ir we can write

σ(x)− 1 =
h′0x− h(x)

h(x)
= −

∫ x
0
h′′(s)(x− s) ds

h(x)
.
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If x ∈ Ir by Hölder’s inequality, (122), (123), and (124) we have

h′(x) = h′0 +

∫ x

0

h′′(s) ds ≥ 2η0 −M1/2x1/2 ≥ η0 .

Hence,

h(x) =

∫ x

0

h′(s) ds ≥ η0x . (139)

In turn, by Hölder’s inequality,

|σ(x)− 1| ≤ x3/2

η0x
‖h′′‖L2(Ir) ≤

r1/2

η0
‖h′′‖L2(Ir)

for every x ∈ Ir, which gives the estimate (132).
To prove (133), in view of (128), we use Taylor’s formula with integral remainder

to get

h′0h(x)− h′0xh′(x) = −1

2
h′0h

′′
0x

2 − 1

3
h′0h

′′′
0 x

3

− 1

2
h′0x

∫ x

0

h(iv)(s)(x− s)2ds+
1

6
h′0

∫ x

0

h(iv)(s)(x− s)3ds .

Hence,

|h′0h(x)− h′0xh′(x)| ≤ 1

2
h′0|h′′0 |x2 +

1

3
h′0|h′′′0 |x3 +

2

3
h′0x

3

∫ x

0

|h(iv)(s)| ds .

Using (139), if follows from (128) that

|σ′(x)| ≤ L0

η2
0

(
1

2
|h′′0 |+

1

3
r|h′′′0 |+

2

3
r‖h(iv)‖L1(Ir)

)
,

which proves (133).
To prove (134), in view of (129), we use Taylor’s formula with integral remainder

and the inequality 2ab ≤ a2 + b2 to estimate

|h′0xh′′(x)h(x) + 2h′0h(x)h′(x)− 2h′0x(h′(x))2|
≤ C

[
|h′′0 |2x3 + |h′′′0 |x3 + ‖h(iv)‖L1(Ir)x

3 + |h′′′0 |2x5 + ‖h(iv)‖2L1(Ir)x
5
]
,

where C = C(L0) > 0. Using (129) and (139), for x ∈ Ir we get

|σ′′(x)| ≤ C

η3
0

[
|h′′0 |2 + |h′′′0 |+ ‖h(iv)‖L1(Ir) + r2(|h′′′0 |2 + ‖h(iv)‖2L1(Ir))

]
,

which proves (134).
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To prove (135) and (136), in view of (133) and (134), it is enough to observe that
if (x, y) ∈ Ω0,r

h , then 0 < y < L0r.
Finally, if (x, y) ∈ Amr , then 0 < y < mr ≤ L0r, where in the last inequality

we used the fact that m = h′0 ≤ L0 by (122)) Together with (133) and (134), this
inequality proves (137) and (138). This concludes the proof.

Remark 3. By (123), (124), and (132) we have that

‖σ − 1‖L∞(Ir) ≤ 1/2 .

Lemma 9. Under the assumptions (120)–(123), let r be as in (124), and let
1 ≤ p <∞. If f ∈ Lp(Ω0,r

h ) and w ∈ W 2,p(Ω0,r
h ), then f ◦ Φ ∈ Lp(Amr ) and

w ◦ Φ ∈W 2,p(Amr ). Moreover the following estimates hold:

‖f ◦ Φ‖Lp(Amr ) ≤ Cp‖f‖Lp(Ω0,r
h )

‖∇(w ◦ Φ)‖Lp(Amr ) ≤ Cp
(
1 + sup

(x,y)∈Amr
y|σ′(x)|

)
‖∇w‖Lp(Ω0,r

h )

‖∇2(w ◦ Φ)‖Lp(Amr ) ≤ Cp
(
1 + sup

(x,y)∈Amr
y2(σ′(x))2

)
‖∇2w‖Lp(Ω0,r

h )

+Cp
(
1 + sup

x∈Ir
|σ′(x)|+ sup

(x,y)∈Amr
y(σ′(x))2 + sup

(x,y)∈Amr
y|σ′′(x)|

)
‖∇w‖Lp(Ω0,r

h ) ,

where the constant Cp depends only on p.

Proof. In this proof C is an absolute constant, independent of all other parameters,
whose value can change from formula to formula. Since det∇Φ(x, y) = 1

σ(x) , by a

change of variables and Remark 3 we have∫
Amr

|f ◦ Φ|pdxdy =

∫
Ω0,r
h

σ|f |pdxdy ≤ 3

2

∫
Ω0,r
h

|f |pdxdy . (140)

By (126) and Remark 3, it follows by the chain rule that

|∇(w ◦ Φ)(x, y)| ≤ C(1 + y|σ′(x)|)|∇w(Φ(x, y))| . (141)

Hence, by (140), we have

‖∇(w ◦ Φ)‖Lp(Amr ) ≤ C
(
1 + sup

(x,y)∈Amr
y|σ′(x)|

)
‖∇w‖Lp(Ω0,r

h ) .

Similarly, again by Remark 3 and the chain rule

|∇2(w ◦ Φ)(x, y)| ≤ C(1 + y2(σ′(x))2)|∇2w(Φ(x, y))|
+ C(1 + |σ′(x)|+ y(σ′(x))2 + y|σ′′(x)|)|∇w(Φ(x, y))| .
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Hence, by (140) we obtain

‖∇2(w ◦ Φ)‖Lp(Amr ) ≤ C
(
1 + sup

(x,y)∈Amr
y2(σ′(x))2

)
‖∇2w‖Lp(Ω0,r

h )

+C
(
1+ sup

x∈Ir
|σ′(x)|+ sup

(x,y)∈Amr
y(σ′(x))2 + sup

(x,y)∈Amr
y|σ′′(x)|

)
‖∇w‖Lp(Ω0,r

h ) ,

which concludes the proof.

Remark 4. Similarly, one can show that if f ∈ Lp(Amr ) and w ∈ W 2,p(Amr ), then
f ◦Ψ ∈ Lp(Ω0,r

h ) and w ◦Ψ ∈W 2,p(Ω0,r
h ) and the following estimates hold

‖f ◦Ψ‖Lp(Ω0,r
h ) ≤ Cp‖f‖Lp(Amr )

‖∇(w ◦Ψ)‖Lp(Ω0,r
h ) ≤ Cp

(
1 + sup

(x,y)∈Ω0,r
h

y|σ′(x)|
)
‖∇w‖Lp(Amr )

‖∇2(w ◦Ψ)‖Lp(Ω0,r
h ) ≤ Cp

(
1 + sup

(x,y)∈Ω0,r
h

y2(σ′(x))2
)
‖∇2w‖Lp(Amr )

+Cp
(
1+ sup

x∈Ir
|σ′(x)|+ sup

(x,y)∈Ω0,r
h

y(σ′(x))2 + sup
(x,y)∈Ω0,r

h

y|σ′′(x)|
)
‖∇w‖Lp(Amr ) ,

where the constant Cp depends only on p.

Given r > 0 as in (124), let Γ0,r
h := Γh∩(Ir×R), where Γh is the graph of h, and let

Γ := {(x,mx) : 0 < x < r} ⊂ ∂Amr . For x ∈ Ir let νh(x) := (−h′(x), 1)/
√

1 + (h′(x))2

be the outer unit normal to Ωh on Γh, let ν0 := (−h′0, 1)/
√

1 + (h′0)2 be the outer
unit normal to Amr on Γ, and let ωi : Ir → R be the functions defined by

ω1(x) := ν0
1 − νh1 (x) = − h′0√

1 + |h′0|2
+

h′(x)√
1 + |h′(x)|2

,

ω2(x) := ν0
2 − νh2 (x) =

1√
1 + |h′0|2

− 1√
1 + |h′(x)|2

,

ω3(x) := −σ′(x)h(x)νh1 (x) = σ′(x)h(x)
h′(x)√

1 + |h′(x)|2
,

ω4(x) := −(σ(x)− 1)νh1 (x) = (σ(x)− 1)
h′(x)√

1 + |h′(x)|2
, (142)

ω5(x) := σ′(x)h(x)νh2 (x) = σ′(x)h(x)
1√

1 + |h′(x)|2
,

ω6(x) := (σ(x)− 1)νh2 (x) = (σ(x)− 1)
1√

1 + |h′(x)|2
.

Lemma 10. Under the assumptions (120)–(123), let r be as in (124), let 1 ≤ p <∞,
let u ∈ W 2,p

loc (Ω0,r
h ;R2), with u ∈ W 2,p(Ω

ρ,r

h ;R2) for every 0 < ρ < r, let m = h′0, let

v : Amr → R2 be defined by v(x, y) = u(x, y/σ(x)), and let g ∈W 1,p(Ω0,r
h ;R2). Assume
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that
(CEu)νh = 2µ(Eu)νh + λ(div u)νh = g on Γ0,r

h . (143)

Then
(CEv)ν = 2µ(Ev)ν + λ(div v)ν = g ◦ Φ + ĝv + ǧv on Γmr , (144)

where ĝv = (ĝv1 , ĝ
v
2) and ǧv = (ǧv1 , ǧ

v
2) are defined by

ĝv1 := (2µω1 + λω1)∂xv1 + µω2∂xv2 , (145)

ĝv2 := λω2∂xv1 + µω1∂xv2 . (146)

ǧv1 := (µω2 + 2µω3 + λω3 − µω6)∂yv1 + (λω1 + λω4 − µω5)∂yv2 , (147)

ǧv2 := (µω1 + µω4 − λω5)∂yv1 + (2µω2 + λω2 + µω3 − 2µω6 − λω6)∂yv2 . (148)

Remark 5. If u = 0 on ∂Ω0,r
h \ Ω0,r

h , then ĝv = 0 on (0, r) × {0} and ǧv = 0 on
{r} × (0,mr).

Proof of Lemma 10. Since u(x, y) = v(x, σ(x)y), the partial derivatives of u are

∂xu(x, y) = ∂xv(x, σ(x)y)+∂yv(x, σ(x)y)σ′(x)y and ∂yu(x, y) = ∂yv(x, σ(x)y)σ(x) .

So at (x, h(x)) the first component of 2µ(Eu)νh + λ(div u)νh is

2µ (∂xv1 + ∂yv1σ
′y) νh1 +µ(∂xv2+∂yv2σ

′y+∂yv1σ)νh2 +λ (∂xv1 + ∂yv1σ
′y + ∂yv2σ) νh1 ,

while the second component is

µ (∂xv2 + ∂yv2σ
′y + ∂yv1σ) νh1 + 2µ∂yv2σν

h
2 + λ (∂xv1 + ∂yv1σ

′y + ∂yv2σ) νh2

where v1 and v2 are computed at (x, σ(x)h(x)) = (x, h′0x) and σ and σ′ and νh at x.
By adding and subtracting some terms containing ν0

1 and ν0
2 , the first component can

be written as

2µ∂xv1ν
0
1 + µ(∂xv2 + ∂yv1)ν0

2 + λ (∂xv1 + ∂yv2) ν0
1

− 2µ∂xv1(ν0
1 − νh1 )− µ(∂xv2 + ∂yv1)(ν0

2 − νh2 )− λ (∂xv1 + ∂yv2) (ν0
1 − νh1 )

+ 2µ∂yv1σ
′yνh1 + µ(∂yv2σ

′y + ∂yv1(σ − 1))νh2 + λ (∂yv1σ
′y + ∂yv2(σ − 1)) νh1

and the second component as

µ (∂xv2 + ∂yv1) ν0
1 + 2µ∂yv2ν

0
2 + λ (∂xv1 + ∂yv2) ν0

2

− µ (∂xv2 + ∂yv1) (ν0
1 − νh1 )− 2µ∂yv2(ν0

2 − νh2 )− λ (∂xv1 + ∂yv2) (ν0
2 − νh2 )

+ µ (∂yv2σ
′y + ∂yv1(σ − 1)) νh1 + 2µ∂yv2(σ − 1)νh2 + λ (∂yv1σ

′y + ∂yv2(σ − 1)) νh2

Hence, using (143) we obtain (144) with

ĝv1 := 2µ∂xv1(ν0
1 − νh1 ) + µ∂xv2(ν0

2 − νh2 ) + λ∂xv1(ν0
1 − νh1 )

29



ĝv2 := µ∂xv2(ν0
1 − νh1 ) + λ∂xv1(ν0

2 − νh2 )

and

ǧv1 := µ∂yv1(ν0
2 − νh2 ) + λ∂yv2(ν0

1 − νh1 )− 2µ∂yv1σ
′hνh1

− µ(∂yv2σ
′h+ ∂yv1(σ − 1))νh2 − λ (∂yv1σ

′h+ ∂yv2(σ − 1)) νh1 ,

ǧv2 := µ∂yv1(ν0
1 − νh1 ) + 2µ∂yv2(ν0

2 − νh2 ) + λ∂yv2(ν0
2 − νh2 )

− µ (∂yv2σ
′h+ ∂yv1(σ − 1)) νh1 − 2µ∂yv2(σ − 1)νh2 − λ (∂yv1σ

′h+ ∂yv2(σ − 1)) νh2 .

Using (142) we obtain (145), (146), (147), and (148).

For technical reasons we need a precise estimate of the L∞ norms of the functions
ωi defined in (142) and of their derivatives.
Lemma 11. Under the assumptions (120)–(123), let r be as in (124), and let ωi,
i = 1, . . . , 6 be defined as in (142). Then there exists a constant C = C(η0,M) > 0
such that

‖ωi‖L∞(Ir) ≤ Cr‖h′′‖L∞(Ir) + Cr2(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir)) (149)

‖ω′i‖L∞(Ir) ≤ C‖h′′‖L∞(Ir) + Cr
(
‖h′′‖2L∞(Ir) + ‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir)

)
(150)

+ Cr3
(
‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir)

)
for i = 1, . . . , 6.

Proof. Define

f1(t) =
t√

1 + t2
and f2(t) =

1√
1 + t2

for t ∈ R . (151)

Observe that ω1(x) = f1(h′(x))− f1(h′0) and ω2(x) = f2(h′0)− f2(h′(x)). Since

f ′1(t) =
1

(1 + t2)3/2
and f ′2(t) = − t

(1 + t2)3/2
, (152)

the functions f1 and f2 are Lipschitz continuous with Lipschitz constant one. Hence,

|ωi(x)| ≤ |h′(x)− h′0| for i = 1, 2 ,

and the estimate (149) follows by the mean value theorem. On the other hand,

|ω′1(x)| = |f ′1(h′(x))h′′(x)| ≤ |h′′(x)| and |ω′2(x)| = |f ′2(h′(x))h′′(x)| ≤ |h′′(x)| ,

which gives (150) for i = 1 and 2.
By (121) and (122) we have h(x) ≤ L0x for x ∈ (α, β), hence |ω3(x)| ≤ L0r|σ′(x)|

for x ∈ Ir, and (149) is a consequence of (133), while

|ω′3(x)| ≤ |σ′′(x)h(x)f1(h′(x))|+ |σ′(x)h′(x)f1(h′(x))|+ |σ′(x)h(x)f ′1(h′(x))h′′(x)|
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≤ L0r|σ′′(x)|+ L0|σ′(x)|+ L0r|σ′(x)h′′(x)| .

Using (133), (134), and the inequality

2r2‖h′′‖L∞(Ir)(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir))

≤ 2r‖h′′‖2L∞(Ir) + r3(‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir)) ,

we obtain (150). The estimates for ω5 are similar.
We have |ω4(x)| ≤ |(σ(x) − 1)f1(h′(x))| ≤ |σ(x) − 1|, and so (149) follows from

(132). On the other hand,

|ω′4(x)| ≤ |σ′(x)f1(h′(x))|+ |(σ(x)− 1)f ′1(h′(x))h′′(x)|
≤ |σ′(x)|+ |(σ(x)− 1)h′′(x)| ,

so that (150) is a consequence of (132) and (133). A similar estimate holds for ω6.

5 Regularity: Preliminary Results

In this section we study the regularity of solutions to the Lamé system in the triangle
Amr introduced in (119). The exponent in the regularity theorem will depend on the
complex solutions z of the equation

sin2(zω) = K1 −Kz2 sin2 ω , (153)

where ω = arctanm is the angle of the triangle Amr at the vertex (0, 0), and

K :=
λ+ µ

λ+ 3µ
< 1 < K1 :=

(λ+ 2µ)2

(λ+ µ)(λ+ 3µ)
, (154)

where λ and µ are the Lamé coefficients. In particular, we will use the results of the
following lemma.
Lemma 12. There exists a constant ξ0 = ξ0(λ, µ) ∈ (1/2, 1) such that for every
0 < ω ≤ π/2 the equation (153) has no complex solutions z with Re z ∈ (0, ξ0).

Proof. We follow the proof of [40, Theorem 2.2]. If Im z 6= 0, then using the fact that
0 < ω ≤ π

2 , the argument in the first case of that proof shows that there are no
solutions z with Re z ∈ (0, 1]. If Im z = 0, then (153) reduces to

sin2(ωRe z) = K1 −K(Re z)2 sin2 ω . (155)

By (154) there exists ε0 > 0 such that K < 1 < K1 − ε0. By a trigonometric
computation we find that sin2(ω/2) ≤ 1− (sin2 ω)/4, hence

sin2(ω/2) < K1 − ε0 −K(sin2 ω)/4 .
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Since for every 0 < ω ≤ π
2 the function ξ 7→ sin2(ωξ) + Kξ2 sin2 ω is Lipschitz con-

tinuous on [0, 1] with Lipschitz constant π + 2, there exists a constant ξ0 ∈ (1/2, 1),
depending only on ε0, such that

sin2(ωξ0) < K1 −Kξ2
0 sin2 ω

for every 0 < ω ≤ π
2 . Since ξ 7→ sin2(ωξ) is increasing and ξ 7→ K1 − Kξ2 sin2 ω is

decreasing on [0, ξ0], it follows that

sin2(ωRe z) < K1 −K(Re z)2 sin2 ω

for all z with Re z ∈ [0, ξ0]. This shows that (155) is impossible and concludes the
proof.

Let p0 be such that 2− 2
p0

= ξ0. Then

4

3
< p0 =

2

2− ξ0
< 2. (156)

We recall that for every 0 < m ≤ L0 and r > 0 the triangleAmr is defined in (119). Since
the conjugate exponent of p0 satisfies p′0 < 4, by the Sobolev embedding theorem we
have H1

0 (Amr ;R2) ↪→ Lp
′
0(Amr ;R2). Hence, by duality Lp0(Amr ;R2) ↪→ H−1(Amr ;R2).

Similarly, given g ∈W 1,p0(Amr ;R2), its trace on

Γmr = {(x,mx) : 0 < x < r} , (157)

still denoted by g, belongs to W 1−1/p0,p0(Γmr ;R2) and, by the embedding theorem
for fractional Sobolev spaces, we have g ∈ L2(Γmr ;R2) ↪→ H−1/2(Γmr ;R2). Therefore,
given f ∈ Lp0(Amr ;R2) and g ∈ W 1,p0(Amr ;R2) there exists a unique weak solution
w ∈ H1(Amr ;R2) to the problem

−divCEw = f in Amr ,

(CEw)νm = g on Γmr ,

w = 0 on ∂Amr \ Γmr ,

(158)

where νm := (−m, 1)/
√

1 +m2 is the outer unit normal to Amr on Γmr .
In the next theorem we will use [40, Theorems 2.1 and 2.2] (see also [41, Theorem

I]).
Theorem 13. Let p0 be as in (156), let r > 0, let 0 < η0 ≤ m ≤ L0, let Amr and Γmr
be defined by (119) and (157), let f ∈ Lp0(Amr ;R2), let g ∈W 1,p0(Amr ;R2), with g = 0
on one of the sides of the triangle Amr different from Γmr , and let w ∈ H1(Amr ;R2) be
the unique weak solution to the problem (158). Then w belongs to W 2,p0(Amr ;R2) and

‖∇2w‖Lp0 (Amr ) ≤ κ
(
‖f‖Lp0 (Amr ) + ‖∇g‖Lp0 (Amr )

)
, (159)

for a constant κ > 0 depending on λ, µ, η0, and L0, but independent of r, m, f , and g.
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Proof. By a rescaling argument we see that it is enough to prove the result for r = 1.
Step 1: Assume g = 0. By [42, Theorem 3.1], Lemma 12, and (156), we have that

w ∈ W 2,p0(Am1 ;R2). Let Xm be the space of functions z ∈ W 2,p0(Am1 ;R2) such that
z = 0 on ∂Am1 \Γm1 and (CEw)ν = 0 on Γm1 endowed with the norm of W 2,p0(Am1 ;R2).
Consider the continuous linear operator L : Xm → Lp0(Am1 ;R2) defined by L(z) :=
−divCEz. By what we just proved (see (158)), L is invertible, and so by the Closed
Graph Theorem we obtain that there exists a constant C > 0, depending on λ, µ, and
m, such that

‖w‖W 2,p0 (Am1 ) ≤ C‖f‖Lp0 (Am1 ) (160)

for every solution w to (158) with g = 0.
Step 2: In the general case g ∈W 1,p0(Am1 ;R2), with g = 0 on one of the sides of

the triangle Am1 different from Γm1 , recalling that 1 < p0 < 2, we can reason as in [23,
Lemma 3.12] and using [43, Theorem 1.5.2.8] we can find w1 ∈ W 2,p0(Am1 ;R2), with
(CEw1)νm = g on Γm1 and w1 = 0 on ∂Am1 , such that

‖w1‖W 2,p0 (Am1 ) ≤ C1‖g‖W 1−1/p0,p0 (Γm1 ) ≤ C2‖∇g‖Lp0 (Am1 ) (161)

for some constants C1, C2 > 0 depending on λ, µ, and m, where in the last inequality
we used the trace estimate and Poincaré’s inequality. Then the function v := w − w1

is a weak solution to (158) in Am1 with f replaced by f + divCEw1 and g replaced by
zero. Hence, by the previous step v ∈W 2,p0(Am1 ;R2). Moreover, using (160) for v and
(161) for w1 we obtain a constant κm > 0, depending on λ, µ, and m, but independent
of f and g, such that

‖∇2w‖Lp0 (Am1 ) ≤ κm
(
‖f‖Lp0 (Am1 ) + ‖∇g‖Lp0 (Am1 )

)
. (162)

Step 3: Let m0 ∈ [η0, L0]. We want to prove that there exists ε0 > 0 such that, if
m ∈ [η0, L0] and |m−m0| < ε0, then w satisfies the estimate

‖∇2w‖Lp0 (Am1 ) ≤ 2κm0

(
‖f‖Lp0 (Am1 ) + ‖∇g‖Lp0 (Am1 )

)
, (163)

with the constant κm0
corresponding to m0.

Since w ∈ W 2,p0(Am1 ;R2) satisfies (158), a direct computation (using Remark 1)
shows that the function z ∈W 2,p0(Am0

1 ;R2) defined by z(x, y) := w(x, mm0
y) satisfies

−divCEz = f̃ + fz in Am0
1 , (164)

(CEz)νm0 = g̃ + ĝz + ǧz on Γm0
1 , (165)

z = 0 on ∂Am0
1 \ Γm0

1 , (166)

with f̃ , fz ∈ Lp0(Am0
1 ;R2) and g̃, ĝz, ǧz ∈W 1,p0(Am0

1 ;R2) defined by

f̃(x, y) := f(x, mm0
y) and g̃(x, y) := g(x, mm0

y) , (167)

fz1 := µ
(
(m0

m )2 − 1
)
∂2
yyz1 + (λ+ µ)(m0

m − 1)∂2
xyz2 , (168)

fz2 := (λ+ 2µ)
(
(m0

m )2 − 1
)
∂2
yyz2 + (λ+ µ)(m0

m − 1)∂2
xyz1 , (169)
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ĝz1 := (2µ+ λ)
(

m√
1+m2

− m0√
1+m2

0

)
∂xz1 − µ

(
1√

1+m2
− 1√

1+m2
0

)
∂xz2 , (170)

ǧz1 := −µ
(

1√
1+m2

− 1√
1+m2

0

)
∂yz1 + λ

(
m√

1+m2
− m0√

1+m2
0

)
∂yz2

− µ√
1+m2

(m0

m − 1)∂yz1 + λm√
1+m2

(m0

m − 1)∂yz2 , (171)

ĝz2 := µ
(

m√
1+m2

− m0√
1+m2

0

)
∂xz2 + λ

(
m√

1+m2
− m0√

1+m2
0

)
∂xz1 , (172)

ǧz2 := µ
(

m√
1+m2

− m0√
1+m2

0

)
∂yz1 − 2µ

(
1√

1+m2
− 1√

1+m2
0

)
∂yz2 − 2µ√

1+m2
(m0

m − 1)∂yz2

− λ
(

1√
1+m2

− 1√
1+m2

0

)
∂yz2 + µm√

1+m2
(m0

m − 1)∂yz1 − λ√
1+m2

(m0

m − 1)∂yz2 .

(173)

Since z ∈ W 2,p0(Am0
1 ;R2) and z = 0 on ∂Am0

1 \ Γm0
1 , we have that ∂xz = 0 a.e. on

[0, 1]×{0} and ∂yz = 0 a.e. on {1}×[0,m0], hence ĝz = 0 a.e. on [0, 1]×{0} and ǧz = 0
a.e. on {1} × [0,m0]. Moreover g̃ vanishes on one of the sides of Am0

1 different from
Γm0

1 . We may assume that g̃ = 0 a.e. on [0, 1]× {0}, the other case being analogous.
Let ẑ and ž be the unique solutions of the problems
−divCEẑ = f̃ + fz in Am0

1 ,

(CEẑ)νm0 = g̃ + ĝz on Γm0
1 ,

ẑ = 0 on ∂Am0
1 \ Γm0

1 ,

and


−divCEž = 0 in Am0

1 ,

(CEž)νm0 = ǧz on Γm0
1 ,

ž = 0 on ∂Am0
1 \ Γm0

1 .

By linearity we have z = ẑ + ž. Since g̃ + ĝz and ǧz vanish on one of the sides of Am0
1

different from Γm0
1 , by (162) we have

‖∇2ẑ‖Lp0 (A
m0
1 ) ≤ κm0

(
‖f̃ + fz‖Lp0 (A

m0
1 ) + ‖∇g̃ +∇ĝz‖Lp0 (A

m0
1 )

)
,

‖∇2ž‖Lp0 (A
m0
1 ) ≤ κm0‖∇ǧz‖Lp0 (A

m0
1 ) .

hence

‖∇2z‖Lp0 (A
m0
1 ) ≤ κm0

(
‖f̃+fz‖Lp0 (A

m0
1 )+‖∇g̃+ĝz‖Lp0 (A

m0
1 )+‖∇ǧz‖Lp0 (A

m0
1 )

)
. (174)

Let us fix ω > 0. Since z ∈ W 2,p0(Am0
1 ;R2), by (167), (168), (169), (170), (171),

(172), and (173) there exists εω > 0 such that, if m ∈ [η0, L0] and |m−m0| < εω, then

‖∇2w‖Lp0 (Am1 ) ≤ (1 + ω)‖∇z2‖Lp0 (A
m0
1 ) , (175)

‖f̃‖Lp0 (A
m0
1 ) + ‖∇g̃‖Lp0 (A

m0
1 ) ≤ (1 + ω)

(
‖f‖Lp0 (Am1 ) + ‖∇g‖Lp0 (Am1 )

)
, (176)

‖fz‖Lp0 (A
m0
1 ) + ‖∇ĝz‖Lp0 (A

m0
1 ) + ‖∇ǧz‖Lp0 (A

m0
1 ) ≤ ω‖∇2z‖Lp0 (A

m0
1 ) . (177)

From (174), (176), and (177) we obtain

‖∇2z‖Lp0 (A
m0
1 ) ≤ (1 + ω)κm0

(
‖f‖Lp0 (Am1 ) + ‖∇g‖Lp0 (Am1 )

)
+ ωκm0

‖∇2z‖Lp0 (A
m0
1 ) .

(178)
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We now choose ω < 1/3 such that ωκm0 < 1/9. If m ∈ [η0, L0] and |m −m0| < εω,
then (178) gives

8
9‖∇

2z‖Lp0 (A
m0
1 ) ≤ 4

3κm0

(
‖f‖Lp0 (Am1 ) + ‖∇g‖Lp0 (Am1 )

)
.

Using (175) we obtain

2
3‖∇

2w‖Lp0 (Am1 ) ≤ 4
3κm0

(
‖f‖Lp0 (Am1 ) + ‖∇g‖Lp0 (Am1 )

)
,

which implies (163).
Step 4: By compactness we can cover [η0, L0] by a finite number of open intervals

(mi − εi,mi + εi), with mi ∈ [η0, L0], such that (163) holds with m0 and ε0 replaced
by mi and εi. Then (159) holds with κ := 2 maxi κmi .

6 Regularity at Corners

In this section we obtain a precise estimate on the W 2,p0 norm of the equilibrium
solution u in a neighborhood of the corners.

Next we use a fixed point theorem to prove that u belongs to W 2,p0 near (α, 0).
Theorem 14. Under the assumptions of Theorem 6, we have that u ∈W 2,p0(Ωh).

To prove this theorem we need some auxiliary results. We begin with Poincaré’s
inequality.
Lemma 15 (Poincaré’s inequality). Let 0 < r < β − α and let p ≥ 1. Then

‖v‖Lp(Ωα,α+r
h ) ≤ L0r‖∇v‖Lp(Ωα,α+r

h ) (179)

for every v ∈ W 1,p(Ωα,α+r
h ) such that v(x, 0) = 0 for x ∈ (α, α + r) (in the sense of

traces).

Proof. By density we can assume that v ∈ C∞(R2). For (x, y) ∈ Ωα,α+r
h , by the

fundamental theorem of calculus and Hölder’s inequality we have

|v(x, y)| ≤ (L0r)
1/p′
(∫ h(x)

0

|∂yv(x, t)|pdt
)1/p

,

where we used the fact that h(x) ≤ L0r. Raising both sides to power p and integrating
over Ωα,α+r

h gives∫
Ωα,α+r
h

|v(x, y)|pdxdy ≤ (L0r)
1+p/p′

∫
Ωα,α+r
h

|∂yv(x, y)|pdxdy ,

which yields (179) and concludes the proof.

Remark 6. Let r > 0, let 0 < η0 ≤ m ≤ L0, and let Amr be the triangle defined in
(119). With a proof similar to the one of Lemma 15, one can show that

‖v‖Lp(Amr ) ≤ max{L0, 1/η0}r‖∇v‖Lp(Amr )
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for every v ∈ W 1,p(Amr ) such that v(x, 0) = 0 for x ∈ (0, r) or v(r, y) = 0 for
y ∈ (0,mr) (in the sense of traces).

We turn to the proof of Theorem 14.

Proof of Theorem 14. In view of Theorem 4, it is enough to prove that there exists
r > 0 sufficiently small such that

u ∈W 2,p0(Ωα,α+r
h ∪ Ωβ−r,βh ) ,

where Ωc,dh is defined in (35). We will only show that u ∈ W 2,p0(Ωα,α+r
h ), since the

other endpoint can be treated in a similar way. By a translation, without loss of
generality, we may assume that α = 0. We modify u far from (0, 0) to obtain a new
function ũ vanishing away from (0, 0). We then use the transformation (126) to map
Ω0,r
h into the triangle Amr defined in (119) with m = h′(0). A fixed point argument

will allow us to show that the resulting system has a solution in W 2,p0(Amr ), and due
to uniqueness, this solution is ũ ◦ Φ itself. To apply the Banach fixed point theorem,
we will use Lemmas 8 and 11.
Step 1: Localization. Let

w0(x, y) := (e0x, 0) , (x, y) ∈ R2. (180)

For every r > 0 let ϕr ∈ C∞(R2) be a function such that 0 ≤ ϕr ≤ 1, ϕr(x, y) = 1 for
x ≤ 5r/8, ϕr(x, y) = 0 for x ≥ 7r/8, ‖∇ϕr‖L∞(R2) ≤ C/r and ‖∇2ϕr‖L∞(R2) ≤ C/r2,
where C > 0 is a constant independent of r. In Ωh we define

ũ := (u− w0)ϕr . (181)

If 0 < r < β we have ũ(x, 0) = 0 for 0 ≤ x ≤ r and ũ(r, y) = 0 for 0 ≤ y ≤ h(r). In
other words ũ = 0 on ∂Ω0,r

h \ Γ0,r
h , where Γ0,r

h = {(x, h(x)) : 0 < x < r}. Moreover, we
have

∇ũ = ϕr∇(u− w0) + (u− w0)⊗∇ϕr .
By Poincaré’s inequality (see Lemma 15) we obtain

‖∇ũ‖L2(Ω0,r
h ) ≤ C‖∇(u− w0)‖L2(Ω0,r

h ) . (182)

By direct computation, it follows from Remark 1 that
−divCEũ = −µ∆ũ− (λ+ µ)∇ div ũ = f in Ω0,r

h ,

(CEũ)νh = 2µ(Eũ)νh + λ(div ũ)νh = g on Γ0,r
h ,

ũ = 0 on ∂Ω0,r
h \ Γ0,r

h ,

(183)

where νh(x) := (−h′(x), 1)/
√

1 + (h′(x))2 denotes the outer unit normal to Ωh on Γh,
and

f := −µ
(
2(∇u−∇w0)∇ϕr + (u− w0)∆ϕr

)
(184)
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− (λ+ µ)
(
(div u− divw0)∇ϕr + (∇u−∇w0)T∇ϕr +∇2ϕr(u− w0)

)
,

g := µ
(
(u− w0)⊗∇ϕr +∇ϕr ⊗ (u− w0)

)
νh + λ trace((u− w0)⊗∇ϕr)νh . (185)

Note that f ∈ L2(Ω0,r
h ;R2). Since h ∈ C3([0, β]) by Theorem 6, we can consider νh

as a C2 function in the strip [0, β] × R. This shows that g ∈ H1(Ω0,r
h ;R2). Since

u(x, 0)− w0(x, 0) = 0 for a.e. x ∈ [0, r] and ϕr(r, y) = 0 for every y ∈ R, we conclude
that the trace of g vanishes on ∂Ω0,r

h \ Γ0,r
h . We also observe that for every f ∈

L2(Ω0,r
h ;R2) and every g ∈ H1(Ω0,r

h ;R2) problem (183) has a unique weak solution in

H1(Ω0,r
h ;R2).

Step 2: Straightening the boundary. Let r be as in (124) and let

v := ũ ◦ Φ ∈ H1(Amr ;R2) , (186)

where Amr and Φ are defined in (119) and (126), with m = h′0. Recalling Remark 1 and
the fact that ũ(x, y) = v(x, σ(x)y), it follows by direct computation and by Lemma
10 that v satisfies the boundary value problem

− divCEv = −µ∆v − (λ+ µ)∇ div v = f ◦ Φ + fv in Amr ,

(CEv)ν0 = 2µ(Ev)ν0 + λ(div v)ν0 = g ◦ Φ + ĝv + ǧv on Γmr ,

v = 0 on ∂Amr \ Γmr ,

(187)

where ν0 := (−h′0, 1)/
√

1 + (h′0)2 is the outer unit normal to Amr on Γmr := {(x, h′0x) :
0 < x < r}, fv = (fv1 , f

v
2 ) ∈ H−1(Amr ;R2) is defined by

fv1 := µ

[(
σ2 − 1 + y2 (σ′)2

σ2

)
∂2
yyv1 + 2y

σ′

σ
∂2
xyv1

]
+ (λ+ µ)

[
y2 (σ′)2

σ2
∂2
yyv1 + 2y

σ′

σ
∂2
xyv1 + (σ − 1)∂2

xyv2 + yσ′∂2
yyv2

]
, (188)

+ µy
σ′′

σ
∂yv1 + (λ+ µ)

[
y
σ′′

σ
∂yv1 + σ′∂yv2

]
,

fv2 := µ

[(
σ2 − 1 + y2 (σ′)2

σ2

)
∂2
yyv2 + 2y

σ′

σ
∂2
xyv2

]
+ (λ+ µ)[(σ − 1)∂2

xyv1 + σ′y∂2
yyv1 + (σ2 − 1)∂2

yyv2] (189)

+ µy
σ′′

σ
∂yv2 + (λ+ µ)σ′∂yv1 ,

while ĝv = (ĝv1 , ĝ
v
2) ∈ W 1,p0(Amr ;R2) and ǧv = (ǧv1 , ǧ

v
2) ∈ W 1,p0(Amr ;R2) are defined

by (145)–(148).
Step 3: Fixed Point Argument. To prove the W 2,p0 regularity of v we use a fixed
point argument in the space

Xm
r := {z ∈W 2,p0(Amr ;R2) : z = 0 on ∂Amr \ Γmr } ,
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endowed with the norm
‖z‖Xmr := ‖∇2z‖Lp0 (Amr ) . (190)

Let us first prove that ‖·‖Xmr is a norm equivalent to ‖·‖W 2,p0 (Amr ,R2). By Poincaré’s
inequality (see Remark 6) there exists a constant C > 0, depending only on η0 and
L0, such that

‖ϕ‖Lp0 (Amr ) ≤ Cr‖∇ϕ‖Lp0 (Amr ) (191)

for every ϕ ∈ W 1,p0(Amr ,R2) such that ϕ = 0 on one of the sides of the triangle Amr
different from Γmr . If z ∈ Xm

r , then z, ∂xz, and ∂yz satisfy this property, hence

‖z‖Lp0 (Amr ) ≤ Cr‖∇z‖Lp0 (Amr ) ,

‖∂xz‖Lp0 (Amr ) ≤ Cr‖∇∂xz‖Lp0 (Amr ) ,

‖∂yz‖Lp0 (Amr ) ≤ Cr‖∇∂yz‖Lp0 (Amr ) .

These inequalities imply that there exists a constant Kr > 0 such that

‖z‖W 2,p0 (Amr ) ≤ Kr‖∇2z‖Lp0 (Amr )

for every z ∈ Xm
r , concluding the proof of the equivalence between the norms ‖ · ‖Xmr

and ‖ · ‖W 2,p0 (Amr ,R2). This shows, in particular, that Xm
r is a Banach space.

Let r be as in (124). Given z ∈W 2,p0(Amr ;R2), let w := Fmr (z) be the solution to
the boundary value problem

−div(CEw) = f ◦ Φ + fz in Amr ,

(CEw)ν0 = g ◦ Φ + ĝz + ǧz on Γmr ,

w = 0 on ∂Amr \ Γmr ,

(192)

let w1 be the solution to the boundary value problem
−div(CEw1) = f ◦ Φ in Amr ,

(CEw1)ν0 = g ◦ Φ on Γmr ,

w1 = 0 on ∂Amr \ Γmr ,

and let w2 := Gmr (z) be the solution to the boundary value problem
−div(CEw2) = fz in Amr ,

(CEw2)ν0 = ĝz + ǧz on Γmr ,

w2 = 0 on ∂Amr \ Γmr .

By linearity, we have Fmr (z) = w1 +Gmr (z).
We claim that for r > 0 sufficiently small the linear map Gmr : Xm

r → Xm
r is a

contraction. By linearity it suffices to show that

‖Gmr (z)‖Xmr ≤ 1/2 for all z ∈ Xm
r with ‖z‖Xmr ≤ 1 . (193)
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Fix z ∈ Xm
r with ‖z‖Xmr ≤ 1. By linearity, using Theorem 13 we obtain that w2 =

Gmr (z) ∈W 2,p0(Amr ;R2) with

‖∇2w2‖Lp0 (Amr ) ≤ κ
(
‖fz‖Lp0 (Amr ) + ‖∇ĝz‖Lp0 (Amr ) + ‖∇ǧz‖Lp0 (Amr )

)
, (194)

where κ depends only on λ, µ, η0, and L0; in particular it does not depend on r, h,
f , g, and z. Therefore, (193) follows provided we can prove that

κ
(
‖fz‖Lp0 (Amr ) + ‖∇ĝz‖Lp0 (Amr ) + ‖∇ǧz‖Lp0 (Amr )

)
≤ 1/2 . (195)

Step 4: Proof of (195). In this step we prove (195). Below Ch denotes a constant
independent of r ∈ (0, η2

0/(4M)) and m ∈ [2η0, L0], but depending on h, whose value
can change from formula to formula, while Cλ,µ denotes a constant depending only on
the Lamé coefficients. We begin with ‖fz‖Lp0 (Amr ). For 0 < r < η2

0/(4M), by Lemma
8, Remark 3, (188), and (189), in Amr we have the pointwise estimate

|fz| ≤ Cλ,µ
(
‖σ − 1‖L∞(Ir) + sup

(x,y)∈Amr
|yσ′(x)|+ sup

(x,y)∈Amr
|yσ′(x)|2

)
|∇2z|

+ Cλ,µ

(
‖σ′‖L∞(Ir) + sup

(x,y)∈Amr
|yσ′′(x)|

)
|∇z| ≤ Chr|∇2z|+ Ch|∇z| , (196)

where in the last inequality we used (132), (135), and (138). In turn, using Poincaré’s
inequality given in Remark 6 together with the inequality ‖z‖Xmr ≤ 1, with norm
defined by (190), we obtain

‖fz‖Lp0 (Amr ) ≤ Chr‖∇2z‖Lp0 (Amr ) + C‖∇z‖Lp0 (Amr ) ≤ Chr‖∇2z‖Lp0 (Amr ) ≤ Chr .
(197)

We now estimate ‖∇ĝz‖Lp0 (Amr ). We observe that by (145) and (146) we can write
each component of ∇ĝz as linear combinations of products of the functions ωi and
second order partial derivatives of the component of z, as well as products of the
derivatives ω′i and first order partial derivatives of the components of z. Therefore, we
obtain that

‖∇ĝz‖Lp0 (Amr ) ≤ Cλ,µ
( 6∑
i=1

‖ωi‖L∞(Ir)‖∇2z‖Lp0 (Amr ) +

6∑
i=1

‖ω′i‖L∞(Ir)‖∇z‖Lp0 (Amr )

)
≤ Chr , (198)

where in the last inequality we used the fact that ‖∇2z‖Lp0 (Amr ) = ‖z‖Xmr ≤ 1 and
the estimates (149) and (150), together with Poincaré’s inequality for ∂xz and ∂yz,
which vanish on one of the sides of Amr different from Γmr (see Remark 6). Similarly,
we prove that

‖∇ǧz‖Lp0 (Amr ) ≤ Chr . (199)

From (197), (198), and (199) it follows that

κ
(
‖fz‖Lp0 (Amr ) + ‖∇ĝz‖Lp0 (Amr ) + ‖∇ǧz‖Lp0 (Amr )

)
≤ Chr . (200)
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Therefore (195) is satisfied if r ∈ (0, η2
0/(4M)) is sufficiently small. This shows that

Gmr is a contraction in the Banach space Xm
r . Consequently Fmr is a contraction.

Step 5: Conclusion. By the Banach fixed point theorem applied to Fmr , there exists
z0 ∈ Xm

r such that z0 = Fmr (z0). By (192) the function z0 solves (187). By (131)
the function u0 := z0 ◦ Ψ belongs to W 2,p0(Ω0,r

h ;R2) and, by direct computation, it

solves (183). Since W 2,p0(Ω0,r
h ;R2) ⊂ H1(Ω0,r

h ;R2) and problem (183) has a unique

weak solution in H1(Ω0,r
h ;R2), we conclude that u0 = ũ, hence ũ ∈ W 2,p0(Ω0,r

h ;R2).

Recalling that ũ = u − w0 in Ω
0,r/2
h , we obtain that u ∈ W 2,p0(Ω

0,r/2
h ;R2), which

concludes the proof.

Theorem 16. Under the hypotheses of Theorem 6, we have

h′′(α) = h′′(β) = 0 , (201)

and

σ0
α− α0

τ
=

γ

J(α)
− γ0 + ν0

h′(α)

J(α)2

(h′′
J3

)′
(α) , (202)

σ0
β − β0

τ
= − γ

J(β)
+ γ0 − ν0

h′(β)

J(β)2

(h′′
J3

)′
(β) , (203)

where J is defined in (42).
We begin with a preliminary lemma.

Lemma 17. Under the hypotheses of Theorem 6, let 1 ≤ p < ∞ and let v ∈
W 2,p(Ωh;R2) be such that v(x, 0) = 0 for a.e. x ∈ (α, β). Then there exists v̂ ∈
W 2,pR2;R2) such that v̂ = v in Ωh and v̂(x, 0) = 0 for a.e. x ∈ R.

Proof. Since Ωh is a domain with Lipschitz boundary, we can extend v to a function
v̂ ∈ W 2,p0((α, β) × R;R2) (see [44, Theorem 13.17]). Let α̃ := α − β−α

2 and β̃ :=

β + β−α
2 . For x ∈ [α̃, α] and y ∈ R we set

v̂(x, y) := 3v̂(2α− x, y)− 2v̂(3α− 2x, y) .

Since v̂, ∂xv̂, and ∂y v̂ have the same trace on both sides of the line x = α, the function

v̂ belongs to W 2,p0((α̃, β)× R;R2). Similarly, for x ∈ [β, β̃] and y ∈ R, we set

v̂(x, y) := 3v̂(2β − x, y)− 2v̂(3β − 2x, y)

and we obtain that v̂ belongs to W 2,p0((α̃, β̃) × R;R2). By construction, we have
v̂(x, 0) = 0 for a.e. x ∈ (α̃, β̃). Using a suitable cut-off function, we can modify v̂ near
the lines x = α̃ and x = β̃ so that the modified function vanishes near these lines. The
conclusion can be obtained by setting v̂ = 0 outside the strip (α̃, β̃)× R.

Proof of Theorem 16. Since u ∈W 2,p0(Ωh;R2) by Theorem 14, by Lemma 17 we can
extend u to a function û ∈ W 2,p0

loc (R2;R2) such that u(x, 0) = (e0x, 0) for a.e. x ∈ R.
We take ϕ, αε, and hε as in (81), (83), and (87), respectively, and we define uε as
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restriction of û to Ωhε . Due to our choice of the extension, we have uε(x, 0) = (e0x, 0)
for a.e. x ∈ (αε, β).
Step 1: We claim that

d

dε
E(αε, β, hε, uε)

∣∣∣∣
ε=0

=

∫ β

α

W (Eu(x, h(x)))ϕ(x) dx . (204)

By (102) there exists ε1 > 0 such that

E(αε, β, hε, uε)− E(α, β, h, u)

ε
= −1

ε

∫ α+2δ0

αε

(∫ h(x)

hε(x)

W (Eû(x, y)) dy
)
dx

− 1

ε

∫ αε

α

(∫ h(x)

0

W (Eu(x, y)) dy
)
dx =: Iε + IIε

for all −ε1 < ε < 0. Since û ∈W 2,p0(R2;R2), with p0 >
4
3 , by the Sobolev–Gagliardo–

Nirenberg embedding theorem, we have that ∇û ∈ Lp
∗
0 (R2;R2×2), where p∗0 > 4.

Hence, by Hölder’s inequality and (17),∫ αε

α

∫ h(x)

0

W (Eu(x, y)) dydx ≤ CW
∫ αε

α

∫ h(x)

0

|∇u(x, y)|2dydx

≤ CW
(∫ αε

α

∫ h(x)

0

|∇u(x, y)|4dydx
)1/2(∫ αε

α

h(x) dx
)1/2

≤ C
(∫ αε

α

∫ h(x)

0

|∇u(x, y)|4dydx
)1/2

|ε|

where we used the fact that |h(x)| ≤ L0|αε−α| and (85). This shows that IIε → 0 as
ε→ 0−.

Since the function ζ := Eû belongs to W 1,p0
loc (R2;R2), we have that W ◦ ζ ∈

W 1,1
loc (R2). Indeed, using the fact that W (ξ) = µ|ξ|2 +(λ+µ)(tr ξ)2, for every bounded

Lebesgue measurable set E ⊂ R2, by Hölder’s inequality, we have∫
E

|∇(W ◦ ζ)| dxdy ≤ C
∫
E

|ζ||∇ζ| dxdy ≤ C‖ζ‖
Lp
′
0 (E)
‖∇ζ‖Lp0 (E). (205)

Since p0 >
4
3 , it follows that p′0 = p0

p0−1 < p∗0 = 2p0
2−p0 , and thus the right-hand side of

(205) is finite.
By considering the representative of ζ that is locally absolutely continuous on a.e.

line parallel to the axes, we have that

W (ζ(x, y)) = W (ζ(x, h(x)))−
∫ h(x)

y

∂y(W ◦ ζ)(x, s) ds
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for a.e. x ∈ (αε, α+ 2δ0). Hence,

Iε = −1

ε

∫ α+2δ0

αε

∫ h(x)

hε(x)

W (ζ(x, y)) dydx = −1

ε

∫ α+2δ0

αε

∫ h(x)

hε(x)

W (ζ(x, h(x))) dydx

+
1

ε

∫ α+2δ0

αε

∫ h(x)

hε(x)

∫ h(x)

y

∂y(W ◦ ζ)(x, s) dsdydx =: Aε +Bε.

By (87) and (89), we have

Aε =

∫ α+2δ0

αε

W (ζ(x, h(x)))
(
ϕ(x) +

ωε
ε
ψ(x)

)
dx→

∫ α+2δ0

α

W (ζ(x, h(x)))ϕ(x) dx .

(206)
On the other hand, by Fubini’s theorem

Bε =
1

ε

∫ α+2δ0

αε

∫ h(x)

hε(x)

(s− hε(x))∂y(W ◦ ζ)(x, s) dsdx ,

and so,

|Bε| ≤ C
∥∥∥ϕ+

ωε
ε
ψ
∥∥∥
∞

∫ α+2δ0

αε

∫ h(x)

hε(x)

|∂y(W ◦ ζ)(x, s)| dsdx (207)

≤ C
∥∥∥ϕ+

ωε
ε
ψ
∥∥∥
∞
‖ζ‖

Lp
′
0 ((α,β)×(0,L0(β−α)))

(∫ α+2δ0

αε

∫ h(x)

hε(x)

|∂yζ(x, s)|p0dsdx

)1/p0

→ 0

as ε→ 0−, where in the last inequality we used (205).
It follows from (206) and (207) that

Iε →
∫ β

α

W (Eu(x, h(x)))ϕ(x) dx ,

which proves (204) when ε→ 0−.
On the other hand, if 0 < ε < ε1, then by (83) and (86) we have α− δ0 < αε < α,

and since suppψ ⊂ (α+ δ0, α+ 2δ0) we write

E(αε, β, hε, uε)− E(α, β, h, u)

ε
=

1

ε

∫ α+2δ0

α

(∫ hε(x)

h(x)

W (Eû(x, y)) dy
)
dx

+
1

ε

∫ α

αε

(∫ h(x)+εϕ(x)

0

W (Eû(x, y)) dy
)
dx

=: IIIε + IVε .

The proof that IVε → 0 as ε→ 0+ can be done as in the proof of IIε. The term IIIε
can be treated similarly to Iε.
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Step 2: By (99), (118), and (204), we have that the derivative d
dεF

0(αε, β, hε, uε)
exists at ε = 0, and by minimality,

d

dε
F0(αε, β, hε, uε)

∣∣∣∣
ε=0

= 0 . (208)

Hence, using also (100), we get

γ

∫ β

α

h′ϕ′

J
dx+ γ

J(α)

h′(α)
− γ0

1

h′(α)
+ ν0

∫ β

α

h′′ϕ′′

J5
dx− 5

2
ν0

∫ β

α

h′(h′′)2ϕ′

J7
dx

+
ν0

2

(h′′(α))2

J(α)5

1

h′(α)
+

∫ β

α

Wϕdx− 1

τ

∫ β

α

Hϕdx − σ0
α− α0

τ

1

h′(α)
= 0 ,

where W , H, and J are defined in (52) and (42). We integrate by parts once the
integrals containing ϕ′ and twice the integral containing ϕ′′ to obtain

−γ
∫ β

α

(h′
J

)′
ϕdx+ ν0

∫ β

α

(h′′
J5

)′′
ϕdx+

5

2
ν0

∫ β

α

(h′(h′′)2

J7

)′
ϕdx

+

∫ β

α

Wϕdx− 1

τ

∫ β

α

Hϕdx− γ h
′(α)

J(α)
+ γ

J(α)

h′(α)
− γ0

1

h′(α)
− ν0

h′′(α)

J(α)5
ϕ′(α)

+ ν0

(h′′
J5

)′
(α) +

5

2
ν0
h′(α)(h′′(α))2

J(α)7
+
ν0

2

(h′′(α))2

J(α)5

1

h′(α)
− σ0

α− α0

τ

1

h′(α)
,

where we used the facts that suppϕ ⊂ (α − δ0, α + δ0) and ϕ(α) = 1. By (53), and

the fact that m
∫ β
α
ϕdx = 0, we have

− γ h
′(α)

J(α)
+ γ

J(α)

h′(α)
− γ0

1

h′(α)
− ν0

h′′(α)

J(α)5
ϕ′(α) + ν0

(h′′
J5

)′
(α)

+
5

2
ν0
h′(α)(h′′(α))2

J(α)7
+
ν0

2

(h′′(α))2

J(α)5

1

h′(α)
− σ0

α− α0

τ

1

h′(α)
= 0 .

Since ϕ′0(0) can be chosen arbitrarily, by (81) so can ϕ′(α). Hence, by dividing the
previous equation by ϕ′(α) > 0 and letting ϕ′(α)→∞ we get

h′′(α) = 0. (209)

Using (209) and multiplying the previous equation by h′(α) we obtain

σ0
α− α0

τ
= γ

(J(α))2 − (h′(α))2

J(α)
− γ0 + ν0h

′(α)
(h′′
J5

)′
(α)

=
γ

J(α)
− γ0 + ν0

h′(α)

J(α)2

(h′′
J3

)′
(α) .
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In a similar way we can prove that h′′(β) = 0 and that

σ0
β − β0

τ
= − γ

J(β)
+ γ0 − ν0h

′(β)
(h′′
J5

)′
(β) = − γ

J(β)
+ γ0 − ν0

h′(β)

J(β)2

(h′′
J3

)′
(β) .

We omit the details. This concludes the proof.

We now estimate the Lp0 norm of ∇2u near α. To simplify the exposition we
assume that α = 0. Given r > 0, we set Ir := (0, r), Ω0,r

h := Ωh ∩ (Ir × R), and

Γ0,r
h := Γh ∩ (Ir × R) = {(x, h(x)) : 0 < x < r}.

Theorem 18. Under the assumptions of Theorem 6, let 0 < r < δ0. Then there exist
two constants 0 < c1 = c1(η0, η1,M) < 1 and c2 = c2(η0, η1,M) > 0, independent of
r, such that if

r2(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir)) ≤ c1 , (210)

then

‖∇2u‖
Lp0 (Ω

0,r/2
h )

≤ c2 +
c2
r
‖∇u‖Lp0 (Ω0,r

h ) , (211)

‖∇u‖
Lp0/(2−p0)(Γ

0,r/2
h )

≤ c2 +
c2
r
‖∇u‖Lp0 (Ω0,r

h ) . (212)

We begin with a preliminary lemma.
Lemma 19. Let 0 < η0 ≤ m ≤ L0, 1 ≤ p <∞, R2

+ := R× (0,+∞),

Am∞ := {(x, y) ∈ R2 : x > 0 , 0 < y < mx} (213)

and let v ∈W 2,p(Am∞) be such that v(x, 0) = 0 for x > 0. Then the function

v̂(x, y) :=

{
3v(2y/m− x, y)− 2v(3y/m− 2x, y) if (x, y) ∈ R2

+ \Am∞ ,

v(x, y) if (x, y) ∈ Am∞ ,

belongs to W 2,p(R2
+) with v̂(x, 0) = 0 for all x ∈ R. Moreover,

‖∇2v̂‖Lp(R2
+) ≤ C‖∇2v‖Lp(Am∞) (214)

for some constant C > 0 depending on η0, L0, and p.

Proof. Since v̂, ∂xv̂, and ∂y v̂ have the same trace on both sides of the line y = mx, the
function v̂ belongs to W 2,p0(R2

+;R2). By direct computation we check that v̂(x, 0) = 0
for a.e. x < 0. The estimate (214) can be obtained by computing the second derivatives
of v̂.

Proof of Theorem 18. Step 1: We proceed as in the proof of Theorem 14. We recall
that we are taking α = 0. Let m = h′(0), let r be as in (124), let Amr be the triangle
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defined in (119), and let v be defined as in (186). In view of Theorem 14, we have that
v ∈W 2,p0(Amr ;R2), and so, by (187) and Theorem 13, we have that

‖∇2v‖Lp0 (Amr ) ≤ κ
(
‖f ◦ Φ‖Lp0 (Amr ) + ‖fv‖Lp0 (Amr ) + ‖∇(g ◦ Φ)‖Lp0 (Amr )

+ ‖ĝv‖Lp0 (Amr ) + ‖ǧv‖Lp0 (Amr )

)
.

Since v = 0 near the line x = r by (181), we can extend it to Am∞ by setting v = 0
in Am∞ \ Amr , and the extended function belongs to W 2,p0(Am∞;R2) and satisfies the
estimate

‖∇2v‖Lp0 (Am∞) ≤ κ
(
‖f ◦ Φ‖Lp0 (Amr ) + ‖fv‖Lp0 (Amr )

+ ‖∇(g ◦ Φ)‖Lp0 (Amr ) + ‖ĝv‖Lp0 (Amr ) + ‖ǧv‖Lp0 (Amr )

)
. (215)

We underline that κ is independent of r ∈ (0, δ0), m ∈ [2η0, L0], and h satisfying
(120)–(123). Since h′′(α) = 0 by Theorem 16, it follows by the mean value theorem
that

‖h′′‖L∞(Ir) ≤ r‖h′′′‖L∞(Ir) . (216)

Hence, also by (196), (132), (133), (137), and (138) we have

‖fv‖Lp0 (Amr ) ≤ Cr2(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir))‖∇2v‖Lp0 (Amr )

+ Cr4(‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir))‖∇
2v‖Lp0 (Amr )

+ Cr(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir))‖∇v‖Lp0 (Amr )

+ Cr3(‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir))‖∇v‖Lp0 (Amr ) .

Since ∂xv and ∂yv vanish on one of the sides of Amr different from Γmr , by Poincaré’s
inequality (see Remark 6) we obtain

‖fv‖Lp0 (Amr ) ≤ Cr2(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir))‖∇2v‖Lp0 (Amr )

+ Cr4(‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir))‖∇
2v‖Lp0 (Amr ) . (217)

By (198), (149), and (150) we have

‖∇ĝv‖Lp0 (Amr ) ≤ Cr2
(
‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir)

)
‖∇2v‖Lp0 (Amr )

+ Cr(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir))‖∇v‖Lp0 (Amr )

+ Cr3(‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir))‖∇v‖Lp0 (Amr ) .

Using again Poincaré’s inequality (see Remark 6) we obtain

‖∇ĝv‖Lp0 (Amr ) ≤ Cr2
(
‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir)

)
‖∇2v‖Lp0 (Amr )

+ Cr4(‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir))‖∇
2v‖Lp0 (Amr ) (218)
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In the same way we prove that

‖∇ǧv‖Lp0 (Amr ) ≤ Cr2
(
‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir)

)
‖∇2v‖Lp0 (Amr )

+ Cr4(‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir))‖∇
2v‖Lp0 (Amr ) (219)

By (184), it follows from Lemma 9 that

‖f ◦ Φ‖Lp0 (Amr ) ≤ C‖f‖Lp0 (Ω0,r
h )

≤ C‖∇2ϕr‖C0(R2)‖u− w0‖Lp0 (Ω0,r
h )

+ C‖∇ϕr‖C0(R2)‖∇u−∇w0‖Lp0 (Ω0,r
h ) (220)

≤ C

r
‖∇u−∇w0‖Lp0 (Ω0,r

h ) ,

where we used the Poincaré inequality (see Lemma 15) and the inequalities
‖∇ϕr‖C0(R2) ≤ C/r, and ‖∇2ϕr‖C0(R2) ≤ C/r2.

By (185), it follows from Lemmas 8 and 9 that

‖∇(g ◦ Φ)‖Lp0 (Amr ) ≤ C
(
1 + sup

(x,y)∈Amr
y|σ′(x)|

)
‖∇g‖Lp0 (Ω0,r

h )

≤ C
(
1 + sup

(x,y)∈Amr
y|σ′(x)|

)[
‖∇2ϕr‖C0(R2)‖u− w0‖Lp0 (Ω0,r

h )

+ ‖∇ϕr‖C0(R2)‖∇u−∇w0‖Lp0 (Ω0,r
h )

+ ‖∇ϕr‖C0(R2)‖u− w0‖Lp0 (Ω0,r
h )‖h

′′‖L∞(Ir)

]
(221)

≤ C

r

[
1 + r2(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir))) + r4(‖h′′′‖2L∞(Ir)

+ ‖h(iv)‖L1(Ir))
2
]
‖∇u−∇w0‖Lp0 (Ω0,r

h ) ,

where we used the Poincaré inequality (see Lemma 15), the inequalities ‖∇ϕr‖C0(R2) ≤
C/r and ‖∇2ϕr‖C0(R2) ≤ C/r2, and (216).

Combining inequalities (215), and (217)–(221), we finally obtain

‖∇2v‖Lp0 (Amr ) ≤ Cr2(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir))‖∇2v‖Lp0 (Amr )

+ Cr4(‖h′′′‖2L∞(Ir) + ‖h(iv)‖2L1(Ir))‖∇
2v‖Lp0 (Amr ) (222)

+
C

r

[
1 + r2(‖h′′′‖L∞(Ir) + ‖h(iv)‖L1(Ir)))

+ r4(‖h′′′‖2L∞(Ir) + ‖h(iv)‖L1(Ir))
2
]
‖∇u−∇w0‖Lp0 (Ω0,r

h ) .

Let us fix c1 = c1(η0, η1,M) > 0 such that c1 < 1 and Cc1 < 1/4, where C =
C(η0, η1,M) is the constant in (222). Suppose that (210) holds. Then r4‖h′′′‖2L∞(Ir) ≤
r2‖h′′′‖L∞(Ir) and r4‖h(iv)‖2L1(Ir) ≤ r2‖h(iv)‖L1(Ir), hence (222) and the inequality

|Ω0,r
h | ≤ L0r

2/2 give
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1

2
‖∇2v‖Lp0 (Amr ) ≤

C

r
‖∇u−∇w0‖Lp0 (Ω0,r

h ) ≤
C

r
‖∇u‖Lp0 (Ω0,r

h ) +
C

r
r2/p0 ,

with new constants C depending only on η0, η1, and M . Since p0 < 2 by (156), we
obtain

‖∇2v‖Lp0 (Amr ) ≤
C

r
‖∇u‖Lp0 (Ω0,r

h ) + C (223)

In turn, by Remark 4, (133), (135), (138), (186), (210), (216), and Remark 6 applied
to ∂xv and ∂yv, the previous inequality gives

‖∇2ũ‖Lp(Ω0,r
h ) ≤ C‖∇

2v‖Lp(Amr ) ≤
C

r
‖∇u‖Lp0 (Ω0,r

h ) + C .

Since ũ = u− w0 in Ω
0,r/2
h and w0 is linear, inequality (211) follows.

Step 2: It follows from (181) and (186) that the function v ∈ W 2,p0(Amr ;R2)
is zero outside Am7r/8. Hence, by extending v to be zero, we can assume that v ∈
W 2,p0(Am∞;R2), where Am∞ is defined in (213) with m = h′(0). By Lemma 19 we have
that the function

v̂(x, y) :=

{
3v(2y/m− x, y)− 2v(3y/m− 2x, y) if (x, y) ∈ R2

+ \Am∞ ,

v(x, y) if (x, y) ∈ Am∞ ,

belongs to W 2,p0(R2
+) with v̂(x, 0) = 0 for all x ∈ R. Moreover,

‖∇2v̂‖Lp0 (R2
+) ≤ C‖∇2v‖Lp0 (Am∞) .

Next we extend v̂ across the x-axis by setting

v̄(x, y) :=

{
3v̂(x,−y)− 2v̂(x,−2y) if (x, y) ∈ R2 \ R2

+,

v̂(x, y) if (x, y) ∈ R2
+ .

Then v̄ ∈W 2,p0(R2) with

‖∇2v̄‖Lp0 (R2) ≤ C‖∇2v̂‖Lp0 (R2
+) ≤ C‖∇2v‖Lp0 (Amr ).

It follows from [44, Theorem 18.24] that the trace of ∇v̄ along the half- line Γm∞ :=
{(x,mx) : x ≥ 0} belongs to Lp0/(2−p0)(Γm∞;R2×2) with

‖∇v̄‖Lp0/(2−p0)(Γm∞) ≤ C‖∇2v̄‖Lp0 (R2) ≤ C‖∇2v‖Lp0 (Amr ) . (224)

Since ϕr = 1 on Amr/2, it follows from (181) and (186) that v̄ = (u− w0) ◦ Φ in Amr/2.

Hence, u− w0 = v̄ ◦Ψ in Ω
0,r/2
h . By (126) and the chain rule,

|∇(u− w0)(x, y)| ≤ C(1 + |σ′(x)y|)|∇v̄(x, σ(x)y)| .
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Taking y = h(x) and using (125) gives

|∇(u− w0)(x, h(x))| ≤ C sup
(x,y)∈Ω

0,r/2
h

(1 + |σ′(x)y|)|∇v̄(x,mx)|

for a.e. 0 < x < r/2. Hence, by (224),

‖∇(u− w0)‖
Lp0/(2−p0)(Γ

0,r/2
h )

≤ C sup
(x,y)∈Ω

0,r/2
h

(1 + |σ′(x)y|)‖∇v̄‖Lp0/(2−p0)(Γm∞)

≤ C sup
(x,y)∈Ω0,r

h

(1 + |σ′(x)y|)‖∇2v‖Lp0 (Amr ) .

Using (135), (201), (210), and (216),

‖∇(u− w0)‖
Lp0/(2−p0)(Γ

0,r/2
h )

≤ C‖∇2v‖Lp0 (Amr ) ≤ C +
C

r
‖∇u‖Lp0 (Ω0,r

h ) ,

where the last inequality follows from (223). Since by (180),

‖∇w0‖
Lp0/(2−p0)(Γ

0,r/2
h )

≤ |e0|((1 + L2
0)1/2r/8)(2−p0)/p0 ≤ C ,

inequality (212) follows.

Corollary 20. Under the hypotheses of Theorem 6, let 1 ≤ p ≤ p0/(2− p0) and let

r1 := min
{c1/21

2c0

1

Bτ (H,H0, α, α0, β, β0)
,
δ0
2
,
η1

2

}
, (225)

where Bτ (H,H0, α, α0, β, β0) is defined in (61), c0 > 1 is the constant in the statement
of Theorem 6, and 0 < c1 < 1 is the constant in (210). Then there exist two constants
c3 = c3(η0, η1,M) > 0 and c4 = c4(η0, η1,M, p) > 0 such that

‖∇2u‖
Lp0 (Ω

α,α+r1
h )

≤ c3Bτ (H,H0, α, α0, β, β0)2−2/p0 , (226)

‖∇u‖
Lp(Γ

α,α+r1
h )

≤ c4Bτ (H,H0, α, α0, β, β0)1−1/p . (227)

Proof. By Hölder’s inequality with exponent q = 2/p0, and Lemma 3, for every 0 <
r ≤ β − α,

‖∇u‖Lp0 (Ωα,α+r
h ) ≤ C(r2)1/(q′p0)‖∇u‖L2(Ωα,βh ) ≤ Cr

2/p0−1 , (228)

where we used the fact that q′ = 2/(2− p0).
By (68), (70), and (225), recalling that 2c0 > 1, we have

r2
1(‖h′′′‖L∞((α,β)) + ‖h(iv)‖L1((α,β))) ≤ 2c0r

2
1Bτ (H,H0, α, α0, β, β0)2 ≤ c1 .
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Hence, we can apply Theorem 18 to obtain (211) and (212). In turn, by (228),

‖∇2u‖
Lp0 (Ω

α,α+r1
h )

≤ c2 +
c2
r1
‖∇u‖

Lp0 (Ω
α,α+2r1
h )

≤ c2 + c2C
1

r
2−2/p0
1

≤ c3Bτ (H,H0, α, α0, β, β0)2−2/p0 ,

where in the last inequality we used (225) and the inequality 1 ≤
Bτ (H,H0, α, α0, β, β0).

If p < p0/(2 − p0), we use Hölder’s inequality with exponent p1 = p0/[p(2 − p0)],
(212), (228), and the fact that r1 ≤ 1 to get

‖∇u‖
Lp(Γ

α,α+r1
h )

≤ Cr1/(pp′1)
1 ‖∇u‖

Lp0/(2−p0)(Γ
α,α+r1
h )

= Cr
1+1/p−2/p0
1 ‖∇u‖

Lp0/(2−p0)(Γ
α,α+r1
h )

≤ C + Cr
1/p−2/p0
1 ‖∇u‖

Lp0 (Ω
α,α+2r1
h )

≤ C + Cr
1/p−1
1

≤ CBτ (H,H0, α, α0, β, β0)1−1/p,

where in the last inequality we used (225) and the inequality 1 ≤
Bτ (H,H0, α, α0, β, β0). The same inequality holds if p = p0/(2− p0).

7 Global Regularity

In this section we obtain global estimates for ∇2u in the entire domain Ωh. Given
r > 0 and x0 ∈ R, we set Ir(x0) := (x0−r, x0 +r). Under the assumptions of Theorem
6, let us fix r and x0 such that

0 < 2r ≤ min{δ0, η1} and α+ 8r/η0 ≤ x0 ≤ β − 8r/η0 . (229)

If x ∈ I4r(x0), the inequality η0 < 1 implies that

α+ 4r/η0 < α+ 8r/η0 − 4r < x < β − 8r/η0 + 4r < β − 4r/η0 . (230)

Using the fact that 2r ≤ δ0 < η0, by (79) we have h(x) ≥ η0(x−α)≥4r for α+4r/η0 ≤
x ≤ α+ δ0; in the same way we prove that h(x)≥4r for β− δ0 ≤ x ≤ β− 4r/η0. Using
(63) we have also h(x) ≥ 2η1≥4r for α+ δ0 ≤ x ≤ β − δ0. Hence, by (230), we have

h(x) ≥ 4r (231)

for every x ∈ I4r(x0) and r and x0 as in (229).
We recall that

Ω−h := {(x, y) ∈ R2 : α < x < β , −h(x) < y < 0} ,

Ωa,bh,r := {(x, y) ∈ R2 : a < x < b , h(x)− r < y < h(x)} ,
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Γa,bh := {(x, h(x)) : a < x < b} .

Theorem 21. Under the assumptions of Theorem 6, let r and x0 be as in (229).
Then for every 2 ≤ q < ∞ there exist constants c5 = c5(η0, η1,M) > 0, and c6 =
c6(η0, η1,M, q) > 0, independent of h, r and x0, such that if

‖h′′‖L∞(I4r(x0)) ≤
1

r
, (232)

then u ∈ H2(Ωx0−2r,x0+2r
h,2r ) and we have

‖∇2u‖
L2(Ω

x0−2r,x0+2r

h,2r )
≤ c5

r
‖∇u‖

L2(Ω
x0−4r,x0+4r

h,4r )
, (233)

‖∇u‖
Lq(Γ

x0−2r,x0+2r

h )
≤ c6
r1−1/q

‖∇u‖
L2(Ω

x0−4r,x0+4r

h,4r )
. (234)

Proof. Without loss of generality we assume that x0 = 0. For every ρ > 0 define
Rρ := (−ρ, ρ)× (−ρ, 0) and Jρ := (−ρ, ρ)× {0}.

Step 1: Let
v(x, y) := u(x, y + h(x)) . (235)

In view of (231) we have R4r ⊂ Ω−h. Hence, (58) gives{
div(A∇v) = 0 in R4r,

(A∇v)e2 = 0 on J4r .

Define vr(x, y) := v(rx, ry), (x, y) ∈ R4. Then vr satisfies the boundary value problem{
div(Ar∇vr) = 0 in R4,

(Ar∇vr)e2 = 0 on J4 ,

where Ar(x) := A(rx). Using using (59) and (232) and the fact that Liph ≤ L0, we
have

‖Ar‖C1(R2) ≤ C .
Standard elliptic regularity ([45, Proof of Theorem 20.4]) gives

‖∇2vr‖L2(R2) ≤ C‖∇vr‖L2(R4) .

In turn, we obtain

‖∇2v‖L2(R2r) ≤
C

r
‖∇v‖L2(R4r) . (236)

Since u(x, y) = v(x, y − h(x)) and

∂xu = ∂xv − ∂yvh′ , ∂yu = ∂yv (237)

∂2
xxu = ∂2

xv − 2∂2
xyvh

′ + ∂2
yyv(h′)2 − ∂yvh′′ , ∂2

xyu = ∂xyv − ∂2
yyvh

′ ,
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∂2
yyu = ∂2

yyv ,

we have

‖∇2u‖L2(Ω−2r,2r
h,2r ) ≤ C

(
‖∇2v‖L2(R2r) + ‖h′′‖L∞(I4r)‖∇v‖L2(R2r)

)
≤ C

r
‖∇v‖L2(R4r) ≤

C

r
‖∇u‖L2(Ω−4r,4r

h,4r ) ,

which proves (233).
Step 2: In this step we prove (234). We begin by proving

‖∇v‖L2(J2r) ≤
C

r1/2
‖∇v‖L2(R4r) , (238)

|∇v|H1/2(J2r) ≤
C

r
‖∇v‖L2(R4r) . (239)

Define z = ∇v. Then by standard trace theory [46, Theorem 2.5.3] and a rescaling
argument, we have

‖z‖2L2(J2r) ≤
C

r
‖z‖2L2(R2r) + Cr‖∇z‖2L2(R2r) ,

|z|2H1/2(J2r) ≤ C‖∇z‖
2
L2(R2r) .

Combining the previous inequalities with (236) gives (238) and (239).
Next, fix 2 < q <∞. We claim that

‖∇v‖Lq(J2r) ≤
C

r1−1/q
‖∇v‖L2(R4r) . (240)

Let s = q−2
2q < 1

2 . Then s is subcritical so, by [47, Corollary 2.3],

‖∇v‖Lq(J2r) = ‖∇v‖L2∗s (J2r) ≤
C

r1−1/q
‖∇v‖L1(J2r) + C|∇v|Hs(J2r) ,

where 2∗s = 2
1−2s = q is Sobolev critical exponent. On the other hand, by [47, Lemma

2.6],
|∇v|Hs(J2r) ≤ Cr1/2−s|∇v|H1/2(J2r) = Cr1/q|∇v|H1/2(J2r) .

Combining the last two inequalities and using Hölder’s inequality and (238) and (239),
we deduce

‖∇v‖Lq(J2r) ≤
C

r1/2−1/q
‖∇v‖L2(J2r) + Cr1/q|∇v|H1/2(J2r)

≤ C

r1−1/q
‖∇v‖L2(R4r) .

By changing variables using (237), we obtain (234).
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Corollary 22. Under the assumptions of Theorem 6, let r be such that

0 < 2r ≤ min{δ0, η1} , (241)

and let
αr := α+ 9r/η0 and βr := β − 9r/η0 . (242)

Then there exists a constant c7 = c7(η0, η1,M) > 0 such that, if

‖h′′‖L∞(I4r(x0)) ≤
1

r
(243)

for every x0 ∈ [αr, βr], then u ∈ H2(Ωαr,βrh ) and

‖∇2u‖L2(Ωαr,βrh ) ≤
c7
r
‖∇u‖L2(Ωh) . (244)

Proof. Assume (243) and let

Ω1 := {(x, y) : αr < x < βr, 0 < y < 2r} ,
Ω2 := {(x, y) : αr < x < βr, r < y < h(x)− r} ,
Ω3 := {(x, y) : αr < x < βr, h(x)− 2r < y < h(x)} .

Since Ωαr,βrh = Ω1 ∪ Ω2 ∪ Ω3, it is enough to prove that u ∈ H2(Ωi) and that

‖∇2u‖L2(Ωi) ≤
C

r
‖∇u‖L2(Ωh) . (245)

For every (x0, y0) in R2 and every ρ > 0 let Qρ(x0, y0) be the cube with center
(x0, y0) and sides with length 2ρ parallel to the coordinate axes. We set Q+

ρ (x0, y0) :=
{(x, y) ∈ Qρ(x0, y0) : y > 0}. We take for granted that every solution of the Lamé
system in a cube of the form Q2ρ(x0, y0) belongs to H2(Qρ(x0, y0)) and satisfies the
inequality ∫

Qρ(x0,y0)

|∇2u|2 dxdy ≤ C

ρ2

∫
Q2ρ(x0,y0)

|∇u|2 dxdy , (246)

(see [45, Theorem 20.1]). Moreover, every solution in a rectangle of the form
Q+

2ρ(x0, 0) with homogeneous Dirichlet boundary condition on I2ρ(x0) × {0} belongs

to H2(Q+
ρ (x0, 0)) and satisfies the inequality∫

Q+
ρ (x0,0)

|∇2u|2 dxdy ≤ C

ρ2

∫
Q+

2ρ(x0,0)

|∇u|2 dxdy . (247)

In both cases the dependence of the estimate on ρ follows from a standard dimensional
argument.

To prove the estimate for Ω1, for every integer i we define xi := 2ir and we consider
the set Z1 of integers i such that αr < xi < βr. Since xi satisfies (229), by (231) we
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have h(x) ≥ 4r for every i ∈ Z1 and x ∈ I4r(xi). It follows that Q+
4r(xi, 0) ⊂ Ωh.

Therefore u ∈ H2(Q+
2r(xi, 0)) and by (247),∫

Q+
2r(xi,0)

|∇2u|2 dxdy ≤ C

4r2

∫
Q+

4r(xi,0)

|∇u|2 dxdy .

Using the inclusion Ω1 ⊂
⋃
i∈Z1

Q+
2r(xi, 0), we obtain u ∈ H2(Ω1) and∫

Ω1

|∇2u|2 dxdy ≤ C

4r2

∑
i∈Z1

∫
Q+

4r(xi,0)

|∇u|2 dxdy .

Since each rectangle Q+
4r(xi, 0) intersects at most 7 rectangles of the form Q+

4r(xı̂, 0),
from the previous inequality and from the inclusion Q4r(x2i, 0)+ ⊂ Ωh we obtain∫

Ω1

|∇2u|2 dxdy ≤ C

4r2

∫
Ωh

|∇u|2 dxdy . (248)

To prove the estimate for Ω2, we set ρ := r/(3+3L0) and we consider the set Z2 of
all pairs of integers (i, j) such that Qρ(iρ, jρ)∩Ω2 6= ∅. We claim that Q2ρ(iρ, jρ) ⊂ Ωh
for every (i, j) ∈ Z2. Indeed, if (i, j) ∈ Z2, then there exists (x0, y0) ∈ Qρ(iρ, jρ)∩Ω2.
Hence αr < x0 < βr and r < y0 < h(x0) − r. If (x, y) ∈ Q2ρ(iρ, jρ), we have
|x − x0| < 3ρ and |y − y0| < 3ρ. Recalling the Lipschitz estimate for h, this implies
that 0 < r−3ρ < y0−3ρ < y < y0 +3ρ < h(x0)−r+3ρ ≤ h(x)+L0|x−x0|−r+3ρ <
h(x) + 3L0ρ − r + 3ρ = h(x), which gives (x, y) ∈ Ωh and concludes the proof of the
inclusion Q2ρ(iρ, jρ) ⊂ Ωh for (i, j) ∈ Z2. Therefore u ∈ H2(Qρ(iρ, jρ)) and by (246),∫

Qρ(iρ,jρ)

|∇2u|2 dxdy ≤ C

r2

∫
Q2ρ(iρ,jρ)

|∇u|2 dxdy .

Using the inclusion Ω2 ⊂
⋃

(i,j)∈Z2
Qρ(iρ, jρ) we obtain u ∈ H2(Ω2) and∫

Ω2

|∇2u|2 dxdy ≤ C

r2

∑
(i,j)∈Z2

∫
Q2ρ(iρ,jρ)

|∇u|2 dxdy .

Since each rectangleQ2ρ(iρ, jρ) intersects at most 49 rectangles of the formQ2ρ(̂ıρ, ̂ρ),
from the previous inequality and from the inclusion Q2ρ(iρ, jρ) ⊂ Ωh we obtain∫

Ω2

|∇2u|2 dxdy ≤ C

r2

∫
Ωh

|∇u|2 dxdy . (249)

To prove the estimate for Ω3, we consider xi and Z1 as for Ω1. By Theorem 21 we
obtain that u ∈ H2(Ωxi−2r,xi+2r

h,2r ) and that∫
Ω
xi−2r,x2i+2r

h,2r

|∇2u|2 dxdy ≤ c25
r2

∫
Ω
xi−4r,xi+4r

h,4r

|∇u|2 dxdy .
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Using the inclusion Ω3 ⊂
⋃
i∈Z1

Ωxi−2r,xi+2r
h,2r we obtain u ∈ H2(Ω3) and∫

Ω3

|∇2u|2 dxdy ≤ c25
r2

∑
i∈Z1

∫
Ω
xi−4r,xi+4r

h,4r

|∇u|2 dxdy . (250)

Since each set Ωxi−4r,xi+4r
h,4r intersects at most 7 sets of the form Ωxı̂−4r,xı̂+4r

h,4r , from

the previous inequality and from the inclusion Ωxi−4r,xi+4r
h,4r ⊂ Ωh, we obtain∫

Ω3

|∇2u|2 dxdy ≤ 7c25
r2

∫
Ωh

|∇u|2 dxdy , (251)

which concludes the proof.

Theorem 23. Under the hypotheses of Theorem 6, let 2 ≤ p ≤ p0/(2 − p0). Then
there exists a constant c8 = c8(η0, η1,M, p) > 0 such that

‖∇u‖Lp(Γh) ≤ c8Bτ (H,H0, α, α0, β, β0)1−1/p.

Proof. By (227),∫ α+r1

α

|∇u(x, h(x))|p
√

1 + (h′(x))2dx ≤ cp4Bτ (H,H0, α, α0, β, β0)p−1. (252)

A similar estimate holds in (β−r1, β). It remains to estimate ∇u over (α+r1, β−r1).
Let r := η0r1/4 and for every integer i we define xi := ir. Let Z be the set of integers
i such that α+ r1 < xi < β − r1. Since (α+ r1, β − r1) ⊂

⋃
i∈Z Ir(xi), we have∫ β−r1

α+r1

|∇u(x, h(x))|p
√

1 + (h′(x))2dx ≤
∑
i∈Z

∫
Ir(xi)

|∇u(x, h(x))|p
√

1 + (h′(x))2dx .

(253)
Recalling that r < r1 < δ0, we see that (229) is satisfied with r replaced by r/2.
Moreover, from (67) and the definitions of r1 and r, we obtain

r‖h′′‖L∞((α,β)) ≤ c0rBτ (H,H0, α, α0, β, β0) ≤ c1/21 η0/8 < 1 .

Hence we can apply Theorem 21, with r replaced by r/2, to obtain (234) in each
interval Ir(xi).

By (234),

‖∇u‖
Lp(Γ

xi−r,xi+r
h )

≤ c6
r1−1/p

‖∇u‖
L2(Ω

xi−2r,xi+2r

h,2r )
.

Combining this inequality with (253) gives∫ β−r1

α+r1

|∇u(x, h(x))|p
√

1 + (h′(x))2dx ≤ C

rp−1

∑
i∈Z

‖∇u‖p
L2(Ω

xi−2r,xi+2r

h,2r )
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≤ C

rp−1

(∑
i∈Z

‖∇u‖2
L2(Ω

xi−2r,xi+2r

h,2r )

)p/2
,

where we used the fact that p ≥ 2. Since each set Ωxi−2r,xi+2r
h,2r intersects at most 7

sets of the form Ωxı̂−2r,xı̂+2r2
h,2r , from the previous inequality and from the inclusion

Ωxi−2r,xi+2r
h,2r ⊂ Ωh we obtain

∫ β−r1

α+r1

|∇u(x, h(x))|p
√

1 + (h′(x))2dx ≤ C

rp−1
‖∇u‖pL2(Ωh) ≤

C

rp−1
1

, (254)

where in the last inequality we used (22) and the equality r := η0r1/4. By (225) we
have

1

r1
= max

{ 2c0

c
1/2
1

Bτ (H,H0, α, α0, β, β0),
2

δ0
,

2

η1

}
≤ max

{ 2c0

c
1/2
1

,
2

δ0
,

2

η1

}
Bτ (H,H0, α, α0, β, β0) ,

where in the last inequality we used the fact that 1 ≤ Bτ (H,H0, α, α0, β, β0).
Therefore, (254) yields∫ β−r1

α+r1

|∇u(x, h(x))|p
√

1 + (h′(x))2dx ≤ CBτ (H,H0, α, α0, β, β0)p−1.

Summing this inequality to (252) and to the corresponding inequality in (β − r1, β)
gives ∫ β

α

|∇u(x, h(x))|p
√

1 + (h′(x))2dx ≤ CBτ (H,H0, α, α0, β, β0)p−1 ,

which concludes the proof.

Theorem 24. Under the hypotheses of Theorem 6, let 1 < p ≤ p0
4−2p0

. Then we have

h(iv) ∈ Lp0/(4−2p0)((α, β)) and there exists a constant c9 = c9(η0, η1,M, p) > 0 such
that

‖h(iv)‖pLp((α,β)) ≤ c9Bτ (H,H0, α, α0, β, β0)q, (255)

where Bτ (H,H0, α, α0, β, β0) is defined in (61) and

q := max{p, 5p/2− 1, 3p− 2, 2p− 1} .

Proof. By (53),

−γ
(h′
J

)′
+ ν0

(h′′
J5

)′′
+

5

2
ν0

(h′(h′′)2

J7

)′
+W − 1

τ
H̄ = m
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in (α, β), where we recall that W (x) := W (Eu(x, h(x))) and

H(x) :=

∫ x

−∞
(H(s)−H0(s))

√
1 + ((ȟ0)′(s))2 ds .

Hence,

|h(iv)|p ≤ C|h′′|p + C|h′′′|p|h′′|p + C|h′′|3p + CW
p

+
C

τp
|H|p + C|m|p (256)

for some constant C > 0 depending on L0.
By (67) and (105) we have∫ β

α

|h′′|pdx ≤ (β − α)‖h′′‖pL∞(α,β) ≤ CBτ (H,H0, α, α0, β, β0)p. (257)

If 1 < p < 2, by Hölder’s inequality with exponents 2
p and 2

2−p ,

∫ β

α

|h′′′|p|h′′|pdx ≤
(∫ β

α

|h′′|2dx
)p/2(∫ β

α

|h′′′|2p/(2−p)dx
)(2−p)/2

≤Mp/2‖h′′′‖(3p−2)/2
L∞((α,β))‖h

′′′‖(2−p)/2L1((α,β)),

where in the last inequality we used (64) and the fact that
(
2p/(2−p)−1

)
(2−p)/2 =

(3p− 2)/2. Using (68) and (69), it follows from the previous inequality that∫ β

α

|h′′′|p|h′′|pdx ≤ CBτ (H,H0, α, α0, β, β0)5p/2−1, (258)

where we used the fact that 3p− 2 + (2− p)/2 = 5p/2− 1. If p ≥ 2, by (64), (67), and
(68) we have ∫ β

α

|h′′′|p|h′′|pdx ≤ ‖h′′′‖pL∞((α,β))‖h
′′‖p−2
L∞((α,β))

∫ β

α

|h′′|2dx

≤C(Bτ (H,H0, α, α0, β, β0))3p−2. (259)

On the other hand, by (64) and (67),∫ β

α

|h′′|3pdx ≤ ‖h′′‖3p−2
L∞((α,β))

∫ β

α

|h′′|2dx ≤ C(Bτ (H,H0, α, α0, β, β0))3p−2M . (260)

By the previous theorem∫ β

α

W
p
dx ≤

∫ β

α

(W (Eu(x, h(x))))p
√

1 + (h′(x))2dx
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≤ C
∫ β

α

|∇u(x, h(x))|2p
√

1 + (h′(x))2dx ≤ CBτ (H,H0, α, α0, β, β0)2p−1.

Since 1
τ |H| ≤ CBτ (H,H0, α, α0, β, β0) and |m| ≤ CBτ (H,H0, α, α0, β, β

0) by (61)
and (112), respectively, combining these two inequalities with (256)– (260) yields (255).

Remark 7. Note that 5p/2 − 1 ≤ 2 for p ≤ 6
5 , 3p − 2 ≤ 2 for p ≤ 4

3 , and
2p − 1 ≤ 2 for p ≤ 3/2. Hence, by taking 1 < p ≤ min{6/5, p0/(4 − 2p0)} we
have that q ≤ 2. Moreover, as in the proof of (20), we have that H − H0 = 0 for
x /∈ (min{α, α0},max{β, β0}). Hence, by Hölder’s inequality

(∫
R
|H −H0| dx

)2

=

(∫ max{β,β0}

min{α,α0}
|H −H0| dx

)2

≤ (max{β, β0} −min{α, α0})
∫ max{β,β0}

min{α,α0}
|H −H0|2 dx .

In turn, by (61) for q ≤ 2,

Bτ (H,H0, α, α0, β, β0)q ≤ 4 + 4
(max{β, β0} −min{α, α0})

τ2

∫
R
|H −H0|2dx (261)

+
4

τ2
|α− α0|2 +

4

τ2
|β − β0|2.

8 Discrete Time Approximation

For a given function f = f(x, t) we set

ḟ(x, t) :=
∂f

∂t
(x, t) and f ′(x, t) :=

∂f

∂x
(x, t) .

Fix (α0, β0, h0, u0) ∈ A with Liph0 < L0 and define

H0(x) :=

∫ x

−∞
ȟ0(ρ) dρ , (262)

where ȟ0 is the extension of h0 by zero outside the interval (α0, β0). For every k ∈ N
we set τk := 1

k and tik := iτk, i ∈ N ∪ {0}. We define (αik, β
i
k, h

i
k, u

i
k) ∈ A inductively

with respect to i as follows:

(α0
k, β

0
k, h

0
k, u

0
k) := (α0, β0, h0, u0) , (263)

and given (αi−1
k , βi−1

k , hi−1
k , ui−1

k ) ∈ A we let (αik, β
i
k, h

i
k, u

i
k) ∈ A be a minimizer of

the functional

F i−1
k (α, β, h, u) := S(α, β, h) + E(α, β, h, u) + Tτk(α, β, h;αi−1

k , βi−1
k , hi−1

k ) , (264)
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whose existence is guaranteed by Theorem 2. We introduce the linear interpolations
(in time) for α, β, h given by

αk(t) := αi−1
k +

t− ti−1
k

τk
(αik − αi−1

k ) , (265)

βk(t) := βi−1
k +

t− ti−1
k

τk
(βik − βi−1

k ) , (266)

hk(t, x) := ȟi−1
k (x) +

t− ti−1
k

τk
(ȟik(x)− ȟi−1

k (x)) , (267)

for t ∈ [ti−1
k , tik], i ∈ N, and x ∈ R, where ȟik is the extension of hik by zero outside the

interval [αik, β
i
k].

We also introduce the piecewise constant interpolations (in time) for α, β, h given
by

α̂k(t) := αik , β̂k(t) := βik , ĥk(t, x) := ȟik(x) (268)

for t ∈ (ti−1
k , tik], i ∈ N, and x ∈ R. For t = 0 we set α̂k(0) := α0

k = α0, β̂k(0) := β0
k =

β0, and ĥk(0, x) := h0
k(x) = h0(x). Observe that, since (αik, β

i
k, h

i
k) ∈ As for every i

and k, we have ĥk(t, ·) ∈ H2((α̂k(t), β̂k(t))) for every t ≥ 0 and, by Lemma 1,

β̂k(t)− α̂k(t) ≥
√

2A0

L0
. (269)

Note that since Lip ȟi−1
k ≤ L0 and Lip ȟik ≤ L0, we have Liphk(t, ·) ≤ L0 and

Lip ĥk(t, ·) ≤ L0 for every t ∈ [0,∞). Moreover by (6),∫
R
hk(t, x) dx =

∫
R
ĥk(t, x) dx = A0 (270)

for every t ∈ [0,∞) and all k.
Lemma 25. There exists a constant M0 > 0 such that

S(αik, β
i
k, h

i
k) + E(αik, β

i
k, h

i
k, u

i
k) +

i∑
j=1

Tτk(αjk, β
j
k, h

j
k;αj−1

k , βj−1
k , hj−1

k ) ≤M0

for every i and k.

Proof. Fix i ∈ N and let 1 ≤ j ≤ i. Since (αjk, β
j
k, h

j
k, u

j
k) ∈ A is a minimizer of the

functional F j−1
k defined in (264), we have

S(αjk, β
j
k, h

j
k) + E(αjk, β

j
k, h

j
k, u

j
k) + Tτk(αjk, β

j
k, h

j
k;αj−1

k , βj−1
k , hj−1

k )

≤ S(αj−1
k , βj−1

k , hj−1
k ) + E(αj−1

k , βj−1
k , hj−1

k , uj−1
k ) .
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Summing both sides of this inequality over j = 1, . . . , i, we obtain

S(αik, β
i
k, h

i
k) + E(αik, β

i
k, h

i
k, u

i
k) +

i∑
j=1

Tτk(αjk, β
j
k, h

j
k;αj−1

k , βj−1
k , hj−1

k )

≤ S(α0, β0, h0) + E(α0, β0, h0, u0) =: M0 ,

and this concludes the proof.

Proposition 26. There exists a constant M1 > 0 such that∫ ∞
0

(α̇k(t))2dt ≤M1 and

∫ ∞
0

(β̇k(t))2dt ≤M1 (271)

for every k. In particular,

|αk(t2)− αk(t1)| ≤M1/2
1 |t2 − t1|1/2, |βk(t2)− βk(t1)| ≤M1/2

1 |t2 − t1|1/2 (272)

for every t1,t2 ∈ [0,∞), and

α0 − (tM1)1/2 ≤ αk(t) ≤ βk(t) ≤ β0 + (tM1)1/2 (273)

for every t ∈ [0,∞).

Proof. By (14), (18), and Lemma 25 we obtain

1

τk

∞∑
j=1

(αjk − α
j−1
k )2 ≤ 2M0

σ0
=: M1 .

By (265) the previous inequality can be written as

∫ ∞
0

(α̇k(t))2dt =

∞∑
j=1

∫ tjk

tj−1
k

(α̇k(t))2dt ≤M1 .

The first inequality (272) now follows from the fundamental theorem of calculus and
Hölder’s inequality. Since αk(0) = α0 the first inequality (273) is a direct consequence
of (272). Similar estimates hold for βk.

Define

Hi
k(x) :=

∫ x

−∞
ȟik(ρ) dρ , Hk(t, x) :=

∫ x

−∞
hk(t, ρ) dρ . (274)

Ĥk(t, x) :=

∫ x

−∞
ĥk(t, ρ) dρ . (275)
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Observe that by (267),

Hk(t, x) = Hi−1
k (x) +

t− ti−1
k

τk
(Hi

k(x)−Hi−1
k (x)) for t ∈ [ti−1

k , tik] , (276)

Ĥk(t, x) = Hi
k(x) for (ti−1

k , tik] , (277)

for i ∈ N and x ∈ R.
Proposition 27. For every k,∫ ∞

0

‖Ḣk(t, ·)‖2L2(R)dt ≤ 2M0 , (278)

where M0 is the constant in Lemma 25. In particular,

‖Hk(t2, ·)−Hk(t1, ·)‖L2(R) ≤ (2M0)1/2|t2 − t1|1/2 (279)

‖Hk(t, ·)‖L2(R) ≤ (2M0)1/2t1/2 + ‖H0‖L2(R) (280)

for every t, t1, t2 ∈ [0,∞) and for every k, where H0 is defined in (262).

Proof. By (14), (18), and Lemma 25,

1

2τk

∞∑
j=1

∫
R

(Hj
k(x)−Hj−1

k (x))2dx ≤M0 .

Using (276) we have

∫ ∞
0

∫
R

(Ḣk(t, x))2dxdt =

∞∑
j=1

∫ tjk

tj−1
k

∫
R

(Ḣk(t, x))2dxdt

=
1

τk

∞∑
j=1

∫
R

(Hj
k(x)−Hj−1

k (x))2dx ≤ 2M0 ,

which gives (278). The estimate (279) follows from the fundamental theorem of calculus
and Hölder’s inequality. From (262) and (279) we obtain (280).

Proposition 28. There exists a constant M2 > 0 such that

‖hk(t, ·)‖L2(R) ≤M2(t1/2 + (β0 − α0)) , (281)

‖hk(t2, ·)− hk(t1, ·)‖L2(R) ≤M2|t2 − t1|3/10, (282)

for every t, t1, t2 ∈ [0,∞) and for every k.

Proof. By (267) and (273) we have that hk(t, x) = 0 for every t ∈ [0,∞) and for
x /∈ [α0 − (tM1)1/2, β0 + (tM1)1/2]. Since Liphk(t, ·) ≤ L0 for every t ∈ [0,∞), we
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obtain (281). To prove (282), fix t1, t2 ∈ [0,∞) and k and apply Theorem 7.41 in [44]
to the function v(x) := Hk(t2, x)−Hk(t1, x), x ∈ R, to get

‖hk(t2, ·)− hk(t1, ·)‖L2(R) = ‖H ′k(t2, ·)−H ′k(t1, ·)‖L2(R)

≤ CGN‖Hk(t2, ·)−Hk(t1, ·)‖3/5L2(R)‖H
′′
k (t2, ·)−H ′′k (t1, ·)‖2/5L∞(R)

≤ CGN (2M0)3/10|t2 − t1|3/10‖h′k(t2, ·)− h′k(t1, ·)‖2/5L∞(R)

≤ CGN (2M0)3/10(2L0)2/5|t2 − t1|3/10

where in the last inequalities we used (279) and the fact that Liphk(t, ·) ≤ L0 for
every t ∈ [0,∞).

Proposition 29. There exists a constant M3 > 1 such that for every i, k we have

∫ βik

αik

|(hik)′′(x)|2dx ≤M3 . (283)

In particular,

|(hik)′(x2)− (hik)′(x1)| ≤M1/2
3 (x2 − x1)1/2 (284)

for all αik ≤ x1 ≤ x2 ≤ βik.

Proof. It follows from (13), (14), Lemma 25, and the fact that Liphik ≤ L0 that

∫ βik

αik

((hik)′′(x))2dx ≤ (1 + L2
0)5/2

∫ βik

αik

((hik)′′(x))2

(1 + ((hik)′(x))2)5/2
dx ≤ 2ν−1

0 (1 + L2
0)5/2M0 .

By the fundamental theorem of calculus and Hölder’s inequality this implies (284).

9 Convergence to the Evolution Problem

Throughout this section we assume that

(α0, β0, h0) ∈ As , (285)

h0(x) > 0 for every x ∈ (α0, β0) , (286)

h′0(α0) > 0 and h′0(β0) < 0 , (287)

Liph0 < L0 . (288)

Proposition 30. Let αk, βk, α̂k, and β̂k be defined as in (265), (266), and (268).
Then there exist functions α, β : (0,∞) → R such that α, β ∈ H1((0, T )) for every
T > 0 and, up to subsequences (not relabeled),

αk ⇀ α and βk ⇀ β weakly in H1((0, T )) , (289)

αk → α and βk → β uniformly in [0, T ] , (290)
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α̂k → α and β̂k → β uniformly in [0, T ] , (291)

for every T > 0. Moreover,

α(0) = α0 , β(0) = β0 , and β(t)− α(t) ≥
√

2A0

L0
(292)

for every t ≥ 0.

Proof. Proposition 26, together with the initial conditions αk(0) = α0 and βk(0) = β0,
implies (289), which in turn yields (290) in view of the compact embedding. By (265)
and (268), for every k and t ∈ [0, T ], there exists a t̂ ∈ [0, T ] with t ≤ t̂ < t+ τk such

that α̂k(t) = αk(t̂). By (272), |α̂k(t)−αk(t)| ≤M1/2
1 τk. This implies that α̂k−αk → 0

uniformly. Similarly, β̂k − βk → 0 uniformly. Hence, (291) follows from (290). The
equalities in (292) follow from (290), since αk(0) = α0 and βk(0) = β0. The inequality
in (292) follows from (269) and (291).

Proposition 31. Let hk be defined as in (267). Then there exist a subsequence (not
relabeled) and a nonnegative function h∗ ∈ C0,3/10([0,∞);L2(R)) such that for every
t ∈ [0,∞),

Liph∗(t, ·) ≤ L0 and h∗(t, x) = 0 for x /∈ (α(t), β(t)) (293)

hk(t, ·)→ h∗(t, ·) uniformly in R , (294)

h′k(t, ·) ∗⇀ h′∗(t, ·) weakly star in L∞(R) . (295)

Moreover, if we let h(t, ·) be the restriction of h∗(t, ·) to (α(t), β(t)), then h(t, ·) ∈
H1

0 ((α(t), β(t))) ∩H2((α(t), β(t))) and∫ β(t)

α(t)

h(t, x) dx = A0 , (296)∫ β(t)

α(t)

|h′′(t, x)|2dx ≤M3 , (297)

|h′(t, x2)− h′(t, x1)| ≤M1/2
3 (x2 − x1)1/2 for all x1, x2 with α(t) ≤ x1 ≤ x2 ≤ β(t)

(298)

for every t ∈ [0,∞).
Remark 8. It follows from the previous proposition that (α(t), β(t), h(t, ·)) ∈ As for
every t ∈ [0,∞).

Proof of Proposition 31. By Proposition 28 and the Ascoli–Arzelà theorem there exist
a subsequence (not relabeled) and a nonnegative function h∗ ∈ C0,3/18([0,∞);L2(R))
such that for every t ∈ [0,∞),

hk(t, ·) ⇀ h∗(t, ·) weakly in L2(R) . (299)
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Since Liphk(t, ·) ≤ L0 for every t ∈ [0,∞) and every k, we obtain that Liph∗(t, ·) ≤ L0

and that (295) holds.
Fix t ∈ [0,∞) and k and find i such ti−1

k ≤ t ≤ tik. Since αk(ti−1
k ) = αi−1

k and
αk(tik) = αik, (see (265)), by (272) we have

αk(t)− (M1τk)1/2 ≤ min{αi−1
k , αik} ≤ max{αi−1

k , αik} ≤ αk(t) + (M1τk)1/2, (300)

where we used the fact that tik − t
i−1
k = τk. Similarly we can show that

βk(t)− (M1τk)1/2 ≤ min{βi−1
k , βik} ≤ max{βi−1

k , βik} ≤ βk(t) + (M1τk)1/2 . (301)

Therefore by (267) we have

hk(t, x) = 0 for x /∈ (αk(t)− (M1τk)1/2, βk(t) + (M1τk)1/2) . (302)

Hence, by (290) and (299) we obtain that h∗(t, x) = 0 for x /∈ (α(t), β(t)). In turn,
since Liphk(t, ·) ≤ L0, we can apply the Ascoli–Arzelà theorem in the x variable and
we obtain (294). Properties (270), (290), (294), and (302) imply (296).

To prove (297) observe that by (267), (300), and (301), for every x ∈ (αk(t) +
(M1τk)1/2, βk(t)− (M1τk)1/2) we have

hk(t, x) = hi−1
k (x) +

t− ti−1
k

τk
(hik(x)− hi−1

k (x)) .

Fix a < b such that α(t) < a < b < β(t). By (290) we have that αk(t) + (M1τk)1/2 <
a < b < βk(t) − (M1τk)1/2 for all k sufficiently large, and so h′′k(t, ·) ∈ L2((a, b)) and
by (283), we have that∫ a

b

|h′′k(t, x)|2dx ≤
t− ti−1

k

τk

∫ a

b

|(hik)′′(x)|2dx+
tik − t
τk

∫ a

b

|(hi−1
k )′′(x)|2dx ≤M3 .

It follows from (294) that h′′(t, ·) ∈ L2((a, b)) and∫ b

a

|h′′(t, x)|2dx ≤M3 . (303)

Taking the limit as a→ α(t) and b→ β(t) we conclude that h(t, ·) ∈ H2((α(t), β(t)))
and that (297) holds. In turn, by the fundamental theorem of calculus and Hölder’s
inequality, we obtain (298).

Proposition 32. Let {hk}k and h∗ be the subsequence and the function given in
Proposition 31, and let {Hk}k be defined by (274). Then up to a further subsequence
(not relabeled),

Hk ⇀ H weakly in H1((0, T );L2(R)) for every T > 0 , (304)
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with

H(t, x) :=

∫ x

−∞
h∗(t, ρ) dρ . (305)

Proof. By (278) and (280) there exist a subsequence (not relabeled) and a function
H : (0,∞)→ L2(R) such that H ∈ H1((0, T );L2(R)) for every T > 0 and (304) holds.
It suffices to prove that H equals the right-hand side of (305).

Let ϕ ∈ C∞c ((0,∞)) and ψ ∈ C∞c (R). Then by (304),∫ ∞
0

∫
R
ϕ(t)ψ(x)Hk(t, x) dxdt→

∫ ∞
0

∫
R
ϕ(t)ψ(x)H(t, x) dxdt

as k →∞. On the other hand,∫ ∞
0

∫
R
ϕ(t)ψ(x)Hk(t, x) dxdt =

∫ ∞
0

∫
R

∫ x

−∞
ϕ(t)ψ(x)hk(t, ρ) dρdxdt

→
∫ ∞

0

∫
R

∫ x

−∞
ϕ(t)ψ(x)h(t, ρ) dρdxdt

as k → ∞, where we used the Lebesgue dominated convergence and (281), (290),
(294), and (302). Given the arbitrariness of ϕ and ψ, we obtain (305).

Next we study the convergence of the piecewise constant interpolations Ĥk.
Proposition 33. Let {Hk}k and H be the subsequence and the function given in
Proposition 32, and let {Ĥk}k be defined by (275). Then

Ĥk(t, ·) ⇀ H(t, ·) weakly in L2(R) for every t ≥ 0 . (306)

Proof. Let ϕ ∈ L2(R) and define

ψk(t) :=

∫
R

(Hk(t, x)−H(t, x))ϕ(x) dx .

By Proposition 32, for every T > 0 the function ψk ∈ H1((0, T )) and ψk ⇀ 0 weakly
in H1((0, T )). This implies that ψk(t)→ 0 for every t ∈ (0, T ). By the arbitrariness of
ϕ and T , we deduce that

Hk(t, ·) ⇀ H(t, ·) weakly in L2(R) for every t ≥ 0 . (307)

By (276) and (279), for every t ∈ (ti−1
k , tik],

‖Ĥk(t, ·)−Hk(t, ·)‖L2(R) = ‖Hk(tik, ·)−Hk(t, ·)‖L2(R) ≤ (2M0)1/2τ
1/2
k → 0

as k →∞. Together with (307), this implies (306).
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Corollary 34. Let h∗ be as in Proposition 31 and let {Hk}k and H be the subse-
quence and the function given in Proposition 32. Fix t ≥ 0. Then the corresponding
subsequence {ĥk}k satisfies

ĥk(t, ·)→ h∗(t, ·) uniformly in R , (308)

ĥ′k(t, ·) ∗⇀ h′∗(t, ·) weakly star in L∞(R) . (309)

Proof. Since ĥk(t, ·) = Ĥ ′k(t, ·) ⇀ H ′(t, ·) = h∗(t, ·) weakly in H−1(R) in view of the

previous proposition, and {ĥk(t, ·)}k is bounded in W 1,∞(R), the conclusion follows.

In the remaining of this section we always assume that the sequences {αk}k, {βk}k,
{hk}k, {Hk}k satisfy (289), (290), (294), (295), and (304), (306), (308), and (309),
and that h(t, ·) is the restriction of h∗(t, ·) to (α(t), β(t)).
Lemma 35. Let {tk}k be a sequence of nonnegative numbers converging to some
t0 ≥ 0. Then

hk(tk, ·)→ h∗(t0, ·) , ĥk(tk, ·)→ h∗(t0, ·) uniformly in R . (310)

Moreover, if α(t0) < a < b < β(t0), then

h′k(tk, ·)→ h′(t0, ·) , ĥ′k(tk, ·)→ h′(t0, ·) uniformly on [a, b] . (311)

Finally, if {xk}k is a sequence in R converging to some x0 ∈ R such that α̂k(tk) ≤
xk ≤ β̂k(tk), then α(t0) ≤ x0 ≤ β(t0) and

ĥ′k(tk, xk)→ h′(t0, x0) (312)

Proof. Since Liphk(tk, ·) ≤ L0 for every k, by (302) we can apply the Ascoli–Arzelà
theorem to obtain that up to a subsequence (not relabeled)

hk(tk, ·)→ g(·) uniformly in R

for some Lipschitz continuous function g. On the other hand, by (279),

‖Hk(tk, ·)−Hk(t0, ·)‖L2(R) ≤ (2M0)1/2|tk − t0|1/2

and in view of (304) we have that

Hk(t0, ·) ⇀ H(t0, ·) weakly in L2(R) .

The last two properties imply that

Hk(tk, ·) ⇀ H(t0, ·) weakly in L2(R) .
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Since H ′k(tk, ·) = hk(tk, ·), it follows that g(·) = H ′(t0, ·) = h∗(t0, ·). Since the limit
does not depend on the subsequence, this concludes the proof of (310).

By (283), ∫ b

a

|h′′k(tk, x)|2dx ≤M3

for all k sufficiently large. By Hölder’s inequality this bound implies that h′k(tk, ·) are
Hölder continuous of exponent 1

2 on [a, b] uniformly with respect to k. By the Ascoli–
Arzelà theorem again and by (310) we obtain (311). In particular, if α(t0) < x < β(t0),
then

h′k(tk, x)→ h′(t0, x) . (313)

If α(t0) < x0 < β(t0), then we can choose a and b with α(t0) < a < x0 < b < β(t0)
and (312) follows from (311). It remains to consider the cases x0 = α(t0) or x0 = β(t0).
We consider only the case x0 = α(t0). Fix 0 < ε < β(t0) − α(t0) and observe that

α̂k(tk) < xk + ε < β̂k(tk) for all k sufficiently large. By what we just proved

ĥ′k(tk, xk + ε)→ h′(t0, x0 + ε) . (314)

By the fundamental theorem of calculus, Hölder’s inequality, and (283),

|ĥ′k(tk, xk + ε)− ĥ′k(tk, xk)| ≤ ε1/2

(∫ xk+ε

xk

|ĥ′′k(tk, x)|2
)1/2

≤ ε1/2M
1/2
3 .

Similarly,

|h′(t0, x0 + ε)− h′(t0, x0)| ≤ ε1/2M
1/2
3 .

Therefore, by (314),

lim sup
k→∞

|ĥ′k(tk, xk)− h′(t0, x0)| ≤ 2ε1/2M
1/2
3 .

Letting ε→ 0+, we obtain (312).

In what follows Cb(R) is the space of bounded continuous functions in R with the
supremum norm.
Lemma 36. The function t 7→ h∗(t, ·) from [0,∞) into Cb(R) is continuous.

Proof. Let {tn}n be a sequence in [0,∞) converging to t0. Since h∗ ∈
C3/10([0,∞);L2(R)) we have h∗(tn, ·) → h∗(t0, ·) in L2(R). On the other hand,
Liph∗(tn, ·) ≤ L0 for every n and by (293) the supports of the functions h∗(tn, ·)
are contained in a compact set independent of n. Hence, the Ascoli–Arzelà theorem
implies h∗(tn, ·)→ h∗(t0, ·) in Cb(R).

Lemma 37. Fix a bounded interval I ⊂ [0,∞) and let a < b be such that

α(t) ≤ a < b ≤ β(t)

for all t ∈ I. Then the function t 7→ h′(t, ·) from I into C0([a, b]) is continuous
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Proof. Let {tn}n be a sequence in I converging to t0 ∈ I. By Lemma 36, h(tn, ·) →
h(t0, ·) in C0([a, b]). On the other hand, by (297), the sequence {h(tn, ·)}n is bounded
in H2((a, b)) and it converges weakly to h(t0, ·) in H2((a, b)) and so h′(tn, ·)→ h′(t0, ·)
in C0([a, b]).

Since h(t, ·) is defined only in [α(t), β(t)], its space derivatives at the endpoints are
one-sided.
Lemma 38. The functions t 7→ h′(t, α(t)) and t 7→ h′(t, β(t)) are continuous on
[0,∞).

Proof. It is enough to give the proof for t 7→ h′(t, α(t)). Let {tn}n be a sequence in
[0,∞) converging to t0 and let x ∈ (α(t0), β(t0)). By continuity of α and β there exist
an open bounded interval I ⊂ [0,∞) and a < b such that

α(t) ≤ a < x < b ≤ β(t)

for all t ∈ I. By Lemma 37,
h′(tn, x)→ h′(t0, x)

as n→∞. By (298),

|h′(tn, α(tn))− h′(t0, α(t0))| ≤ |h′(tn, α(tn))− h′(tn, x)|+ |h′(tn, x)− h′(t0, x)|
+ |h′(t0, x)− h′(t0, α(t0))|

≤M1/2
3 |α(tn)− x|1/2 + |h′(tn, x)− h′(t0, x)|+M

1/2
3 |α(t0)− x|1/2.

Letting n→∞ gives

lim sup
n→∞

|h′(tn, α(tn))− h′(t0, α(t0))| ≤ 2M
1/2
3 |α(t0)− x|1/2.

Taking the limit as x→ α(t0)+ we conclude the proof.

Theorem 39. Under the assumptions (285)–(288), there exists T0 > 0 such that for
all t ∈ [0, T0],

h(t, x) > 0 for all x ∈ (α(t), β(t)) , (315)

h′(t, α(t)) > 0 and h′(t, β(t)) < 0 . (316)

Proof. Fix 0 < ε < min{h′0(α0),−h′0(β0)}. By Lemma 38 there exists T1 > 0 such that

h′(t, α(t)) ≥ ε and h′(t, β(t)) ≤ −ε

for all t ∈ [0, T1]. Fix δ > 0 such that M
1/2
3 δ1/2 < ε. By (298),

h′(t, x) ≥ h′(t, α(t))−M1/2
3 |x− α(t)|1/2 ≥ ε−M1/2

3 δ1/2 > 0
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for all α(t) ≤ x ≤ α(t)+δ. Since h(t, α(t)) = 0 by the previous inequality we have that

h(t, x) > 0 for all α(t)<x ≤ α(t) + δ and for all 0 ≤ t ≤ T1 . (317)

Moreover,

h(t, x) > 0 for all β(t)− δ ≤ x<β(t) and for all 0 ≤ t ≤ T1 . (318)

Fix a < b such that α0 < a < α0+δ and β0−δ < b < β0. Then there exists 0 < T2 ≤ T1

such that

α(t) < a < α(t) + δ and β(t)− δ < b < β(t) for every 0 ≤ t ≤ T2 . (319)

Let η := min[a,b] h0 > 0 . By Lemma 36 there exists 0 < T3 ≤ T2 such that

h(t, x) ≥ η

2
for all a ≤ x ≤ b and for all 0 ≤ t ≤ T3 . (320)

Combining (317)–(320), we obtain h(t, x) > 0 for all x ∈ (α(t), β(t)) and for all
0 ≤ t ≤ T3.

Proposition 40. Under the assumptions of Theorem 39, there exist k0 ∈ N and
0 < η0 < 1 such that

(hik)′(αik) > 2η0 and (hik)′(βik) < −2η0 (321)

for all k ≥ k0, and all 0 ≤ i ≤ kT0.

Proof. Since the function t 7→ h′(t, α(t)) is continuous by Lemma 38, Theorem 39
implies that there exists 0 < η0 < 1 such that

h′(t, α(t)) > 2η0 for every t ∈ [0, T0] . (322)

We claim that there exists k0 ∈ N such that

(hik)′(αik) > 2η0 for all k ≥ k0 and 0 ≤ i ≤ kT0 . (323)

If not, then for every n ∈ N there exist kn ≥ n and 0 ≤ in ≤ knT0 such that

(hinkn)′(αinkn) ≤ 2η0 . (324)

Define tn := tinkn = in/kn. Since 0 ≤ tn ≤ T0, up to a subsequence, tn → t0 for some
t0 ∈ [0, T0], and by (290),

αinkn = αkn(tn)→ α(t0) . (325)
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By (267), we have hinkn(x) = hkn(tn, x) for every x ∈ [αinkn , β
in
kn

], and so

(hinkn)′(αinkn) = h′kn(tn, α
in
kn

), where h′kn(tn, α
in
kn

) is the right derivative of h′kn(tn, ·) at

αinkn . Fix α(t0) < x < β(t0) and let a, b ∈ R be such that α(t0) < a < x < b < β(t0).
By (311),

h′kn(tn, x)→ h′(t0, x) . (326)

By (284) and (298),

|(hinkn)′(αinkn)− h′(t0, α(t0))| ≤ |(hinkn)′(αinkn)− (hinkn)′(x)|
+|h′kn(tn, x)− h′(t0, x)|+ |h′(t0, x)− h′(t0, α(t0))|

≤M1/2
3 |αkn(tn)− x|1/2 + |h′kn(tn, x)− h′(t0, x)|+M

1/2
3 |α(t0)− x|1/2.

Letting n→∞ and using (325) and (326), we get

lim sup
n→∞

|(hinkn)′(αinkn)− h′(t0, α(t0))| ≤ 2M
1/2
3 |α(t0)− x|1/2.

Taking the limit as x→ α(t0)+ we obtain that

(hinkn)′(αinkn)→ h′(t0, α(t0)) ,

contradicting (322) and (324). This proves the claim. A similar argument holds for βik
and so (321) is satisfied.

Proposition 41. Under the assumptions of Theorem 39, let η0 be as in Proposition
40, and let

0 < δ <
1

2
min

t∈[0,T0]
(β(t)− α(t)) . (327)

Then there exist k1 ≥ k0 and 0 < η1 < 1 such that

hik(x) ≥ 2η1 for all x ∈ [αik + δ, βik − δ] , (328)

hik(x) > 0 for all x ∈ (αik, β
i
k) , (329)

for all k ≥ k1 and 0 ≤ i ≤ kT0.

Proof. To prove (328), we argue by contradiction and assume that every n ∈ N there
exist kn ≥ n, 0 ≤ in ≤ knT0, and xn ∈ [αinkn + δ, βinkn − δ] such that hinkn(xn) ≤ 1/n.

Define tn := tinkn . Since 0 ≤ tn ≤ T0, up to a subsequence (not relabeled), tn → t0 for
some 0 ≤ t0 ≤ T0. By (290),

αinkn = αkn(tn)→ α(t0) , βinkn = βkn(tn)→ β(t0) .

Extracting a further subsequence (not relabeled), we have that xn → x0 for some
x0 ∈ [α(t0) + δ, β(t0)− δ]. Since

1/n ≥ hinkn(xn) = hkn(tn, xn)→ h∗(t0, x0)
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by (310), we obtain a contradiction by Theorem 39.

To show (329), fix 0 < ε < 1
2 mint∈[0,T0](β(t) − α(t)) such that M

1/2
3 ε1/2 < 2η0.

By (284) and (323),

(hik)′(x) ≥ (hik)′(αik)−M1/2
3 |x− αik|1/2 ≥ 2η0 −M1/2

3 ε1/2 > 0

for all αik ≤ x ≤ αik + ε and k ≥ k0. Hence,

hik(x) > 0 for αik < x < αik + ε and k ≥ k0 , (330)

and in the same way we can show that

hik(x) > 0 for βik − ε < x < βik and k ≥ k0 . (331)

The positivity of hik(x) for x ∈ [αik+ε, βik−ε] is a consequence of (328) with δ = ε.

Theorem 42. Under the assumptions (285)–(288), there exists 0 < T1 ≤ T0 such
that

Liph∗(t, ·) < L0 (332)

for every t ∈ [0, T1].

Proof. Fix L1 with Liph0 < L1 < L0. By Lemma 38 the function t 7→ h′(t, α(t)) is
continuous and since h′(0, α(0)) = h′0(α0) < L1, there exist T1 > 0 such that

h′(t, α(t)) < L1 for all t ∈ [0, T1] .

Fix δ > 0 such that M
1/2
3 δ1/2 < L0 − L1. By (298),

|h′(t, x)| ≤ h′(t, α(t)) +M
1/2
3 δ1/2 < L1 +M

1/2
3 δ1/2 < L0

for every t ∈ [0, T1] and every α(t) ≤ x ≤ α(t) + δ. Similarly, taking T1 smaller, if
needed, we obtain

|h′(t, x)| < L0 for every t ∈ [0, T1] and every β(t)− δ ≤ x ≤ β(t) .

It remains to prove that

max
x∈[α(t)+δ,β(t)−δ]

|h′(t, x)| < L0 . (333)

Let g(t) denote the left-hand side of (333). To prove that g is continuous, fix 0 ≤ t0 ≤
T1 and a, b with α(t0) < a < α(t0)+δ and β(t0)−δ < b < β(t0). By continuity of α and
β there exists an open interval I containing t0 such that a < α(t) + δ and β(t)− δ < b
for all t ∈ I. By Lemma 37, t 7→ h′(t, ·) from I into C0([a, b]) is continuous. Since α
and β are continuous, it follows that g is continuous in I. By the arbitrariness of t0,
we conclude that g is continuous in [0, T1]. Using the fact that g(0) ≤ Liph0 < L0,
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taking T1 even smaller, if needed, we obtain that g(t) < L0 for all t ∈ [0, T1]. This
concludes the proof.

Proposition 43. Let T1 be as in Theorem 42 and k1 be as in Proposition 41. Then
there exists k2 ≥ k1 such that

Lip ĥk(t, ·) < L0 (334)

for all k ≥ k2, and all t ∈ [0, T1].

Proof. Assume by contradiction that (334) does not hold. Recalling that Lip ĥk(t, ·) ≤
L0 and that ĥk(t, ·) ∈ C1,1/2((α̂k(t), β̂k(t))) for every t, for every n ∈ N there exist

kn ≥ n, tn ∈ [0, T1] and xn ∈ [α̂kn(tn), β̂kn(tn)] such that

|ĥ′kn(tn, xn)| = L0 . (335)

Up to a subsequence, tn → t0 for some t0 ∈ [0, T1], and by (291),

α̂kn(tn)→ α(t0) and β̂kn(tn)→ β(t0) . (336)

Hence, up to a subsequence (not relabeled), xn → x0 for some x0 ∈ [α(t0), β(t0)]. By

(312) we have that ĥ′kn(tn, xn) → h′(t0, x0). By (335) and Theorem 42 we obtain a
contradiction.

Let T1 be as in Theorem 42. For every t ∈ [0, T1], let u(t, ·, ·) be the unique
minimizer of the problem

min

{∫
Ωh(t,·)

W (Ev(x, y)) dxdy : v ∈ Ae(α(t), β(t), h(t, ·))

}
, (337)

where Ae is defined in (9).
Proposition 44. Let T1 be as in Theorem 42 and let {tk}k be a sequence in [0, T1]
converging to some t0. Assume that for every k there exists ik ∈ N ∪ {0} such that
tk = tikk . Then {uikk }k converges to u(t0, ·, ·) weakly in H1(Ω̃;R2) for every open set

Ω̃ ⊂ Ωh(t0,·) with dist(Ω̃, graph(h(t0, ·)) > 0.

Proof. Let uk := uikk . By minimality,∫
Ωhk(tk,·)

W (Euk(x, y)) dxdy ≤
∫

Ωhk(tk,·)

W (e0I) dxdy = W (e0I)A0 , (338)

where I is the 2 × 2 identity matrix and we used (6). Let α(t0) < a < b < β(t0)
and let Ω̃ be an open set with boundary of class C∞ such that [a, b]× {0} ⊂ ∂Ω̃ and
dist(Ω̃, graph(h(t0, ·))) > 0. By (290) and (310) we have dist(Ω̃, graph(hk(tk, ·))) > 0
and uk(x, 0) = (e0x, 0) for all x ∈ [a, b] and all k sufficiently large. By Korn’s inequality
(see Lemma 3) we have that {uk}k is bounded in H1(Ω̃;R2). Then there exist a
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subsequence (not relabeled) and a function v ∈ H1(Ω̃;R2) such that uk ⇀ v weakly
in H1(Ω̃;R2).

Take an increasing sequence of domains {Ω̃n}n as above such that their union is
Ωh(t0,·). By a diagonal argument, we can extract a further subsequence (not relabeled)

and construct a function v ∈ H1
loc(Ωh(t0,·);R2) such that uk ⇀ v weakly in H1(Ω̃n;R2)

for every Ω̃n. By (17), (338), and a lower semicontinuity argument we have that∫
Ω̃n

|Ev(x, y)|2dxdy ≤ CWW (e0I)A0

for every n. By letting n→∞ we obtain∫
Ωh(t0,·)

|Ev(x, y)|2dxdy ≤ CWW (e0I)A0 .

In view of (315), (316), and Theorem 42, the set Ωh(t0,·) has Lipschitz continuous
boundary and since, by construction, v(x, 0) = (e0x, 0) for all x ∈ (an, bn) for all n,
we can apply Korn’s inequality (see Lemma 3) to conclude that v ∈ H1(Ωh(t0,·);R2).

It remains to show that v = u(t0, ·, ·). Let w ∈ Ae(α(t0), β(t0), h(t0, ·)). Since
h(t0, ·) ∈ C1([α(t0), β(t0)]) by Proposition 31 and (316) holds we can argue as at the
end of Step 1 in the proof of Theorem 6 to extend w to a function w̃ ∈ H1(U ;R2), where
U := (α(t0)−1, β(t0)+1)×(0,∞) and w̃(x, 0) = (e0x, 0) for all x ∈ (α(t0)−1, β(t0)+1).
By the minimality of uk in Ωhk(tk,·) we have∫

Ωhk(tk,·)

W (Euk(x, y)) dxdy ≤
∫

Ωhk(tk,·)

W (Ew̃(x, y)) dxdy .

Letting k →∞ and using (310) we obtain

lim
k→∞

∫
Ωhk(tk,·)

W (Ew̃(x, y)) dxdy =

∫
Ωh(t0,·)

W (Ew(x, y)) dxdy .

On the other, by lower semicontinuity∫
Ω̃n

W (Ev(x, y)) dxdy ≤ lim inf
k→∞

∫
Ω̃n

W (Euk(x, y)) dxdy

≤ lim inf
k→∞

∫
Ωhk(tk,·)

W (Euk(x, y)) dxdy

for every n. Taking the limit as n→∞ we obtain∫
Ωh(t0,·)

W (Ev(x, y)) dxdy ≤
∫

Ωh(t0,·)

W (Ew(x, y)) dxdy ,
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which proves the minimality of v. By uniqueness, v = u(t0, ·, ·), and since the limit is
independent of the subsequence, the entire sequence {uk}k converges to u(t0, ·, ·) as
in the statement.

In what follows

p1 := min{6/5, p0/(4− 2p0)} and q1 := 4p1/(2 + p1) , (339)

where p0 is defined in (156). We observe that 1 < p1 ≤ 6/5 and 4/3 < q1 ≤ 3/2.
Theorem 45. . Under the assumptions (285)–(288), let T1 be as in Theorem 42 and
let k2 be as in Proposition 43. Then there exists M4 > 0 such that∫ T1

0

‖ĥ′′′k (t, ·)‖p1
Lq1 ((α̂k(t),β̂k(t)))

dt ≤M4

(∫ T1

0

(β̂k(t)− α̂k(t))(2−5p1)/(4−2p1)
)1−p1/2

+M4 ,

(340)∫ T1

0

∫ β̂k(t)

α̂k(t)

|ĥ(iv)
k (t, x)|p1dxdt ≤M4 , (341)

for all k ≥ k2.

Proof. Step 1. In this proof C denotes a constant, independent of k and i, whose
value can change from formula to formula. Let q̂ := max{p1, 5p1/2−1, 3p1−2, 2p1−1}.
Since p1 ≤ 6/5, by Remark 7 we have q̂ ≤ 2, hence, by (261) and (273),

Bτk(Hi
k, H

i−1
k , αik, α

i−1
k , βik, β

i−1
k )q̂ ≤ 4 + C‖Ḣk(t, ·)‖2L2(R) + 4|α̇k(t)|2 + 4|β̇k(t)|2 .

By Proposition 29, (αik, β
i
k, h

i
k) satisfies (64) with M = M3 > 1. By Proposition 40

there exists 0 < η0 < 1 such that (αik, β
i
k, h

i
k) satisfies (62) for all k ≥ k0 and all 0 ≤

i ≤ kT0. By (303) and (322) for t ∈ [0, T0] we can apply Lemma 7 to (α(t), β(t), h(t, ·))
obtaining β(t)−α(t) ≥ 16η2

0/M3, hence (327) is satisfied by δ0 = η2
0/(4M3). Therefore,

by Proposition 41 there exists 0 < η1 < 1 such that (αik, β
i
k, h

i
k) satisfies (63) and the

second inequality in (37) for all k ≥ k1 and all 0 ≤ i ≤ kT0. Moreover, Proposition 43
implies that hik satisfies the first inequality in (37) for all k ≥ k2 and all 0 ≤ i ≤ kT1.
We conclude that all assumptions of Theorem 6 are satisfied for all k ≥ k2 and all
0 ≤ i ≤ kT1.

Hence, by Theorem 24, we have∫ βik

αik

|(hik)(iv)(x)|p1dx ≤ c9Bτk(Hi
k, H

i−1
k , αik, α

i−1
k , βik, β

i−1
k )q̂

≤ C + C‖Ḣk(t, ·)‖2L2(R) + C|α̇k(t)|2 + C|β̇k(t)|2 .

Integrating in time over [ti−1
k , tik] and summing over all 1 ≤ i ≤ kT1 we obtain

∫ T1

0

∫ β̂k(t)

α̂k(t)

|ĥ(iv)
k (t, x)|p1dxdt ≤ CT1 + C

∫ T1

0

‖Ḣk(t, ·)‖2L2(R)dt (342)
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+ C

∫ T1

0

|α̇k(t)|2dt+ C

∫ T1

0

|β̇k(t)|2dt ≤ C ,

where in the last inequality we used (271) and (278). This proves (341).
Step 2: By standard interpolation results ([44, Theorem 7.41]) for every t ∈ [0, T1],

‖ĥ′′′k (t, ·)‖Lq1 ((α̂k(t),β̂k(t))) ≤ C(β̂k(t))− α̂k(t))1/q1−3/2‖ĥ′′k(t, ·)‖L2((α̂k(t),β̂k(t)))

+ C‖ĥ′′k(t, ·)‖L2((α̂k(t),β̂k(t))) + C‖ĥ(iv)
k (t, ·)‖Lp1 ((α̂k(t),β̂k(t))) .

In turn,∫ T1

0

‖ĥ′′′k (t, ·)‖p1
Lq1 ((α̂k(t),β̂k(t)))

dt

≤ C
∫ T1

0

(β̂k(t))− α̂k(t))1/2−5p1/4‖ĥ′′k(t, ·)‖p1
L2((α̂k(t),β̂k(t)))

dt

+ C

∫ T1

0

‖ĥ′′k(t, ·)‖p1
L2((α̂k(t),β̂k(t)))

dt+ C

∫ T1

0

‖ĥ(iv)
k (t, ·)‖p1

Lp1 ((α̂k(t),β̂k(t)))
dt .

By Hölder’s inequality, (283), and (341),∫ T1

0

‖ĥ′′′k (t, ·)‖p1
Lq1 ((α̂k(t),β̂k(t)))

dt

≤ C

(∫ T1

0

(β̂k(t))− α̂k(t))(2−5p1)/(4−2p1)

)1−p1/2(∫ T1

0

‖ĥ′′k(t, ·)‖2
L2((α̂k(t),β̂k(t)))

dt

)p1/2

+ CT
1−p1/2
1

(∫ T1

0

‖ĥ′′k(t, ·)‖2
L2((α̂k(t),β̂k(t)))

dt

)p1/2

+ C

∫ T1

0

‖ĥ(iv)
k (t, ·)‖p1

Lp1 ((α̂k(t),β̂k(t)))
dt

≤ C(T1M3)p1/2

(∫ T1

0

(β̂k(t))− α̂k(t))(2−5p1)/(4−2p1)

)1−p1/2

+ CT1M
p1/2
3 +M4 .

This proves (340).

Theorem 46. Under the assumptions (285)–(288), let T1 be as in Theorem 42. Then
for a.e. t ∈ (0, T1) we have

σ0α̇(t) =
γ

J(t, α(t))
− γ0 + ν0

h′(t, α(t))

(J(t, α(t)))2

( h′′(t, ·)
(J(t, ·))3

)′
(α(t)) , (343)

σ0β̇(t) = − γ

J(t, β(t))
+ γ0 − ν0

h′(t, β(t))

J(t, β(t))2

(h′′(t, ·)
J(t, ·)3

)′
(β(t)) , (344)
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where J(t, ·) is defined in (42) using h(t, ·).
Remark 9. To express (343) and (344) in an intrinsic way, for every t ∈ [0, T1] we
define s(t, x) for α(t) ≤ x ≤ β(t) by

s(t, x) :=

∫ x

α(t)

√
1 + (h′(t, ρ))2dρ (345)

The inverse of s(t, ·), defined for 0 = s(t, α(t)) ≤ s ≤ s(t, β(t)), is denoted by x(t, ·).
Let κ(t, ·) :

(
s(t, α(t)), s(t, β(t))

)
→ R be the signed curvature of the graph of h(t, ·),

considered as a function of arclength. To be precise, we have

κ(t, s) :=
h′′(t, x(t, s))(

1 +
(
h′(t, x(t, s))

)2)3/2
, (346)

hence

κ(t, s(t, x)) =
h′′(t, x)

J(t, x)3

Since ( h′′(t, ·)
(J(t, ·))3

)′
(x) = ∂sκ

(
t, s(t, x)

)
J(t, x) ,

we can rewrite (343) and (344) as

σ0α̇(t) = γ cos θα(t)− γ0 + ν0∂sκ
(
t, s(t, α(t))

)
sin θα(t) ,

σ0β̇(t) = −γ cos θβ(t) + γ0 − ν0∂sκ
(
t, s(t, β(t))

)
sin θβ(t) ,

where

θα(t) := arcsin
h′(t, α(t))√

1 + (h′(t, α(t)))2
and θβ(t) := arcsin

h′(t, β(t))√
1 + (h′(t, β(t)))2

, (347)

are the oriented angles between the oriented x-axis and the tangent to the graph of
h(t, ·) at (α(t), 0) and (β(t), 0), respectively.

Proof of Theorem 46. Fix t ∈ [0, T1] and k ≥ k2, where k2 is as in Proposition 43, and
find i such ti−1

k ≤ t ≤ tik. By (202),

σ0
αik − α

i−1
k

τk
=

γ

J ik(αik)
− γ0 + ν0

(hik)′(αik)

(J ik(αik))2

( (hik)′′

(J ik)3

)′
(αik) ,

where J ik(x) := (1 + ((hik)′(x))2)1/2. Introducing Ĵk(t, x) := (1 + (ĥ′k(t, x))2)1/2, for
every 0 ≤ t ≤ T1 we have

σ0α̇k(t−) =
γ

Ĵk(t, α̂k(t))
− γ0 + ν0

ĥ′k(t, α̂k(t))

(Ĵk(t, α̂k(t)))2

( ĥ′′k(t, ·)
(Ĵk(t, ·))3

)′
(α̂k(t)) , (348)

75



where α̇k(t−) is the left derivative. We claim that

γ

Ĵk(·, α̂k(·))
→ γ

(1 + (h′(·, α(·)))2)1/2
strongly in L2((0, T1)) . (349)

Since the function s 7→ 1/(1 + s2)1/2 is 1-Lipschitz continuous, by (312) we have∣∣∣∣∣ 1

Ĵk(t, α̂k(t))
− 1

(1 + (h′(t, α(t)))2)1/2

∣∣∣∣∣ ≤ |ĥ′k(t, α̂k(t))− h′(t, α(t))| → 0 ,

which gives (349) by the dominated convergence theorem.
To study the last term in (348) we observe that

ĥ′k(t, α̂k(t))

Ĵk(t, α̂k(t))2

( ĥ′′k(t, ·)
(Ĵk(t, ·))3

)′
(α̂k(t)) =

ĥ′k(t, α̂k(t))

(Ĵk(t, α̂k(t)))5
ĥ′′′k (t, α̂k(t))

− 3
(ĥ′k(t, α̂k(t)))2

(Ĵk(t, α̂k(t)))7
(ĥ′′k(t, α̂k(t)))2 =

ĥ′k(t, α̂k(t))

(Ĵk(t, α̂k(t)))5
ĥ′′′k (t, α̂k(t)) ,

where we used (201). We claim that

ĥ′′′k (·, α̂k(·)) ⇀ h′′′(·, α(·)) weakly in Lp1((0, T1)) . (350)

By the fundamental theorem of calculus,

ĥ′′′k (t, α̂k(t)) = ĥ′′′k (t, x)−
∫ x

α̂k(t)

ĥ
(iv)
k (t, ρ) dρ ,

where α̂k(t) < x < β̂k(t). By Lemma 1 and the uniform continuity of α and β (see
(289)), we can subdivide [0, T1] into a finite number of intervals I such that for each
of them there exist a, b ∈ R such that α(t) < a < b < β(t) for all t ∈ I. To prove (350)
it suffices to prove weak convergence in Lp1(I) for every such I. Fix I = [t1, t2] and
the corresponding a, b. By Hölder’s inequality

|ĥ′′′k (t, α̂k(t))|p1 ≤ C|ĥ′′′k (t, x)|p1 + C

∫ β̂k(t)

α̂k(t)

|ĥ(iv)
k (t, ρ)|p1dρ .

Averaging in x over (a, b) and integrating in t over (t1, t2) gives

∫ t2

t1

|ĥ′′′k (t, α̂k(t))|p1dt ≤ C

b− a

∫ t2

t1

∫ b

a

|ĥ′′′k (t, x)|p1dxdt+C
∫ t2

t1

∫ β̂k(t)

α̂k(t)

|ĥ(iv)
k (t, ρ)|p1dρdt .

Note that the first integral on the right-hand side is bounded because p1 ≤ q1 and in
view of (340), while the second integral is bounded by (341).
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Let φ ∈ C∞c ((a, b)) with
∫ b
a
φ(x) dx 6= 0 and ψ ∈ C∞c ((t1, t2)). Then∫ b

a

φ(x) dx

∫ t2

t1

ĥ′′′k (t, α̂k(t))ψ(t) dt =

∫ t2

t1

∫ a

b

ĥ′′′k (t, x)φ(x)ψ(t) dxdt

−
∫ t2

t1

∫ a

b

∫
R
ĥ

(iv)
k (t, ρ)χ(α̂k(t),x)(ρ)φ(x)ψ(t) dρdxdt,

where ĥ
(iv)
k (t, ρ)χ(α̂k(t),x)(ρ) is interpreted to be zero for ρ /∈ (α̂k(t), x). By (291), (308),

and (341), we have

ĥ
(iv)
k (t, ρ)χ(α̂k(t),x)(ρ)φ(x) ⇀ h(iv)(t, ρ)χ(α(t),x)(ρ)φ(x) weakly in Lp1((t1, t2)× R)

for every fixed x. On the other hand, by (340),

ĥ′′′k (t, x) ⇀ h′′′(t, x) weakly in Lp1((t1, t2);Lq1((a, b)) .

Therefore,∫ b

a

φ(x) dx

∫ t2

t1

ĥ′′′k (t, α̂k(t))ψ(t) dt→
∫ t2

t1

∫ a

b

h′′′(t, x)φ(x)ψ(t) dxdt

−
∫ t2

t1

∫ a

b

∫ x

α(t)

h(iv)(t, ρ)(ρ)φ(x)ψ(t) dρdxdt

=

∫ b

a

φ(x)dx

∫ t2

t1

h′′′(t, α(t))ψ(t) dt .

Dividing by
∫ b
a
φ(x) dx, we get∫ t2

t1

ĥ′′′k (t, α̂k(t))ψ(t) dt→
∫ t2

t1

h′′′(t, α(t))ψ(t) dt .

By the arbitrariness of ψ we obtain the weak convergence in I, which suffices to prove
(350).

Arguing as in the first part of the proof

ĥ′k(t, α̂k(t))

(Ĵk(t, α̂k(t)))5
→ h′(t, α(t))

(J(t, α(t)))5

pointwise and is uniformly bounded. Therefore

ĥ′k(·, α̂k(·))
(Ĵk(·, α̂k(·)))5

ĥ′′′k (·, α̂k(·)) ⇀ ĥ′k(t, α̂k(t))

(Ĵk(t, α̂k(t)))5
h′′′(·, α(·)) weakly in Lp1((0, T1)) .

(351)
Combining (348), (349), and (351), from (289) we obtain (343).
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Next we introduce the time derivative of h.
Proposition 47. For a.e. t ∈ [0,+∞) there exists an element of H−1((α(t), β(t))),
denoted by ḣ(t, ·), such that

h(s, ·)− h(t, ·)
s− t

→ ḣ(t, ·) strongly in H−1((a, b)) (352)

for every α(t) < a < b < β(t).

Proof. Let us fix T > 0. By Proposition 32, H ∈ H1((0, T );L2(R)) and H ′ = h∗. It
follows that

h∗ ∈ H1((0, T );H−1(R)) , (353)

and so for a.e. t ∈ (0, T ),

h∗(s, ·)− h∗(t, ·)
s− t

→ ḣ∗(t, ·) strongly in H−1(R) . (354)

In particular, if t ∈ [0, T ] satisfies (354) and α(t) < a < b < β(t), by the continuity
of α and β (see Proposition 30), we have α(s) < a < b < β(s), for all s close to t.
Therefore (354) implies (352).

Theorem 48. Under the assumptions (285)–(288), let T1 be as in Theorem 42. Then
for a.e. t ∈ (0, T1) we have

ḣ =
[
− γ 1

J

(h′
J

)′′
+ ν0

1

J

(h′′
J5

)′′′
+

5

2
ν0

1

J

(h′(h′′)2

J7

)′′
+

1

J
W
′]′

(355)

in D′((α(t), β(t))), where W is defined in (42).
Remark 10. To express (355) in an intrinsic way, besides the functions s(t, ·), x(t, ·),
and κ(t, ·) considered in Remark 9, for 0 = s(t, α(t)) ≤ s ≤ s(t, β(t)) we introduce the

normal velocity Ṽ (t, s) of the time dependent curve Γh(t,·) at the point corresponding
to the arclength parameter s, given by

Ṽ (t, s) :=
ḣ(t, x(t, s))√

1 +
(
h′(t, x(t, s))

)2 .
Moreover, we introduce the chemical potential ζ(t, ·) :

(
s(t, α(t)), s(t, β(t))

)
→ R given

by

ζ(t, s) := −γκ(t, s) + ν0

(
∂ssκ(t, s) +

κ(t, s)3

2

)
+ W̃ (t, s) ,

where
W̃ (t, s) := W

(
Eu(t, x(t, s), h(t, x(t, s))

)
.

By direct computations (see [10, Remark 3.2 and Lemma 6.7]) we obtain that (355)
is equivalent to

Ṽ (t, ·) = ∂ssζ(t, ·)
in D

(
(s(t, α(t)), s(t, β(t))

)
.

78



Proof. By the continuity of α and β (see Proposition 30), it suffices to prove that,
given a < b and a time interval [t1, t2] such that α(t) < a < b < β(t) for all t ∈ [t1, t2],
the equality (355) holds in D′((a, b)) for a.e. t ∈ [t1, t2]. Let δ > 0 be such that
α(t)+3δ < a < b < β(t)−3δ for all t ∈ [t1, t2]. By (290), αk(t)+2δ < a < b < βk(t)−2δ
for all t ∈ [t1, t2] and all k ≥ k∗ for some k∗. Hence, by Proposition 41 there exist

ζ > 0 and k̂ ≥ k∗ such that

hk(t, x) ≥ ζ for all t ∈ [t1, t2] , x ∈ [a− δ, b+ δ] , and k ≥ k̂ .

Letting k →∞, by (294) we obtain that

h(t, x) ≥ ζ for all t ∈ [t1, t2] , x ∈ [a− δ, b+ δ] .

In view of these inequalities and of (41) we can repeat the proof of [10, Theorem
3.8] to prove (355) in D′((a, b)) for a.e. t ∈ [t1, t2]. We observe that since here we do
not have periodic boundary conditions in x, the argument used in [10] needs to be
modified accordingly. To be precise, the inequality (3.16) in [10] must be replaced by

‖h′k(τ2, ·)− h′k(τ1, ·)‖L∞((a,b)) ≤ C‖h′′k(τ2, ·)− h′′k(τ1, ·)‖3/4L2((a,b))‖hk(τ2, ·)− hk(τ1, ·)‖1/4L2((a,b))

+ C‖hk(τ2, ·)− hk(τ1, ·)‖L2((a,b))

≤ C|τ2 − τ1|1/32 + C|τ2 − τ1|1/8

for every τ1, τ2 ∈ [t1, t2]. Similarly, in the proof of [10, Corollary 3.7] the second
displayed inequality must be replaced by∫ t2

t1

‖h′′′n (t, ·)− h′′′m(t, ·)‖12/5
L∞((a,b))dt ≤ C sup

t∈[t1,t2]

‖h′n(t, ·)− h′m(t, ·)‖2/5L∞((a,b))

+ sup
t∈[t1,t2]

‖h′n(t, ·)− h′m(t, ·)‖12/5
L∞((a,b)) → 0

as n,m→∞.

The following theorem summarizes the main results obtained in this section.
Theorem 49. Under the assumptions (285)–(288), there exists T > 0 such that the
following items hold:

(i) there exist two functions α, β ∈ H1((0, T )), with α(t) < β(t) for every t ∈ [0, T ],
such that α(0) = α0, β(0) = β0, and

β(t)− α(t) ≥
√

2A0/L0 for every t ∈ [0, T ] . (356)

(ii) There exist 1 < p1 < 6/5 and a continuous function h ≥ 0, defined for t ∈ [0, T ] and
x ∈ [α(t), β(t)], such that h(0, x) = h0(x) for every x ∈ [α0, β0], h(t, x) > 0 for every
t ∈ [0, T ] and every x ∈ (α(t), β(t)), h(t, α(t)) = h(t, β(t)) = 0, h′(t, α(t)) > 0, and
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h′(t, β(t)) < 0 for every t ∈ [0, T ], and

h(t, ·) ∈ H2((α(t), β(t))) for every t ∈ [0, T ] , (357)

h(t, ·) ∈W 4,p1((α(t), β(t))) for a.e. t ∈ [0, T ] , (358)∫ β(t)

α(t)

h(t, x) dx = A0 for every t ∈ [0, T ] , (359)

Liph(t, ·) < L0 for every t ∈ [0, T ] . (360)

Moreover, if we denote by h∗ the extension of h obtained by setting h∗(t, x) := 0 for
x ∈ R \ (α(t), β(t)), then

h∗ ∈ C0,3/10([0, T ];L2(R)) ∩H1((0, T );H−1(R)) . (361)

(iii) The function u introduced in (337) is such that

u(t, ·, ·) ∈ C3,1−1/p1(Ω
a,b

h ) for a.e. t ∈ [0, T ] and α(t) < a < b < β(t) , (362)

and u(t, ·, ·) solves the boundary value problem
−divCEu(t, x, y) = 0 in Ωh(t,·) ,

CEu(t, x, h(t, x))νh(t, x) = 0 for x ∈ (α(t), β(t)) ,

u(t, x, 0) = (e0x, 0) for x ∈ (α(t), β(t)) ,

(363)

for a.e. t ∈ (0, T ).
(iv) Considering the functions s, κ, θα, θβ, and ζ introduced in (345), (346), (347), and

(356), respectively, we have

σ0α̇(t) = γ cos θα(t)− γ0 + ν0∂sκ
(
t, s(t, α(t))

)
sin θα(t) for a.e. t ∈ [0, T ] , (364)

σ0β̇(t) = −γ cos θβ(t) + γ0 − ν0∂sκ
(
t, s(t, β(t))

)
sin θβ(t) for a.e. t ∈ [0, T ] ,

(365)

Ṽ (t, ·) = ∂ssζ(t, ·) in D
(
(s(t, α(t)), s(t, β(t))

)
for a.e. t ∈ [0, T ] . (366)

Proof. Item (i) follows from Proposition 30.
Let h and h∗ be the functions introduced in Proposition 31 and let T be the con-

stant T1 introduced in Theorem 42. By Proposition 31 and Theorem 39, we have
that h(t, ·) is strictly positive in (α(t), β(t)) and vanishes at the endpoints, with
h′(t, α(t)) > 0, and h′(t, β(t)) < 0, for every t ∈ [0, T ]. Property (357) follows from
(297); (358) from (308) and (341); (360) from (332); (359) from (296); and (361) from
Proposition 31 and (353).

Let u be the function introduced in (337). Then (362) follows from elliptic regularity
([39, Theorem 9.3]), since h(t, ·) ∈ C3,1−1/p1([α(t), β(t)]) for a.e. t ∈ [0, T ] by (358).
In turn, by taking variations in (337), we obtain that (363) holds.
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Finally, considering the functions s, κ, θα, θβ , and ζ introduced in (345), (346),
(347), and (356), respectively, we have that (364) and (365) follow from Theorem 46
and Remark 9 , while (366) follows from Theorem 48 and Remark 10.
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[40] Nicaise, S.: About the Lamé system in a polygonal or a polyhedral domain and a
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