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Abstract

A geometrically nonlinear theory for field dislocation thermomechanics based entirely on measurable state variables is pro-
posed. Instead of starting from an ordering-dependent multiplicative decomposition of the total deformation gradient tensor,
the additive decomposition of the velocity gradient into elastic, plastic and thermal distortion rates is obtained as a natural con-
sequence of the conservation of the Burgers vector. Based on this equation, the theory consistently captures the contribution of
transient heterogeneous temperature fields on the evolution of the (polar) dislocation density. The governing equations of the
model are obtained from the conservation of Burgers vector, mass, linear and angular momenta, and the First Law. The Second
Law is used to deduce the hyperelastic constitutive equation for the Cauchy stress and the thermodynamical driving force for
the dislocation velocity. An evolution equation for temperature is obtained from the First Law and the Helmholtz free energy
density, which is taken as a function of the following measurable quantities: elastic distortion, temperature and the dislocation
density (the theory allows prescribing additional measurable quantities as internal state variables if needed). Furthermore, the
theory allows one to compute the Taylor-Quinney factor, which is material and strain rate dependent. Accounting for the polar
dislocation density as a state variable in the Helmholtz free energy of the system allows for temperature solutions in the form
of dispersive waves with finite propagation speed, i.e. thermal waves, despite using Fourier’s law of heat conduction as the
constitutive assumption for the heat flux vector.
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1. Introduction

We present a fully coupled finite-deformation thermomechanical theory of field dislocation mechanics, i.e., a theory based
on partial differential equations (PDEs). The theory incorporates a two-way coupling between dislocation activity and temper-
ature evolution, while accounting for unrestricted geometrical and material nonlinearities in a potentially anisotropic elasto-
plastic body. This theory is motivated by the finite deformation isothermal field dislocation mechanics theory (Acharya (2001),
Acharya (2004)) and the small-deformation thermomechanical framework of (Upadhyay (2020)). Specifically, the present the-
ory is a generalisation of the thermomechanical theory in Acharya (2011), by accounting for a flux term in the dislocation
density evolution that allows for capturing thermal strain effects in the stress response, and of the one in Upadhyay (2020) from
a geometrical non-linearity perspective.

The motivation to develop this model arises from the need for a continuum framework in a geometrically nonlinear set-
ting that has the minimum necessary tools to study the evolution of dislocations in bodies that undergo thermomechanical
processes, such as additive manufacturing, welding, quenching, annealing, forming, forging, etc. The small deformation ther-
momechanical theory (Upadhyay (2020)) and its finite element implementation (Lima-Chaves & Upadhyay (2024)) have shown
how dislocation activity induces the evolution of the temperature field. The need to develop a geometrically nonlinear theory
became evident when simulating dislocations moving at large velocities (at a considerable fraction of the material shear wave
propagation velocity) (Lima-Chaves & Upadhyay (2024)) or under rapidly evolving thermomechanical boundary conditions
such as those occurring during additive manufacturing.

The proposed theory relies only on measurable (observable) fields at any given instant of time, namely, the elastic distortion,
the polar dislocation density, the temperature field, and the material velocity. The theory does not require a multiplicative
decomposition of the deformation gradient tensor into elastic and plastic distortions (𝑭 = 𝑭 𝑒𝑭 𝑝) in the isothermal case, as
introduced by Bilby et al. (1957), Kröner (1959), Lee (1969), or into elastic, plastic and thermal parts in the thermomechanical
case (𝑭 = 𝑭 𝑒𝑭 𝑝𝑭 𝜃 or 𝑭 = 𝑭 𝑒𝑭 𝜃𝑭 𝑝), as considered in Zeng et al. (2022), Bammann & Solanki (2010), Li et al. (2022),
McAuliffe & Waisman (2015), Felder et al. (2022), Grilli et al. (2022), Zhao et al. (2013), among others.
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In the elastoplastic case, Clifton (1972) discussed the equivalence between the decompositions 𝑭 = 𝑭 𝑒
(1)𝑭

𝑝
(1) ("classical")

and 𝑭 = 𝑭 𝑝
(2)𝑭

𝑒
(2) ("reverse"), stating that either can be used for the analysis of finite elastic and plastic deformations of

isotropic solids, the choice being a matter of convenience for the study in question. Lubarda (1999) focused on the reverse
decomposition 𝑭 = 𝑭 𝑝

(2)𝑭
𝑒
(2), and showed that for an isotropic solid, the same structure of constitutive equations is obtained

as when using the classical decomposition, with 𝑭 𝑒
(1) = 𝑭 𝑒

(2) if the material preserves its elastic properties during plastic
deformation. More recently, Yavari & Sozio (2023) proposed the equivalence of the classical and reverse decompositions for
anisotropic solids, with the Cauchy stress computed by either being the same, “when the direct and reverse decompositions
represent the same anelastic deformation.” Here, in a simple example of an elastoplastic evolution considering 𝐽2 plasticity
and isotropic elasticity in a purely mechanical setting, we show in Section 1.1 that the Cauchy stress history corresponding
to a simple shear or a combined loading depends on the chosen ordering of the multiplicative decomposition. The evolution
of the plastic distortion in the two cases is different, although not directly comparable, being tensors with different invariance
properties.

In the context of finite deformation thermoelasticity, the multiplicative decomposition of 𝑭 into elastic and thermal com-
ponents (𝑭 = 𝑭 𝑒𝑭 𝜃) was introduced in Stojanovic et al. (1964) according to Sadik & Yavari (2017). As in elastoplasticity
theories, an intermediate configuration is introduced, which is obtained from the current configuration upon isothermal elas-
tic unloading (Vujosevic & Lubarda (2002)). The non-uniqueness of the intermediate configuration is usually handled by
considering a specific form for 𝑭 𝜃 according to the material to be modelled (Vujosevic & Lubarda (2002)). Within a finite
deformation thermo-elastoplastic theory, if one considers a material that thermally expands isotropically, then the ordering of
the plastic and thermal distortion tensors in the decomposition 𝑭 = 𝑭 𝑒𝑭 𝑝𝑭 𝜃 is irrelevant, since, in this case, 𝑭 𝜃 = 𝛼(𝜃)1,
with 𝛼(𝜃) being the thermal stretch ratio in an arbitrary direction (Vujosevic & Lubarda (2002)). However, in a more general
case that encompasses thermal anisotropy, the factors in the multiplicative decomposition do not commute, and there is little
physical guidance as to what should be chosen, with each choice having an impact on the constitutive relations of the theory.

Other researchers have also proposed finite deformation elastoplastic models that do not require the specification of a
multiplicative decomposition of 𝑭 . Rubin & Bardella (2023) proposed an Eulerian theory of size-dependent plasticity that
does not rely on the multiplicative decomposition of 𝑭 , without including a detailed description of dislocation mechanics.
In Acharya (2004), a finite deformation time-dependent, isothermal dislocation mechanics theory is proposed, in which only
the current configuration and a set of point-wise elastically unloaded configurations play a role in the theory, with the latter
being defined through a kinematically fundamental statement of elastic incompatibility following the work of Willis (1967)
concerning dislocation statics. Following this line of work, Acharya & Zhang (2015) show that, based on the conservation of
the Burgers vector, in the isothermal case one recovers the well-accepted additive decomposition of the spatial velocity gradient
into elastic and plastic parts, without the need to introduce the multiplicative decomposition 𝑭 = 𝑭 𝑒𝑭 𝑝. This approach has
seen significant development and validation against the experimental results in Arora et al. (2022, 2023); Arora & Acharya
(2020a,b); Arora et al. (2020).

The novelty of our work is the development of exact kinematics for thermo-elastoplastic problems based on dislocation
mechanics in a finite-deformation setting within a transient heterogeneous temperature field which does not involve a reference
configuration and deformation from it, and one that leads to a dynamical model whose dissipation is invariant to superposed
rigid body motions. Similarly to Upadhyay (2020), this kinematics naturally arises from the conservation of the Burgers vector.
However, the extension to finite deformations under the required ‘design’ constraints mentioned above is neither straightforward
nor obvious; for instance, the present work differs fundamentally from Upadhyay (2020) by only involving observable fields
along the lines of the finite deformation, thermomechanical model in Acharya (2011), the latter, however, not incorporating
the effect of thermal strains in stress response. These differences impact the evolution statement of the dislocation density in
comparison to Acharya (2011), Upadhyay (2020), even apart from terms related to accounting for finite deformations. This
difference is clearly shown in the comparison between the linearisation of the present model and the one in Upadhyay (2020)
on Section 5.3.

Building on the proposed kinematics and considering a constitutive assumption for the Helmholtz free energy that accounts
for the (line-type) defect density in the body, the resulting structure of the PDE for temperature evolution is such that it allows for
solutions in the form of dispersive temperature waves with finite speeds of propagation. This is despite assuming Fourier’s law
as the constitutive equation for the heat flux vector, which results in the instantaneous propagation of temperature throughout a
domain characteristic of a linear parabolic problem. It is shown that, at least on a linear level, the obtained PDE admits solutions
with well-posed growth, allowing for the onset of spatial pattern formation from the amplification of wave components of
specific wavenumbers.

Our theory is well-suited for understanding the different sources of heat coming from thermomechanics and plastic work
due to dislocation motion, with the latter being described by a geometrical argument of conservation of Burgers vector. The
proposed framework allows us to evaluate the partition of plastic work into heat and stored energy in the material during
thermomechanical processes. Understanding of this partition gained increased importance after the experiments conducted by
Taylor & Quinney (1934), which provided a measure of the latent energy stored in a material during cold work (see Bever et al.

2



(1973) for an extensive survey on the topic). Subsequently, many studies were directed towards computing the plastic work
that remained stored in the material (and converted into heat) through modelling. Different techniques have been used, among
them dislocation dynamics (Benzerga et al. (2005)), molecular dynamics (Kositski & Mordehai (2021), Xiong et al. (2022),
Stimac et al. (2022)) and continuum approaches (Rosakis et al. (2000), Stainier & Ortiz (2010), Dæhli et al. (2023), Longère
(2023)), with the present fitting into the latter body of work.

This paper is divided as follows: Section 1.1 shows an example that illustrates the impact of the ordering of the elastoplastic
multiplicative decomposition on the stress response of an isotropic material, which readers mainly interested in the development
of the thermomechanical theory may safely skip. The kinematics based on the conservation of the Burgers vector is presented in
Section 2. Then, the governing equations and the thermodynamical considerations of the theory are shown in Section 3, where
the temperature evolution PDE and the partition of plastic work in the model are also discussed. A geometrical linearisation
of the proposed framework is shown in Section 4. Considering a Saint-Venant-Kirchhoff material, a Helmholtz free energy
expression is presented in Section 5, alongside the set of resulting equations of the model in the geometrically non-linear and
linear cases, followed by a comparison with the theory developed in Upadhyay (2020). The mathematical notation adopted in
this paper can be consulted in Appendix A.
1.1. Ordering-dependence of the multiplicative decomposition in finite deformation elastoplasticity

The objective of this section is to study the impact of ordering on the multiplicative decomposition of the deformation
gradient tensor (𝑭 ) into elastic (𝑭 𝑒) and plastic (𝑭 𝑝) distortions 𝑭 = 𝑭 𝑒

(1)𝑭
𝑝
(1) (denoted Case 1) or 𝑭 = 𝑭 𝑝

(2)𝑭
𝑒
(2) (denoted

Case 2) in a simple and practical example within a purely mechanical setting, considering a given homogeneous deformation
gradient history, constitutive relation for the stress response, and 𝐽2 plasticity. More specifically, the evolution equations
for �̇� 𝑒

(1) (in Case 1) and �̇� 𝑒
(2) (in Case 2) are solved for a given 𝑭 (𝑡) and 𝑳(𝑡) = �̇� 𝑭 −1, from which the Cauchy stress

evolutions 𝝈
(

𝑭 𝑒
(1)(𝑡)

) and 𝝈
(

𝑭 𝑒
(2)(𝑡)

) are calculated and compared in simple shear and combined stretch-contraction-shear
examples. The expression for 𝝈 is defined assuming hyperelasticity and following the frame-invariance requirements of 𝑭 𝑒

(1)
and 𝑭 𝑒

(2). The plastic distortion rate 𝑳𝑝
(𝑖), 𝑖 = 1, 2, is defined based on the simplest 𝐽2 constitutive assumption and on the

frame invariance requirements associated with sym(𝑳𝑝
(𝑖)). It is shown that 𝝈(𝑭 𝑒

(1)(𝑡)
) and 𝝈

(

𝑭 𝑒
(2)(𝑡)

) differ considerably in
the examples considered here, so the choice of ordering in the multiplicative decomposition of 𝑭 has a crucial impact on the
evolution of stress in a body. As already mentioned, readers mainly interested in the theory presented in this work may skip to
the end of this section.

A central tenet in this study is that any mechanical theory, and hence the ones considered here based on either of the
decompositions in Case 1 or Case 2, should reduce to conventional nonlinear elasticity as a limiting case. That is, considering
𝑭 𝑝

(𝑖) = 1, 𝑖 = 1, 2, we have 𝑭 = 𝑭 𝑒
(𝑖) to recover elasticity, such that in both cases 𝑭 𝑒

(𝑖) is a two-point tensor with its co-domain
being tangent spaces at points of the body in the current configuration.

The two cases are presented as follows:
Case 1: 𝑭 = 𝑭 𝑒

(1)𝑭
𝑝
(1). The spatial velocity gradient is written as

𝑳 = �̇� 𝑭 −1 =
(

�̇� 𝑒
(1)𝑭

𝑝
(1) + 𝑭 𝑒

(1)�̇�
𝑝
(1)

)(

𝑭 𝑝−1
(1) 𝑭

𝑒−1
(1)

)

= �̇� 𝑒
(1)𝑭

𝑒−1
(1) + 𝑭 𝑒

(1)�̇�
𝑝
(1)𝑭

𝑝−1
(1) 𝑭

𝑒−1
(1)

⇐⇒ 𝑳 = �̇� 𝑒
(1)𝑭

𝑒−1
(1) +𝑳𝑝

(1)

⇐⇒ �̇� 𝑒
(1) =

(

𝑳 −𝑳𝑝
(1)

)

𝑭 𝑒
(1),

(1.1)

where we have defined 𝑳𝑝
(1) ∶= 𝑭 𝑒

(1)�̇�
𝑝
(1)𝑭

𝑝−1
(1) 𝑭

𝑒−1
(1) .

Under a rigid body motion as in Eq. (B.1), 𝑭 transforms as 𝑭 ∗ = 𝑸𝑭 , and we have

𝑭 ∗ = 𝑭 𝑒∗
(1)𝑭

𝑝∗
(1) ⇐⇒ 𝑭 𝑒∗

(1)𝑭
𝑝∗
(1) = 𝑸

(

𝑭 𝑒
(1)𝑭

𝑝
(1)

)

. (1.2)

To recover elasticity, we set 𝑭 𝑝
(1) = 1 and 𝑭 𝑝∗

(1) = 1 which implies 𝑭 = 𝑭 𝑒
(1) and

𝑭 𝑒∗
(1) = 𝑸𝑭 𝑒

(1). (1.3)
We assume that the invariance of 𝑭 𝑒

(1) under a superposed rigid body motion remains the same in the elastoplastic case; then,
Eqs. (1.2) and (1.3) imply

𝑭 𝑝∗
(1) = 𝑭 𝑝

(1). (1.4)
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Case 2: 𝑭 = 𝑭 𝑝
(2)𝑭

𝑒
(2). The velocity gradient now reads

𝑳 = �̇� 𝑭 −1 = �̇� 𝑝
(2)𝑭

𝑝−1
(2) + 𝑭 𝑝

(2)�̇�
𝑒
(2)𝑭

𝑒−1
(2) 𝑭

𝑝−1
(2)

⇐⇒ �̇� 𝑒
(2) = 𝑭 𝑝−1

(2)

(

𝑳 −𝑳𝑝
(2)

)

𝑭 𝑝
(2)𝑭

𝑒
(2) = 𝑭 𝑒

(2)𝑭
−1

(

𝑳 −𝑳𝑝
(2)

)

𝑭 ,
(1.5)

where 𝐿𝑃
(2) ∶= �̇� 𝑝

(2)𝑭
𝑝−1
(2) .

Superposed rigid body motion in this case requires
𝑭 ∗ = 𝑭 𝑝∗

(2)𝑭
𝑒∗
(2) ⇐⇒ 𝑭 𝑝∗

(2)𝑭
𝑒∗
(2) = 𝑸

(

𝑭 𝑝
(2)𝑭

𝑒
(2)

)

. (1.6)
As before, to recover elasticity we set 𝑭 𝑝

(2) = 1, such that 𝑭 = 𝑭 𝑒
(2) and

𝑭 ∗ = 𝑭 𝑒∗
(2) ⇐⇒ 𝑭 𝑒∗

(2) = 𝑸𝑭 𝑒
(2). (1.7)

Assuming that this invariance requirement of 𝑭 𝑒
(2) also applies in the elastoplastic case, Eqs. (1.6) and (1.7) gives

𝑭 𝑝∗
(2) = 𝑸

(

𝑭 𝑝
(2)𝑭

𝑒
(2)

)(

𝑭 𝑒∗
(2)

)−1
= 𝑸

(

𝑭 𝑝
(2)𝑭

𝑒
(2)

)

𝑭 𝑒−1𝑸𝑇

⇐⇒ 𝑭 𝑝∗
(2) = 𝑸𝑭 𝑝

(2)𝑸
𝑇 ,

(1.8)

that is, 𝑭 𝑝
(2) transforms as a tensor on the current configuration under a superposed rigid body motion.

To define the Cauchy stress tensor, we consider that the stress response given by 𝝈 = �̂�(𝑭 𝑒). Given that 𝑭 𝑒
(𝑖) transforms

as 𝑭 𝑒∗
(𝑖) = 𝑸𝑭 𝑒

(𝑖) under a superposed rigid body motion for 𝑖 = 1, 2 (Eqs. (1.3) and (1.7)), the material frame indifference
for the stress tensor (c.f., Truesdell et al. (2004)) requires the reduced constitutive equation �̂�(𝑭 𝑒

(𝑖)) = 𝑭 𝑒
(𝑖)�̃�(𝐶

𝑒
(𝑖))𝑭

𝑒𝑇
(𝑖) , where

𝑪𝑒
(𝑖) = 𝑭 𝑒𝑇

(𝑖)𝑭
𝑒
(𝑖) is the right Cauchy-Green tensor. For this example, we choose �̃�(𝑪𝑒

(𝑖)) = C ∶ 𝑬(𝑖) with 𝑬(𝑖) =
1
2 (𝑪

𝑒
(𝑖) − 1).Hence, we write the Cauchy stress tensor as

𝝈(𝑖) = 𝑭 𝑒
(𝑖)

[1
2
C ∶

(

𝑭 𝑒𝑇
(𝑖)𝑭

𝑒
(𝑖) − 1

)]

𝑭 𝑒𝑇
(𝑖) . (1.9)

Next, we choose an expression for 𝑳𝑝
(𝑖) based on 𝐽2 plasticity theory and the invariance requirements of sym(𝑳𝑝

(𝑖)). For a
superposed rigid body motion, in Case 1 we write Eq. (1.1) as

sym(𝑳∗) = sym(

�̇� 𝑒∗
(1)(𝑭

𝑒∗
(1))

−1) + sym(𝑳𝑝∗
(1))

⇐⇒ 𝑸sym(𝑳)𝑸𝑇 = 𝑸sym(

�̇� 𝑒
(1)𝑭

𝑒−1
(1)

)

𝑸𝑇 + sym(𝑳𝑝∗
(1))

⇐⇒ sym(𝑳𝑝∗
(1)) = 𝑸sym(𝑳𝑝

(1))𝑸
𝑇 ,

(1.10)

where Eq. (1.3) was used. For Case 2 we write Eq. (1.5) as
sym(𝑳∗) = sym(𝑳𝑝∗

(2)) + sym(

𝑭 𝑝∗�̇� 𝑒∗
(2)(𝑭

𝑒∗
(2))

−1(𝑭 𝑝∗
(2))

−1)

⇐⇒ 𝑸sym(𝑳)𝑸𝑇 = sym(𝑳𝑝∗
(2)) +𝑸sym(

𝑭 𝑝�̇� 𝑒
(2)𝑭

𝑒−1
(2) 𝑭

𝑝−1
(2)

)

𝑸𝑇

⇐⇒ sym(𝑳𝑝∗
(2)) = 𝑸sym(𝑳𝑝

(2))𝑸
𝑇 .

(1.11)

Hence, for both Case 1 and Case 2 we use

𝑳𝑝
(𝑖) = 𝑎(𝑖)

dev(𝝈(𝑖))
‖dev(𝝈(𝑖)‖

𝑎(𝑖) = �̂�0

(

‖dev(𝝈(𝑖))‖
√

2𝑔

)
1
𝑚

,

(1.12)

where �̂�0 is the reference strain rate, 𝑔 is the material strength and 𝑚 is the material rate sensitivity coefficient, and dev(𝝈) = 𝝈−
1
3 tr(𝝈)1 is the stress deviator. This allows a “most” unbiased choice allowing for minimum deviations between the predictions
of the two cases.
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1.1.1. Example: simple shear
Consider a homogeneous, time-dependent deformation gradient tensor whose components with respect to an orthonormal

basis {�̂�1, �̂�2, �̂�3} are expressed in matrix form as

𝑭 (𝑡) =
⎛

⎜

⎜

⎝

1 𝛾0𝑡 0
0 1 0
0 0 1

⎞

⎟

⎟

⎠

, (1.13)

which corresponds to a simple shear along �̂�1 ⊗ �̂�2. The corresponding components of the velocity gradient 𝑳 = �̇� 𝑭 −1 are
given by

𝑳(𝑡) =
⎛

⎜

⎜

⎝

0 𝛾0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

. (1.14)

The example consists of solving the evolution equations for �̇� 𝑒
(𝑖), 𝑖 = 1, 2 given by Eqs. (1.1) and (1.5), with 𝑭 and 𝑳 given

by Eqs. (1.13) and (1.14), respectively, 𝑳𝑝
(𝑖) computed by Eq. (1.12), and 𝝈(𝑖) expressed as in Eq. (1.9). The parameters used

in the calculations are 𝐸 = 100 GPa, 𝜈 = 0.3, 𝛾0 = 1 s−1, 𝑔 = 50 MPa, 𝑚 = 0.01. The numerical integration of Eqs. (1.1)
and (1.5) is carried out up to 𝑡𝐹 = 1 s, with a time step of Δ𝑡 = 10−5 s, resulting in a 𝛾0𝑡𝐹 = 1 shear strain.

For this simple example, considerable differences emerge in the stress response according to the ordering of the multiplica-
tive decomposition, as shown in Fig. 1. The evolutions depicted in Fig. 1a, d, and g cannot be directly compared, as 𝑭 𝑝

(1) and
𝑭 𝑝

(2) are not tensors with the same domain and co-domain. The normal Cauchy stress components 𝜎11 and 𝜎22 remain constant
and close to zero in Case 1, whereas in Case 2, they evolve to positive and negative values, respectively, producing a significant
deviation (Fig. 1b, c, e, and f). The shear component 𝜎12 behaves differently according to the ordering, with a constant plateau
after yielding in Case 1, and softening in Case 2, such that the relative difference constantly increases to reach above 40 % at
Γ = 1 (Fig. 1h and i). Finally, ‖dev(𝝈)‖ and ‖𝝈‖ present a similar evolution in both cases, but with a considerable relative
difference that reaches a maximum of 80 % for both (Fig. 1j).
1.1.2. Example: combined stretch, contraction and shear

In this example, we write the deformation gradient tensor components as

𝑭 (𝑡) =
⎛

⎜

⎜

⎝

1 + 𝑑𝛾0𝑡 𝛾0𝑡 0
0 1 − 𝑑𝛾0𝑡 0
0 0 1

⎞

⎟

⎟

⎠

, (1.15)

where 𝑑 is a constant factor. This deformation gradient corresponds to a combined stretch along �̂�1, contraction along �̂�2, and
shear along �̂�1 ⊗ �̂�2. The corresponding components of the velocity gradient are given by

𝑳(𝑡) =
⎛

⎜

⎜

⎜

⎝

𝑑𝛾0
1+𝑑𝛾0𝑡

𝛾0
1−(𝑑𝛾0𝑡)2

0

0 𝑑𝛾0
−1+𝑑𝛾0𝑡

0
0 0 0

⎞

⎟

⎟

⎟

⎠

. (1.16)

The example consists of solving the evolution equations for �̇� 𝑒
(𝑖), 𝑖 = 1, 2 given by Eqs. (1.1) and (1.5), with 𝑭 and 𝑳 given

by Eqs. (1.15) and (1.16), respectively, 𝑳𝑝
(𝑖) computed by Eq. (1.12), and 𝝈(𝑖) expressed as in Eq. (1.9). The parameters used

in the calculations are 𝐸 = 100 GPa, 𝜈 = 0.3, 𝑑 = 0.05, 𝛾0 = 1 s−1, 𝑔 = 50 MPa, 𝑚 = 0.01. The numerical integration of
Eqs. (1.1) and (1.5) is carried out up to 𝑡𝐹 = 1 s, with a time step of Δ𝑡 = 10−5 s, resulting in a 𝛾0𝑡𝐹 = 100 % strain in shear
and 𝑑𝛾0𝑡𝐹 = 5 % strain in stretch and contraction.

In this combined loading, considerable differences also arise due to the ordering of the multiplicative decomposition. As
in the previous case, the components of 𝑭 𝑝 cannot be directly compared. The normal Cauchy stress component 𝜎11 is positive
in the beginning due to the stretching in the �̂�1 direction, but becomes negative due to the combined and nonlinear interactions
between the contraction and shear in the other directions. Similar behaviour is obtained for both orderings of the multiplicative
decomposition but with a considerable relative difference of around 25 % at Γ = 1 (Fig. 2b and c). The component 𝜎22 is purely
negative due to contraction along the �̂�2, and the relative difference between the stress evolutions reaches around 40 % before
decreasing to 20 % at Γ = 1 (Fig. 2e, f). The shear component 𝜎12 presents a behaviour similar to the previous simple shear
example (Fig. 2h and i). Finally, ‖dev(𝝈)‖ and ‖𝝈‖ present a similar evolution for both orderings, but with a considerable
relative difference that reaches a maximum of 80 % and 30 % in each case, respectively (Fig. 2j).
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Figure 1: Stress and plastic distortion evolution during simple shear considering different orderings of the multiplicative decomposition of the deformation
gradient tensor, plotted against Γ(𝑡) = ‖∫ 𝑳 d𝑡‖. a), d), g): Evolution of the 11, 12 and 22 components of the plastic distortion tensor for each case; the 𝐸𝑃
and 𝑃𝐸 superscripts indicate variables resulting from the decompositions 𝑭 = 𝑭 𝑒𝑭 𝑝 and 𝑭 = 𝑭 𝑝𝑭 𝑒, respectively. b), e), h): Evolution of the 11, 12 and 22
components of the Cauchy stress tensor for each case, with the relative differences shown in c), f), and i). The curve in f) is capped at 200 % to suppress the
large peak due to the red curve in e) crossing 0. j): Evolution of the relative differences in the Frobenius norm of the Cauchy stress deviator and full stress
tensor for each case.

1.1.3. Summary and implications
The ordering-dependence of the decompositions becomes evident in the presence of rotation of the material, that is when

shear is involved. Pure stretch/contraction simulations result in no difference in stress evolution due to the decomposition
ordering. The present discussion also extends to the thermo-elastoplastic case, in which a third thermal distortion tensor𝑭 𝜃 can
be included in the multiplicative decomposition, thus yielding six possible multiplicative decompositions of the deformation
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Figure 2: Stress and plastic distortion evolution for a combined stretch, contraction and shear considering different orderings of the multiplicative decomposi-
tion of the deformation gradient tensor, plotted against Γ(𝑡) = ‖∫ 𝑳 d𝑡‖. a), d), g): Evolution of the 11, 12 and 22 components of the plastic distortion tensor
for each case; the 𝐸𝑃 and 𝑃𝐸 superscripts indicate variables resulting from the decompositions 𝑭 = 𝑭 𝑒𝑭 𝑝 and 𝑭 = 𝑭 𝑝𝑭 𝑒, respectively. b), e), h): Evolution
of the 11, 12 and 22 components of the Cauchy stress tensor for each case, with the relative differences shown in c), f), and i); the curve in c) is capped at
200 % to avoid having a large peak due to the red curve in b) crossing 0. j): Evolution of the relative differences in the Frobenius norm of the Cauchy stress
deviator and full stress tensor for each case.

gradient into elastic, plastic, and thermal components. Of course, in the thermally isotropic case, the position 𝑭 𝜃 in the
multiplicative decomposition would be irrelevant, since it would be expressed as a multiple of the identity tensor. However, in
the more general anisotropic case, we expect that the six possible orderings would result in even more differences in the stress
response of the body.

Considering a given body in its as-received state, it is impossible to uniquely define its plastic/thermal history, its cur-
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rent stress state and temperature distribution being the only accessible internal variables relevant in the context of this work.
Therefore, both the definition of 𝑭 𝑝 and 𝑭 𝜃 , and the order in which they appear in the decomposition, are arbitrary. In this
sense, a unique multiplicative decomposition of the deformation gradient would require assuming knowledge of the precise
deformation history of the body, which is not available to us. The only deformation history that we can follow starts from the
first "current" configuration, that is, the as-received body.

These are some of the reasons why in our theory we avoid relying on such decompositions, working instead on the current
configuration with kinematics based on the conservation of the Burgers vector, presented in the next section, which does not
require the introduction of a global reference configuration and a plastic distortion from it.

2. Kinematics

2.1. Distortion fields and configurations
Consider a body Ω that contains a distribution of dislocation lines and a temperature gradient at a given moment in time 𝑡

due to some combination of constant mechanical and thermal boundary conditions, as well as internal forces and heat sources
within Ω. We shall assume that the local temperature 𝜃(𝒙, 𝑡) is below the solidus temperature everywhere in Ω at any given
instant in time, that is, Ω always remains in the solid state. These configurations of Ω parametrized by time shall be called its
current configurations and is denoted as Ω𝑡. Next, suppose that the body, at each fixed instant of time, can be relaxed pointwise
to a set (Ω𝑟) of local stress-free configurations through the inverse elastic distortion tensor 𝑾 ∶= 𝑭 𝑒−1 (Fig. 3).

Despite not adopting the multiplicative decomposition, as shall be shown, our model yields the well-known and accepted
additive decomposition of the spatial velocity gradient (𝑳) into elastic (𝑳𝒆), thermal (𝑳𝜽) and plastic (𝑳𝒑) distortion rates
(see, e.g. Nemat-Nasser (1982) and the references therein). Furthermore, and crucially, this decomposition arises as a natural
consequence of the conservation of the Burgers vector. We note that one could indeed build (non-unique) plastic and thermal
distortion tensors out of this information by invoking an arbitrarily fixed reference configuration; however, this consideration
is merely a consequence of the theory, if so desired, and not a necessary physical element.
2.2. The thermomechanical line defect – a consequence of the definition of the Burgers vector

In a uniform 𝜃 field and the absence of dislocations, 𝑾 is compatible (curl-free) i.e., ∇×𝑾 = 0, in Ω𝑡, and could thus be
represented as the gradient of a vector field (in a simply-connected domain). In the presence of dislocations and/or temperature
gradients, an incompatibility might be introduced in 𝑾 , that is, ∇ ×𝑾 ≠ 0, at one or more points in the body.

If we are to draw a closed circuit (a Burgers circuit) in Ω𝑡 and take the line integral of 𝑾 over that circuit, and if this line
integral is non-vanishing, then it characterises the vector topological charge (Burgers vector) carried by a line-type defect as

𝒃𝑟 ∶= −∮𝑐𝑡
𝑾 d𝒙 = −∫𝑠𝑡

(∇ ×𝑾 )�̂� d𝑠 = ∫𝑠𝑡
𝜶�̂� d𝑠, (2.1)

where 𝑐𝑡 denotes a closed curve in Ω𝑡 with line element d𝒙, and 𝑠𝑡 is an arbitrary surface enclosed by 𝑐𝑡, whose normal is �̂�.
The two-point tensor 𝜶 is an areal density defined as

𝜶 ∶= −∇ ×𝑾 . (2.2)
In regions where only dislocations contribute to the incompatibility in 𝑾 , 𝜶 and 𝒃 only characterise dislocations. This

association is very well known and accepted since the pioneering works of Nye (1953), Kröner (1958), deWit (1960), and Mura
(1963). In fact, over the years, the definition of Burgers vector has become synonymous with the character of a dislocation.

However, the very definition of the Burgers vector in Eq. (2.1) allows one to capture the incompatibility in 𝑾 irrespective
of the source of that incompatibility; in the context of this work, this incompatibility could arise from either dislocations or
heterogeneous 𝜃 fields or both (Kröner (1958); Upadhyay (2020)). Furthermore, the definition of the Burgers vector makes it
difficult to distinguish between the different contributors to the incompatibility of 𝑾 , especially in a geometrically non-linear
setting. We note that this point is made from a measurement point of view (e.g. direct measurement of 𝑾 or computing Burgers
vectors from molecular statics simulations).

The consequences of different contributors to the incompatibility of elastic distortion were first explored by Kröner (1958)
in a small deformation stationary thermomechanics setting and later in a kinematic and dynamic setting by Upadhyay (2020).
Kröner argued that the incompatibility in 𝑾 induced by a heterogeneous 𝜃 arises from a defect that also has a line-type
nature. Kröner named this defect as the thermal quasi-dislocation, where “quasi” indicates that while this incompatibility is
captured by the same type of areal density and vector used to characterise dislocations, it does not manifest itself as a line-type
defect. However, both Kröner (1958) and Upadhyay (2020) relied on the definition of plastic and thermal strain tensors. This
definition can be applied in the small-deformation case, where each contribution (elastic, plastic, thermal) to the strain tensor
can be separately added to the total strain tensor (from a reference configuration that is necessarily introduced for geometric
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𝑾 ≔ 𝑭𝑒−1

𝑳 = ∇𝐯
𝑳 = −𝑾−1 ሶ𝑾 + 𝑾−1 𝝓𝜃 + 𝑾−1(𝜶 × 𝒗𝑑) 

𝑳𝑒 𝑳𝜃 𝑳𝑝

Consequence of conservation of Burgers vector

Current

Ωt

Ωr

∇𝜃𝑖

Figure 3: The transformation of Ω𝑡 by 𝑾 , the only distortion tensor involved in this work. The ∇𝜃𝑖 represents that each polygon 𝑖 is allowed to have a
temperature gradient, as long as Ω𝑟 remains stress-free. The additive decomposition of the velocity gradient into elastic, thermal and plastic parts is also
shown and further discussed in Section 2.3.

linearisation). In the geometrically non-linear case, the introduction of these tensors would require assuming full knowledge
of the thermomechanical history of a body by introducing a global reference configuration and a plastic distortion tensor from
it. In this work, the thermomechanics of field dislocations is treated in the dynamic, finite-deformation setting without such a
requirement.

Following the arguments presented by Kröner (1958), in regions where dislocations are not present but where the hetero-
geneous 𝜃 field induces an incompatibility in 𝑾 , 𝜶 and 𝒃 can be non-vanishing. There is no evidence that a line-type thermal
defect manifests itself in such situations, but non-vanishing 𝜶 and 𝒃 do not have to arise from a line-type defect. They will
be non-zero whenever ∇ × 𝑾 ≠ 0 is respected. As demonstrated in the small deformation setting in Upadhyay (2020), in a
domain containing a constant temperature gradient but no dislocations, constant non-zero 𝜶 and 𝒃 are generated everywhere,
and these quantities are measurable.

In the more general case, where both dislocations and heterogeneous 𝜃 field are present in the domain, 𝜶 and 𝒃 can be
non-vanishing and we assert that it is not possible to uniquely separate their contributions to the incompatibility in 𝑾 . In this
situation, we postulate that the line defect has a thermomechanical character and henceforth we shall call it the thermome-
chanical defect, with 𝜶 representing its density. In the case where only dislocations contribute to incompatibility in 𝑾 , this
thermomechanical defect manifests itself simply as a dislocation line, but not necessarily, when the dislocation lines may form
dense distribution on the scale of observation. Similarly, in a dislocation-free medium with a heterogeneous 𝜃 that contributes
to incompatibilities in 𝑾 , the thermomechanical defect does not manifest itself as a line, but has the character of the thermal
defect as postulated by Kröner (1958). This feature becomes important when dealing with the kinematics of this line defect
(Section 2.3).

Note that in the case where only dislocations contribute to 𝜶 and 𝒃, their magnitudes will depend on 𝜃 regardless of whether
𝜃 contributes to the incompatibility in 𝑾 , through the temperature dependence of the crystal lattice spacing.
2.3. Conservation of Burgers vector

Let the thermomechanical boundary conditions evolve with time, resulting in the motion of the thermomechanical line
defect. Then, the conservation of the Burgers vector of this line defect can be written as follows (see Acharya (2011), Appendix
B for a detailed derivation):

d
d𝑡𝒃𝑟 = − d

d𝑡 ∮𝑐𝑡
𝑾 d𝒙 = −∮𝑐𝑡

(

𝜶 × 𝒗𝑑 + 𝝓𝜃)d𝒙

= d
d𝑡 ∫𝑠𝑡

𝜶�̂� d𝑠 = −∫𝑠𝑡
∇ ×

(

𝜶 × 𝒗𝑑 + 𝝓𝜃) �̂� d𝑠,
(2.3)

where 𝒗𝑑 is the velocity relative to the material of the thermomechanical defect, whose expression is constitutively prescribed
guided by the condition of non-negativeness of the global thermomechanical dissipation (see Section 3.5). 𝝓𝜃 represents a
crucial source term that arises from the transient heterogeneous 𝜃. The argument to support this comes from the idea proposed
in the work of Kröner (1958) and substantiated in Upadhyay (2020). In the presence of large transient temperature gradients,
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the thermomechanical defect evolution can have a contribution from the incompatibility in thermal strains induced by the
evolving heterogeneous temperature field, and that contribution is accounted for in 𝝓𝜃 . Alternatively, such a contribution
leads to the additive decomposition of the velocity gradient into thermal and plastic parts (Eq. (2.10)), resulting, in the small
deformation theory, in the familiar expression for the elastic strain rate affecting the stress rate in classical thermoelasticity.
From Eq. (2.3) we obtain the following evolution statement of 𝜶:

◦𝜶 = −∇ ×
(

𝜶 × 𝒗𝑑 + 𝝓𝜃) , (2.4)
where ◦𝜶 ∶= tr(𝑳)𝜶 + �̇� − 𝜶𝑳𝑇 , is the convected derivative of 𝜶 (Acharya (2001)), 𝑳 = ∇𝒗 is the velocity gradient, and
𝒗 is the material velocity in Ω𝑡. In Eqs. (2.3) and (2.4), the term (𝜶 × 𝒗𝑑) represents the flux of Burgers vector carried by
thermomechanical defect lines across the curve 𝑐𝑡 with a velocity 𝒗𝑑 (Acharya (2011)), and ∇ × 𝝓𝜃 represents a source of
elastic incompatibility (areal density) due to the transient heterogeneous 𝜃 in 𝑠𝑡.In the small deformation case (Upadhyay (2020)), it was shown that 𝝓𝜃 is directly related to the evolution of thermal
strains as 𝝓𝜃 = 𝜕𝑡𝜺𝜃 = 𝜕𝑡

[

𝜸(𝜃 − 𝜃0)
], where 𝜕𝑡 denotes the partial derivative with respect to time, 𝜺𝜃 is the thermal strain, 𝜸 is

a positive-definite second-order tensor of thermal expansion coefficients, and 𝜃0 is a reference temperature value. In our work,
we introduce the contribution of the incompatibility in thermal strains to the evolution of 𝜶 through the flux term ∇ × 𝝓𝜃 and
define

𝝓𝜃 = 𝒀 �̇� (2.5)
where 𝒀 is a two-point second-order tensor of coefficients of thermal expansion that transforms vectors from the current to the
relaxed lattice state at any given point. To comply with frame invariance requirements (see Appendix B), the simplest choice
for 𝒀 is

𝒀 = 𝑾 𝜸 (2.6)
where 𝜸 is the second-order tensor of thermal expansion coefficients defined in Ω𝑡, thus being a measurable quantity on the
current configuration. Frame invariance requires that, under a rigid body motion, the thermal expansion tensor transform
as 𝜸∗ = 𝑸𝜸𝑸𝑇 (see Appendix B), where 𝜸∗ is the rotated tensor, and 𝑸 is a proper rotation tensor. Complying with this
requirement, we define

𝜸 =
3
∑

𝑖=1
𝑑𝑖(𝜃) 𝒍𝑖 ⊗ 𝒍𝑖 (2.7)

where 𝑑𝑖(𝜃) are the thermal expansion coefficients along the directions 𝒍𝑖, which correspond to the eigenvectors of the left
Cauchy-Green deformation tensor 𝑩𝑒 = 𝑭 𝑒𝑭 𝑒𝑇 . In the thermally isotropic case, we have that 𝑑𝑖(𝜃) = 𝑑(𝜃), such that 𝒀 =
𝑑(𝜃)𝑾 . Therefore, we write the thermal flux 𝝓𝜃 as

𝝓𝜃 = 𝑾 𝜸�̇� (2.8)
Eq. (2.3) also imposes a specific expression for the evolution of 𝑾 up to a gradient term. This gradient term is ignored as a

physically motivated constitutive choice (Acharya & Zhang (2015)) for which plastic strain rate arises only where dislocations
are present and a transient temperature gradient generates incompatible thermal strains. The evolution of 𝑾 then is

�̇� +𝑾𝑳 = 𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�. (2.9)
By left-multiplying by 𝑾 −1, we obtain the following additive decomposition of 𝑳 as a natural consequence of the statement
of conservation of topological charge Eq. (2.3):

𝑳 = −𝑾 −1�̇�
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑳𝑒

+𝑾 −1 (𝜶 × 𝒗𝑑
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑳𝑝

+ 𝜸�̇�
⏟⏟⏟
𝑳𝜃

.
(2.10)

where 𝑳𝑒, 𝑳𝑝 and 𝑳𝜃 correspond to the elastic, plastic and thermal distortion rates, respectively. Crucially, we have arrived at
this result without the need to assume a multiplicative decomposition of the deformation gradient. We note here that, just like
𝝓𝜃 , other mechanisms of inelastic strain rate, such as arising from phase transformations and twinning, can be incorporated to
Eq. (2.9) as an additive term 𝑺 𝑖, leading to

𝑳 = −𝑾 −1�̇�
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑳𝑒

+𝑾 −1 (𝜶 × 𝒗𝑑
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝑳𝑝

+ 𝜸�̇�
⏟⏟⏟
𝑳𝜃

+𝑾 −1𝑺 𝑖

⏟⏟⏟
𝑳𝑖

.
(2.11)

provided 𝑺 𝑖 is a measurable quantity in the current configuration, with 𝑳𝑖 being the corresponding inelastic strain rate. In the
event that 𝑺 𝑖 has a non-zero curl, then it would appear in Eq. (2.4) as an additive source term with 𝝓𝜃 .
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3. Balance laws, dissipation analysis and constitutive equations

3.1. Mass balance
If 𝜌 is a space and time-dependent mass density field, then the conservation of mass statement is

d
d𝑡 ∫Ω𝑡

𝜌 d𝑣 = 0 ⇒ �̇� + ∇ ⋅ (𝜌𝒗) = 0. (3.1)

3.2. Balance of linear and angular momentum
The balance of linear momentum reads

∇ ⋅ 𝝈 + 𝜌𝒃𝑓 = 𝜌�̇�, (3.2)
where 𝝈 is the Cauchy stress tensor and 𝒃𝑓 is the body force density per unit mass.

Angular momentum balance implies that the Cauchy stress tensor is symmetric i.e.,
𝝈 = 𝝈𝑇 . (3.3)

3.3. First law of thermodynamics
The first law of thermodynamics for the continuum thermomechanical problem is written as

d
d𝑡

(

∫Ω𝑡

𝜌𝜀 d𝑣 + 1
2 ∫Ω𝑡

𝜌𝒗 ⋅ 𝒗 d𝑣
)

= −∫𝜕Ω𝑡

𝒒 ⋅ �̂� d𝑠 + ∫𝜕Ω𝑡

𝒕 ⋅ 𝒗 d𝑠 + ∫Ω𝑡

𝜌𝑟 d𝑣 + ∫Ω𝑡

𝜌𝒃𝑓 ⋅ 𝒗 d𝑣, (3.4)

where 𝜀 is the internal energy density, 𝒒 is the heat flux vector, 𝒕 is the traction vector and 𝜌𝑟 are internal heat sources.
Considering Cauchy’s theorem, we have that 𝒕 = 𝝈�̂�, such that using Eq. (3.2) in Eq. (3.4) and rearranging terms gives

∫Ω𝑡

𝜌�̇� d𝑣 = −∫Ω𝑡

∇ ⋅ 𝒒 d𝑣 + ∫Ω𝑡

𝝈 ∶ 𝑳 d𝑣 + ∫Ω𝑡

𝜌𝑟 d𝑣. (3.5)

In the local form, it is written as
𝜌�̇� = −∇ ⋅ 𝒒 + 𝝈 ∶ 𝑳 + 𝜌𝑟. (3.6)

3.4. Second law of thermodynamics
We consider the second law of thermodynamics for a continuum body as

d
d𝑡 ∫Ω𝑡

𝜌𝜂 d𝑣 ≥ −∫𝜕Ω𝑡

𝒒
𝜃
⋅ �̂� d𝑠 + ∫Ω𝑡

𝜌𝑟
𝜃

d𝑣, (3.7)

where 𝜂 is the entropy density of the body. Eliminating 𝜌𝑟 from Eq. (3.7) by using Eq. (3.6), and using the divergence theorem
on the boundary term, we get

∫Ω𝑡

𝜌(𝜃�̇� − �̇�) d𝑣 − ∫Ω𝑡

1
𝜃
𝒒 ⋅ ∇𝜃 d𝑣 + ∫Ω𝑡

𝝈 ∶ 𝑳 d𝑣 ≥ 0. (3.8)
Then, we define the Helmholtz free energy density Ψ as

Ψ = 𝜀 − 𝜂𝜃 ⇐⇒ �̇� = Ψ̇ + �̇�𝜃 + 𝜂�̇�. (3.9)
Inserting Eq. (3.9) in Eq. (3.8) gives the global dissipation inequality

𝐷 ∶= ∫Ω𝑡

[

−𝜌
(

Ψ̇ + 𝜂�̇�
)

− 1
𝜃
𝒒 ⋅ ∇𝜃 + 𝝈 ∶ 𝑳

]

d𝑣 ≥ 0. (3.10)

We use this form of the second law to provide guidance on the possible constitutive assumptions that guarantee non-negative
dissipation.
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3.5. Helmholtz free energy density and constitutive relations
Let us assume that the Helmholtz free energy is a function of the state variables (𝑾 , 𝜃,𝜶) such that Ψ ≡ Ψ (𝑾 , 𝜃,𝜶). Then

Ψ̇ = 𝜕𝑾 Ψ ∶ �̇� + 𝜕𝜃Ψ �̇� + 𝜕𝜶Ψ ∶ �̇�. (3.11)
Next, substitute Eq. (2.9) for �̇� and plug Eq. (3.11) into Eq. (3.10) to arrive at

𝐷 =∫Ω𝑡

(

𝝈 ∶ 𝑳 − 1
𝜃
𝒒 ⋅ ∇𝜃

)

d𝑣 + ∫Ω𝑡

𝜌𝑾 𝑇 𝜕𝑾 Ψ ∶ 𝑳 d𝑣 − ∫Ω𝑡

𝜌𝜕𝑾 Ψ ∶
(

𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�
) d𝑣

− ∫Ω𝑡

𝜌𝜕𝜶Ψ ∶
[

−tr(𝑳)𝜶 + 𝜶𝑳𝑇 − ∇ ×
(

𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�
)] d𝑣 − ∫Ω𝑡

𝜌
(

𝜕𝜃Ψ + 𝜂
)

�̇� d𝑣 ≥ 0,
(3.12)

where Eq. (2.4) was used for �̇�. After rearranging the terms, we get (see Appendix F)

𝐷 =∫Ω𝑡

[

𝝈 + sym(𝜌𝑾 𝑇 𝜕𝑾 Ψ − 𝜌(𝜕𝜶Ψ)𝑇𝜶 + 𝜌(𝜕𝜶Ψ ∶ 𝜶)1)
]

∶ sym(𝑳) d𝑣

+ ∫Ω𝑡

skew(𝜌𝑾 𝑇 𝜕𝑾 Ψ − 𝜌(𝜕𝜶Ψ)𝑇𝜶 + 𝜌(𝜕𝜶Ψ ∶ 𝜶)1) ∶ skew(𝑳) d𝑣

− ∫Ω𝑡

[

𝜌𝜂 + 𝜌𝜕𝜃Ψ +
(

𝜌𝜕𝑾 Ψ − ∇ × 𝜌𝜕𝜶Ψ
)

∶ 𝑾 𝜸
]

�̇� d𝑣

− ∫Ω𝑡

{[

(

𝜌𝜕𝑾 Ψ − ∇ × 𝜌𝜕𝜶Ψ
)𝑇 𝜶

]

∶ X
}

⋅ 𝒗𝑑 d𝑣

− ∫Ω𝑡

1
𝜃
𝒒 ⋅ ∇𝜃 d𝑣

− ∫𝜕Ω𝑡

𝜌𝜕𝜶Ψ ∶
[(

𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�
)

× �̂�
] d𝑠 ≥ 0.

(3.13)

where we have considered the balance of angular momentum (Eq. (3.3)). Since skew(𝑳) is related to a rigid rotation of the
body, the second integral in Eq. (3.13) would indicate a dissipation associated with this rigid motion. Hence, the objectivity
of dissipation requires this integral to vanish, which is shown to be the case in Appendix C as a stringent test of the statements
of kinematic evolution of the theory. Thus, the second term in Eq. (3.13) vanishes.

Now, consider a motion where dislocations do not move relative to the material, i.e., 𝒗𝑑 = 0, and 𝜃 remains uniform
and constant in Ω𝑡. Such a process should not result in any dissipation, and this is only possible if the following constitutive
relationship is assumed for the Cauchy stress:

𝝈 = −𝜌𝑾 𝑇 𝜕𝑾 Ψ + 𝜌(𝜕𝜶Ψ)𝑇𝜶 − 𝜌(𝜕𝜶Ψ ∶ 𝜶)1 (3.14)
Eq. (3.14) is a nonclassical form of a hyperelastic law (Chaboche (1993)), with −𝜌𝑾 𝑇 𝜕𝑾 Ψ the hyperelastic part of 𝝈, and
the two last terms being a direct consequence of the geometrical non-linearity and the chosen dependence of Ψ on 𝜶. Indeed,
considering the expression for ◦𝜶 in Eq. (2.4), a reversible process (e.g., a quasi-static elastic loading with negligible temperature
changes) would produce an instantaneous change in 𝜶 through the terms in 𝑳 (which are present only in the finite strain case
and required for the Burgers vector conservation), as also shown in Arora et al. (2020), thus requiring the presence of the last
two terms in 𝝈 to ensure no dissipation during such process. The validity of Eq. (3.14) as a constitutive statement for 𝝈 with
respect to the balance of angular momentum is discussed in Appendix C. With the expression in Eq. (3.14) for the Cauchy
stress, the first term in Eq. (3.13) vanishes.

Next, we consider the case where no mechanical loading is applied, the dislocations are not moving, and the body temper-
ature is uniform but can undergo homogeneous heating/cooling. In this situation, the only remaining term in the dissipation
inequality Eq. (3.13) is the third term involving entropy 𝜂. Since �̇� can be arbitrary in this case, the term in square brackets is
set to zero to ensure non-negative dissipation, which yields

𝜂 = −𝜕𝜃Ψ −
(

𝜕𝑾 Ψ − 1
𝜌
∇ × 𝜌𝜕𝜶Ψ

)

∶ 𝑾 𝜸. (3.15)

Note that the second term in Eq. (3.15) is a direct consequence of considering the contribution of the incompatibility
induced by the transient heterogeneous 𝜃 as a source term in the thermomechanical defect density evolution (Eq. (2.4)). With
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these relationships, the dissipation inequality is reduced to

𝐷 =∫Ω𝑡

{[

(

−𝜌𝜕𝑾 Ψ + ∇ × 𝜌𝜕𝜶Ψ
)𝑇 𝜶

]

∶ X
}

⋅ 𝒗𝑑 d𝑣 − ∫Ω𝑡

1
𝜃
𝒒 ⋅ ∇𝜃 d𝑣

− ∫𝜕Ω𝑡

𝜌𝜕𝜶Ψ ∶
[(

𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�
)

× �̂�
] d𝑠 ≥ 0.

(3.16)

To ensure the non-negativeness of the heat flux term, we consider the generalized Fourier’s law of heat conduction
𝒒 ∶= −𝑲∇𝜃, (3.17)

where 𝑲 is the positive definite second-order thermal heat conductivity tensor which, in the general case, could be 𝜃 and/or
𝑾 -dependent. We assume that the driving force 𝒇 𝑣 for the dislocation velocity takes the form

𝒇 𝑣 =
[

(

−𝜌𝜕𝑾 Ψ + ∇ × 𝜌𝜕𝜶Ψ
)𝑇 𝜶

]

∶ X. (3.18)

In the specific case of a single dislocation line and neglecting the dependence of Ψ in 𝜶, Eq. (3.18) reduces to the form of the
well-known Peach-Koehler force acting on the dislocation line (Peach & Koehler (1950)).

Note that, in Eq. (3.16), we neglect the contribution of the boundary term to the enforcement of non-negative entropy
production in the body. With these considerations, the global dissipation of the model is written as

𝐷 = ∫Ω𝑡

𝒇 𝑣 ⋅ 𝒗𝑑 d𝑣 − ∫Ω𝑡

1
𝜃
𝒒 ⋅ ∇𝜃 d𝑣. (3.19)

This enables us to consider a simple kinetic assumption on the dislocation velocity expression that ensures the non-
negativeness of 𝐷 such as

𝒗𝑑 = 1
𝐵
𝒇 𝑣, 𝐵 > 0, (3.20)

where 𝐵 is a material parameter corresponding to the dislocation drag coefficient.
3.6. Temperature evolution

Inserting the rate form of Eq. (3.9) into Eq. (3.6) for �̇�, and using Eqs. (3.11) and (3.15) for Ψ̇, and 𝜂, respectively, gives

𝜌
[

𝜕𝑾 Ψ ∶ �̇� + 𝜕𝜶Ψ ∶ �̇� − �̇�
(

𝜕𝑾 Ψ − 1
𝜌
∇ × 𝜌𝜕𝜶Ψ

)

∶ 𝑾 𝜸 + 𝜃�̇�
]

= −∇ ⋅ 𝒒 + 𝝈 ∶ 𝑳 + 𝜌𝑟. (3.21)

Next, taking the material time derivative of Eq. (3.15), we have

�̇� = − ̇𝜕𝜃Ψ −
̇(

𝜕𝑾 Ψ − 1
𝜌
∇ × 𝜌𝜕𝜶Ψ

)

∶ 𝑾 𝜸

= −𝜕2𝜃𝑾 Ψ ∶ �̇� − 𝜕2𝜃𝜃Ψ�̇� − 𝜕2𝜃𝜶Ψ ∶ �̇� −

[

𝜕2𝑾𝑾 Ψ ∶ �̇� + 𝜕2𝑾 𝜃Ψ�̇� + 𝜕2𝑾 𝜶Ψ ∶ �̇�

+
�̇�
𝜌2

∇ × 𝜌𝜕𝜶Ψ − 1
𝜌

̇
∇ ×

(

𝜌𝜕𝜶Ψ
)

]

∶ 𝑾 𝜸 −
(

𝜕𝑾 Ψ − 1
𝜌
∇ × 𝜌𝜕𝜶Ψ

)

∶ �̇� 𝜸.

(3.22)

Consider a tensor field 𝑨(𝒙, 𝑡), and an arbitrary reference configuration Ω0 (e.g. the as-received body), with 𝒙0 ∈ Ω0 denoting
the position vector in Ω0. Then, we have

̇𝜕𝑨
𝜕𝒙

=
̇

𝜕𝑨
𝜕𝒙0

𝜕𝒙0
𝜕𝒙

= 𝜕�̇�
𝜕𝒙0

𝑭 −1 + 𝜕𝑨
𝜕𝒙0

̇
𝑭 −1. (3.23)

with 𝑭 a two-point tensor between Ω0 and Ω𝑡. Now,

𝑭𝑭 −1 = 1 ⇐⇒ 𝑭
̇

𝑭 −1 = −�̇� 𝑭 −1 ⇐⇒
̇

𝑭 −1 = −𝑭 −1𝑳,
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such that, by inserting into Eq. (3.23), we have
̇𝜕𝑨
𝜕𝒙

= 𝜕�̇�
𝜕𝒙

− 𝜕𝑨
𝜕𝒙

𝑳. (3.24)
regardless of the choice of Ω0. With that, we can write

[ ̇∇ ×𝑨
]

𝑖𝑗 = 𝜖𝑗𝑘𝑙
̇𝐴𝑖𝑙,𝑘 = 𝜖𝑗𝑘𝑙(�̇�𝑖𝑙,𝑘 − 𝐴𝑖𝑙,𝑚𝐿𝑚𝑘) = 𝜖𝑗𝑘𝑙�̇�𝑖𝑙,𝑘 + 𝐴𝑖𝑙,𝑚𝐿𝑚𝑘𝜖𝑗𝑙𝑘

⇐⇒
̇∇ ×𝑨 = ∇ × �̇� + [(∇𝑨)𝑳] ∶ 𝐗,

(3.25)

such that the second term in the last line of Eq. (3.22) becomes
̇

∇ ×
(

𝜌𝜕𝜶Ψ
)

= ∇ ×
(

�̇�𝜕𝜶Ψ + 𝜌𝜕2𝜶𝑾 Ψ ∶ �̇� + 𝜌𝜕2𝜶𝜃Ψ�̇� + 𝜌𝜕2𝜶𝜶Ψ ∶ �̇�
)

+
[

∇(𝜌𝜕𝜶Ψ)𝑳
]

∶ 𝐗 (3.26)
and Eq. (3.22) can be written as

�̇� = −𝜕2𝜃𝑾 Ψ ∶ �̇� − 𝜕2𝜃𝜃Ψ�̇� − 𝜕2𝜃𝜶Ψ ∶ �̇� −

[

𝜕2𝑾𝑾 Ψ ∶ �̇� + 𝜕2𝑾 𝜃Ψ�̇� + 𝜕2𝑾 𝜶Ψ ∶ �̇�

+
�̇�
𝜌2

∇ × 𝜌𝜕𝜶Ψ − 1
𝜌
∇ ×

(

�̇�𝜕𝜶Ψ + 𝜌𝜕2𝜶𝑾 Ψ ∶ �̇� + 𝜌𝜕2𝜶𝜃Ψ�̇� + 𝜌𝜕2𝜶𝜶Ψ ∶ �̇�
)

− 1
𝜌
(

∇(𝜌𝜕𝜶Ψ)𝑳
)

∶ 𝐗
]

∶ 𝜸𝑾 −
(

𝜕𝑾 Ψ − 1
𝜌
∇ × 𝜌𝜕𝜶Ψ

)

∶ �̇� 𝜸.

(3.27)

Inserting Eq. (3.27) in Eq. (3.21), using Eq. (3.14) for 𝝈 and rearranging terms results in the following equation for the tem-
perature evolution:

[

(

− 𝜌𝜕𝑾 Ψ + ∇ × 𝜌𝜕𝜶Ψ − 𝜌𝜃𝜕2𝑾 𝜃Ψ
)

∶ 𝑾 𝜸 − 𝜌𝜃𝜕2𝜃𝜃Ψ
]

�̇� + 𝜃∇ ×
(

𝜌𝜕2𝜶𝜃Ψ�̇�
)

∶ 𝑾 𝜸

= − ∇ ⋅ 𝒒 + 𝜌𝑟 − 𝜌𝜕𝑾 Ψ ∶
(

�̇� +𝑾𝑳
)

− 𝜌𝜕𝜶Ψ ∶
(

�̇� + tr(𝑳)𝜶 − 𝜶𝑳𝑇 ) + 𝜌𝜃𝜕2𝜃𝑾 Ψ ∶ �̇� + 𝜌𝜃𝜕2𝜃𝜶Ψ ∶ �̇�

+ 𝜌𝜃

[

𝜕2𝑾𝑾 Ψ ∶ �̇� + 𝜕2𝑾 𝜶Ψ ∶ �̇� +
�̇�
𝜌2

∇ × 𝜌𝜕𝜶Ψ − 1
𝜌
∇ ×

(

�̇�𝜕𝜶Ψ + 𝜌𝜕2𝜶𝑾 Ψ ∶ �̇�

+ 𝜌𝜕2𝜶𝜶Ψ ∶ �̇�
)

− 1
𝜌
(

∇(𝜌𝜕𝜶Ψ)𝑳
)

∶ 𝐗
]

∶ 𝑾 𝜸 + 𝜃
(

𝜌𝜕𝑾 Ψ − ∇ × 𝜌𝜕𝜶Ψ
)

∶
(

�̇� 𝜸 +𝑾 G ∶ �̇�
)

,

(3.28)

where we consider
�̇� =

(

𝜕𝜸
𝜕𝑩𝑒 ∶ 𝜕𝑩𝑒

𝜕𝑾

)

∶ �̇� = G ∶ �̇� . (3.29)

14



Using Eqs. (2.4) and (2.9) for �̇� and �̇� gives
{

[

∇ × 𝜌𝜕𝜶Ψ(1 + 𝜃𝜸𝑇 ) − 2𝜌𝜃𝜕2𝑾 𝜃Ψ − 𝜌𝜃𝑾 𝜸 ∶ 𝜕2𝑾𝑾 Ψ − 𝜌𝜃𝜕𝑾 Ψ𝜸𝑇 − 𝜃(𝜌𝜕𝑾 Ψ − ∇ × 𝜌𝜕𝜶Ψ) ∶ 𝑾 G

]

∶ 𝑾 𝜸

− 𝜌𝜃𝜕2𝜃𝜃Ψ

}

�̇� + 𝜃∇ ×
(

𝜌𝜕2𝜶𝜃Ψ�̇�
)

∶ 𝑾 𝜸 −
[

𝜌𝜕𝜶Ψ − 𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶ 𝜕2𝑾 𝜶Ψ
) ]

∶ ∇ ×
(

𝑾 𝜸�̇�
)

+ 𝜃∇ ×
[

𝜌𝜕2𝜶𝑾 Ψ ∶ 𝑾 𝜸�̇� − 𝜌𝜕2𝜶𝜶Ψ ∶ ∇ ×
(

𝑾 𝜸�̇�
)

]

∶ 𝑾 𝜸

=

− ∇ ⋅ 𝒒 + 𝜌𝑟 +
[

− 𝜌𝜕𝑾 Ψ
(

1 − 𝜃𝜸𝑇
)

+ 𝜃
(

𝜌𝜕𝑾 Ψ − ∇ × 𝜌𝜕𝜶Ψ
)

∶ 𝑾 G − 𝜃∇ × (𝜌𝜕𝜶Ψ)𝜸𝑇

+ 𝜌𝜃
(

𝜕2𝜃𝑾 Ψ +𝑾 𝜸 ∶ 𝜕2𝑾𝑾 Ψ
)

]

∶
(

𝜶 × 𝒗𝑑
)

+

{

− 𝜌𝜃𝑾 𝑇 (

𝜕2𝜃𝑾 Ψ +𝑾 𝜸 ∶ 𝜕2𝑾𝑾 Ψ
)

−
[

𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶ 𝜕2𝑾 𝜶Ψ
)

∶ 𝜶
]

1 +
[

𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶ 𝜕2𝑾 𝜶Ψ
)𝑇 𝜶

]

+ 𝜃
[

−𝜌(𝑾 𝑇 𝜕𝑾 Ψ)𝜸𝑇 +𝑾 𝑇∇ × (𝜌𝜕𝜶Ψ)𝜸𝑇 +
(

−𝜌𝑾 𝑇 𝜕𝑾 Ψ +𝑾 𝑇∇ × 𝜌𝜕𝜶Ψ
)

∶ 𝑾 G
]

}

∶ 𝑳

+
[

𝜌𝜕𝜶Ψ − 𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶ 𝜕2𝑾 𝜶Ψ
)]

∶ ∇ ×
(

𝜶 × 𝒗𝑑
)

+

{

𝜃�̇�
𝜌
∇ × 𝜌𝜕𝜶Ψ − 𝜃∇ ×

[

�̇�𝜕𝜶Ψ + 𝜌𝜕2𝜶𝑾 Ψ ∶
(

−𝑾𝑳 + 𝜶 × 𝒗𝑑
)

+ 𝜌𝜕2𝜶𝜶Ψ ∶
(

− tr(𝑳)𝜶 + 𝜶𝑳𝑇 − ∇ × (𝜶 × 𝒗𝑑)
)

]

− 𝜃
(

∇(𝜌𝜕𝜶Ψ)𝑳
)

∶ 𝐗
}

∶ 𝑾 𝜸.

(3.30)

Eq. (3.30) covers the most general case, in which Ψ could have coupled terms between the state variables 𝑾 , 𝜃 and 𝜶.
We recall here that the present model is applicable in the solid state of the body, such that Eq. (3.30) is valid for 𝜃 below the
solidus temperature.

To address the main implications of the new physical coupling between the evolution of the general thermomechanical
defect density 𝜶 and the flux of thermal strains (Eq. (2.4)), an analysis of the structure of Eq. (3.30) is carried out in Appendix
D in a simplified linear, one-dimensional case. The following aspects stand out:

• In the adiabatic case, neglecting the heat diffusion term, the temperature evolution remains governed by a PDE, owing
to the presence of spatial derivatives of 𝜃 on the left-hand side of Eq. (3.30).

• The behaviour of the solutions of Eq. (3.30) is in the form of dispersive temperature waves i.e., with finite propagation
speed (that varies with wave number). It arises from the mixed temporal and spatial derivatives in Eq. (3.30), which in
turn occur because 𝜶 is introduced as an internal state variable.

• The well-posedness of Eq. (3.30) is shown in a linearised setting. Along with the expected decay for a range of wavenum-
bers, the solution also admits well-posed growth. This can be the source of spatial patterning resulting from the growth
of some Fourier components in the temperature.

Generally, when considering Fourier’s law of heat conduction as the constitutive statement for the heat conduction vector
(Eq. (3.17)), the resulting temperature evolution is such that a temperature change in the body is immediately felt throughout
the entirety of it, giving rise to an infinite temperature propagation speed. To overcome this limitation, multiple strategies
have been employed in the literature, usually involving the use of an extended constitutive relation for the heat flux vector
that considers its rate associated with a certain relaxation time. This results in a hyperbolic evolution law for the temperature
evolution, thus giving rise to wave-like solutions of the temperature field, which propagate at finite speeds (see Joseph &
Preziosi (1989) and the references therein for a broad overview, including that of the pioneering work of Cattaneo (1948)).

More recently, Mariano (2017); Mariano & Spadini (2022) analysed a rigid thermal conductor and showed that, by consid-
ering the existence of a geometrical descriptor of the microstructure of a body, the energy balance statement leads to a finite
speed of temperature propagation governed by a hyperbolic PDE. Their result is said to be independent of the microstructure
type, provided that the latter is sensitive to temperature changes. Moreover, their approach did not require any changes to
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Fourier’s law of heat conduction. The theory presented here seems to align well with these results. In our case, the thermome-
chanical defect density 𝜶 can be seen as the descriptor that provides information about low-dimensional structures (dislocation
lines and incompatibilities in thermal strains) on a larger scale. The fundamental statement of the evolution of 𝜶 (Eq. (2.4))
comprises the effect of a transient temperature field, which in turn results in convection-diffusion-dispersion effects in the PDE
that governs the temperature evolution in the body (Eq. (3.30)) due to the accounting of the energetic contribution of 𝜶 to
Helmholtz free energy (Eq. (3.11)). Similarly to Mariano & Spadini (2022), the use here of Fourier’s law (Eq. (3.17)) did not
impede this result, and the obtained temperature field propagates at finite speeds.
3.7. Taylor-Quinney coefficient

In the pioneering work of Taylor & Quinney (1934), the authors measured the amount of energy that remained stored in
metallic rods after severe plastic deformation and introduced a coefficient, later called the Taylor-Quinney coefficient (TQC),
defined as

𝛽int =
𝑊 −𝑄
𝑊

, (3.31)
where 𝑊 corresponds to the total work done on a rod, and 𝑄 is the heat dissipated by it during the deformation. Subsequently,
different definitions were used that fall under the same denomination of TQC (Rittel et al. (2017)). In particular, the so-called
differential TQC 𝛽diff is used as a measure of the instantaneous partition of plastic work into heat and stored energy during
deformation, while the integral TQC (Eq. (3.31)) expresses the amount of plastic work that is stored as latent energy in the
body after deformation (Rittel (1999), Rittel et al. (2017), Stimac et al. (2022)).

Adopting Rosakis et al. (2000) for our work, from Eq. (3.30) we define

�̇�𝑝 =
[

− 𝜌𝜕𝑾 Ψ
(

1 − 𝜃𝜸𝑇
)

+ 𝜃
(

𝜌𝜕𝑾 Ψ − ∇ × 𝜌𝜕𝜶Ψ
)

∶ 𝑾 G − 𝜃∇ × (𝜌𝜕𝜶Ψ)𝜸𝑇

+ 𝜌𝜃
(

𝜕2𝜃𝑾 Ψ +𝑾 𝜸 ∶𝜕2𝑾𝑾 Ψ
)

]

∶
(

𝜶 × 𝒗𝑑
)

+
[

𝜌𝜕𝜶Ψ − 𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶𝜕2𝑾 𝜶Ψ
)]

∶∇ ×
(

𝜶 × 𝒗𝑑
)

−

{

𝜃∇ ×
[

𝜌𝜕2𝜶𝑾 Ψ ∶
(

𝜶 × 𝒗𝑑
)

− 𝜌𝜕2𝜶𝜶Ψ ∶ ∇ × (𝜶 × 𝒗𝑑)
]

}

∶ 𝑾 𝜸

�̇�𝑒 = −

{

𝜌𝜃𝑾 𝑇 (

𝜕2𝜃𝑾 Ψ +𝑾 𝜸 ∶𝜕2𝑾𝑾 Ψ
)

+
[

𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶𝜕2𝑾 𝜶Ψ
)

∶𝜶
]

1 −
[

𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶𝜕2𝑾 𝜶Ψ
)𝑇 𝜶

]

− 𝜃
[

−𝜌(𝑾 𝑇 𝜕𝑾 Ψ)𝜸𝑇 +𝑾 𝑇∇ × (𝜌𝜕𝜶Ψ)𝜸𝑇 +
(

−𝜌𝑾 𝑇 𝜕𝑾 Ψ +𝑾 𝑇∇ × 𝜌𝜕𝜶Ψ
)

∶ 𝑾 G
]

}

∶ 𝑳

−

{

𝜃∇ ×
[

�̇�𝜕𝜶Ψ − 𝜌𝜕2𝜶𝑾 Ψ ∶ 𝑾𝑳 + 𝜌𝜕2𝜶𝜶Ψ ∶
(

− tr(𝑳)𝜶 + 𝜶𝑳𝑇 )
]

+ 𝜃
(

∇(𝜌𝜕𝜶Ψ)𝑳
)

∶ 𝐗 −
𝜃�̇�
𝜌
∇ × 𝜌𝜕𝜶Ψ

}

∶ 𝑾 𝜸,

(3.32)

where �̇�𝑝 is the heating due to inelastic effects governed by the thermomechanical defect density evolution and �̇�𝑒 is the
thermoelastic contribution to heating. We introduce the plastic work rate as �̇� 𝑝 = −𝜌𝜕𝑾 Ψ ∶ (𝜶 × 𝒗𝑑), so that the fraction of
�̇� 𝑝 converted into �̇�𝑝 can be defined as

𝛽diff = �̇�𝑝

�̇� 𝑝
. (3.33)

Denoting the left-hand side of Eq. (3.30) as [�̇�], and considering Eq. (3.33), we can rewrite the temperature evolution as
[�̇�] = −∇ ⋅ 𝒒 + 𝜌𝑟 + 𝛽diff�̇� 𝑝 + �̇�𝑒, (3.34)

which shows that it is governed by heat diffusion, internal heat sources, plastic work due to the evolution of the thermome-
chanical defect density, and thermoelastic effects.

In our model, the rate of conversion of plastic work into heat (Eq. (3.33)) is influenced by the strain rates. This influence
is manifested through the stress dependence of the line defect velocity 𝒗𝑑 and defect source 𝑺. The dependence of 𝛽 on the
loading conditions is well-established in the literature (see Rittel et al. (2017) and the references therein). The key aspect of
our approach is that the rather straightforward argument of conservation of Burgers vector in Eq. (2.3) yields the structure of
Eq. (3.34) that allows for studying temperature evolution during plastic work. In other approaches, a similar result is obtained
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with the introduction of phenomenological expressions for the accumulated plastic strains or other conventional plasticity-
related variables (Stainier & Ortiz (2010), Nieto-Fuentes et al. (2018), Longère (2023), Zeng et al. (2022), Dæhli et al. (2023)).
Note that 𝛽diff depends on the choice of Ψ, and the key point here is that our description of plasticity allows for studying plastic
work repartition into heat directly from the evolution of thermomechanical defects while accounting for temperature effects
and involving unambiguously definable quantities, measurable from the current state (at least in principle).
3.8. Initial boundary value problem of finite deformation field dislocations thermomechanics

In this section, we summarize the set of governing equations and constitutive relations of the model. The initial and
boundary conditions are also shown. For an approach to solving for 𝑾 using the Stokes-Helmholtz decomposition, as detailed
in Acharya (2004), we direct the reader to Appendix E.1.

Kinematics and dislocation density evolution
�̇� +𝑾𝑳 = 𝜶 × 𝒗𝑑 +𝑾 𝜸�̇� (3.35a)
◦𝜶 = −∇ ×

(

𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�
)

, ◦𝜶 = tr(𝑳)𝜶 + �̇� − 𝜶𝑳𝑇 (3.35b)
𝒗𝑑 = 1

𝐵

[

(

−𝜌𝜕𝑾 Ψ + ∇ × 𝜌𝜕𝜶Ψ
)𝑇 𝜶

]

∶ X (3.35c)

Mass density evolution
�̇� + ∇ ⋅ (𝜌𝒗) = 0 (3.35d)

Dynamics
∇ ⋅ 𝝈 + 𝜌𝒃𝑓 = 𝜌�̇� (3.35e)
𝝈 = −𝜌𝑾 𝑇 𝜕𝑾 Ψ + 𝜌(𝜕𝜶Ψ)𝑇𝜶 − 𝜌(𝜕𝜶Ψ ∶ 𝜶)1 (3.35f)

Temperature evolution
{

[

∇ × 𝜌𝜕𝜶Ψ(1 + 𝜃𝜸𝑇 ) − 2𝜌𝜃𝜕2𝑾 𝜃Ψ − 𝜌𝜃𝑾 𝜸 ∶ 𝜕2𝑾𝑾 Ψ − 𝜌𝜃𝜕𝑾 Ψ𝜸𝑇 − 𝜃(𝜌𝜕𝑾 Ψ − ∇ × 𝜌𝜕𝜶Ψ) ∶ 𝑾 G

]

∶ 𝑾 𝜸

− 𝜌𝜃𝜕2𝜃𝜃Ψ

}

�̇� + 𝜃∇ ×
(

𝜌𝜕2𝜶𝜃Ψ�̇�
)

∶ 𝑾 𝜸 −
[

𝜌𝜕𝜶Ψ − 𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶ 𝜕2𝑾 𝜶Ψ
) ]

∶ ∇ ×
(

𝑾 𝜸�̇�
)

+ 𝜃∇ ×
[

𝜌𝜕2𝜶𝑾 Ψ ∶ 𝑾 𝜸�̇� − 𝜌𝜕2𝜶𝜶Ψ ∶ ∇ ×
(

𝑾 𝜸�̇�
)

]

∶ 𝑾 𝜸

= −∇ ⋅ 𝒒 + 𝜌𝑟 +
[

− 𝜌𝜕𝑾 Ψ
(

1 − 𝜃𝜸𝑇
)

+ 𝜃
(

𝜌𝜕𝑾 Ψ − ∇ × 𝜌𝜕𝜶Ψ
)

∶ 𝑾 G − 𝜃∇ × (𝜌𝜕𝜶Ψ)𝜸𝑇

+ 𝜌𝜃
(

𝜕2𝜃𝑾 Ψ +𝑾 𝜸 ∶ 𝜕2𝑾𝑾 Ψ
)

]

∶
(

𝜶 × 𝒗𝑑
)

+

{

− 𝜌𝜃𝑾 𝑇 (

𝜕2𝜃𝑾 Ψ +𝑾 𝜸 ∶ 𝜕2𝑾𝑾 Ψ
)

−
[

𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶ 𝜕2𝑾 𝜶Ψ
)

∶ 𝜶
]

1 +
[

𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶ 𝜕2𝑾 𝜶Ψ
)𝑇 𝜶

]

+ 𝜃
[

−𝜌(𝑾 𝑇 𝜕𝑾 Ψ)𝜸𝑇 +𝑾 𝑇∇ × (𝜌𝜕𝜶Ψ)𝜸𝑇 +
(

−𝜌𝑾 𝑇 𝜕𝑾 Ψ +𝑾 𝑇∇ × 𝜌𝜕𝜶Ψ
)

∶ 𝑾 G
]

}

∶ 𝑳

+
[

𝜌𝜕𝜶Ψ − 𝜌𝜃
(

𝜕2𝜃𝜶Ψ +𝑾 𝜸 ∶ 𝜕2𝑾 𝜶Ψ
)]

∶ ∇ ×
(

𝜶 × 𝒗𝑑
)

+

{

𝜃�̇�
𝜌
∇ × 𝜌𝜕𝜶Ψ − 𝜃∇ ×

[

�̇�𝜕𝜶Ψ + 𝜌𝜕2𝜶𝑾 Ψ ∶
(

−𝑾𝑳 + 𝜶 × 𝒗𝑑
)

+ 𝜌𝜕2𝜶𝜶Ψ ∶
(

− tr(𝑳)𝜶 + 𝜶𝑳𝑇 − ∇ × (𝜶 × 𝒗𝑑)
)

]

− 𝜃
(

∇(𝜌𝜕𝜶Ψ)𝑳
)

∶ 𝐗
}

∶ 𝑾 𝜸

(3.35g)

𝒒 = −𝑲∇𝜃. (3.35h)

17



3.8.1. Boundary conditions
Naturally, the closure of Eq. (3.35) requires the specification of the initial and boundary conditions, presented in what

follows.
The thermomechanical defect density transport, Eq. (3.35b), requires the specification

(𝒗𝑑 ⋅ �̂�)𝜶 = 𝑭 𝛼 on 𝜕Ω−
𝑡 , (3.36)

which is enough to ensure uniqueness, where 𝑭 𝛼 is a prescribed dislocation flux and 𝜕Ω−
𝑡 corresponds to the part of 𝜕Ω𝑡 where

𝒗𝑑 ⋅ �̂� < 0, i.e., only the inflow of defects into the body needs to be prescribed (Acharya (2003)).
The balance of linear momentum in Eq. (3.35e) requires the specification of standard velocity and traction rate boundary

conditions on complementary parts of 𝜕Ω𝑡 (Arora et al. (2020)).
Finally, the temperature evolution Eq. (3.35g) is completed with

𝜃 = �̄� on 𝜕Ω𝜃
𝑡

𝒒 ⋅ �̂� = 𝒒 on 𝜕Ω𝑞
𝑡 ,

(3.37)

where �̄� and 𝒒 are prescribed quantities, 𝜕Ω𝑞
𝑡 ∩ 𝜕Ω𝜃

𝑡 = ∅, and 𝜕Ω𝑞
𝑡 ∪ 𝜕Ω𝜃

𝑡 = 𝜕Ω𝑡.
3.8.2. Initial conditions

The defect transport Eq. (3.35b) is solved considering a given initial defect density 𝜶0, i.e. 𝜶(𝒙, 0) = 𝜶0(𝒙).The balance of linear momentum Eq. (3.35e) requires the specification of an initial material velocity profile 𝒗0, i.e.
𝒗(𝒙, 0) = 𝒗0(𝒙).Furthermore, the temperature evolution Eq. (3.35g) requires the specification of an initial temperature profile in the body,
that is, 𝜃(𝒙, 0) = 𝜃0(𝒙) for a given 𝜃0.

4. Geometric linearisation

In this section, we geometrically linearise the model, i.e. develop it in a small deformation framework (but large temperature
changes are allowed). In the small deformation case, 𝑾 can be approximated as

𝑾 = 𝑭 𝑒−1 = (1 + 𝑼 𝑒)−1 ≈ 1 − 𝑼 𝑒, (4.1)
where 𝑼 𝑒 is the elastic distortion tensor, with ‖𝑼 𝑒

‖ ≪ 1. In the present small deformation setting, the superposed dot denotes
a partial derivative with respect to 𝑡, and we assume that �̇� = 0 and 𝜌∕𝜌0 ≈ 1.

We also assume 𝒗 = �̇�, where 𝒖 is the displacement field. Then, using Eq. (4.1), the velocity gradient 𝑳 given by Eq. (2.10)
can be approximated as

𝑳 = ∇�̇� = �̇� 𝑒 + 𝜶 × 𝒗𝑑 + 𝜸�̇�. (4.2)
where in this case 𝜸 =

∑3
𝑖=1 𝑑𝑖(𝜃)�̂�𝑖 ⊗ �̂�𝑖. Without loss of generality, we can define �̇� 𝑝 ∶= 𝜶 × 𝒗𝑑 as the plastic distortion rate

and �̇�𝜃 ∶= 𝜸�̇� as the thermal strain rate in the small deformation formulation. Integrating Eq. (4.2) in time, we get
∇𝒖 = 𝑼 𝑒 + 𝑼 𝑝 + 𝜺𝜃 , (4.3)

where a time-independent tensor field is ignored. This expression is the well-known additive decomposition of the displacement
gradient tensor that is relevant in the small deformation case.

Considering Eq. (4.1), the definition of the Burgers vector in Eq. (2.1) becomes

𝒃 = ∮𝑐
𝑼 𝑒d𝒙 = ∫𝑠

(∇ × 𝑼 𝑒)�̂� d𝑠 = ∫𝑠
𝜶�̂� d𝑠, (4.4)

where 𝑠 in an arbitrary closed surface in Ω, whose boundary and unit normal are 𝑐 and �̂�, respectively, and the second equality
is obtained through Stokes’ theorem. The thermomechanical defect density is now defined as

𝜶 = ∇ × 𝑼 𝑒, (4.5)
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for which we obtain the evolution statement (Acharya (2011), Upadhyay (2020))
�̇� = ∇ × �̇� 𝑒

⇐⇒ �̇� = −∇ × (𝜶 × 𝒗𝑑) − ∇ × (𝜸�̇�)
(4.6)

where Eq. (4.2) was used. These expressions are very similar to the ones derived in Upadhyay (2020), except for one important
detail, which is addressed in section 5.3.

In the geometrically linear setting, the additive decomposition of the displacement gradient (Eq. (4.3)) allows for consid-
ering the Helmholtz free energy density as Ψ ≡ Ψ(𝜺𝑒,𝜶) = Ψ(𝜺 − 𝜺𝑝 − 𝜺𝜃 ,𝜶) = Ψ(𝜺 − 𝜺𝑝, 𝜃,𝜶), with 𝜺 = sym(∇𝒖) and
𝜺𝑒,𝑝 = sym(𝑼 𝑒,𝑝), such that

Ψ̇ = 𝜕(𝜺−𝜺𝑝)Ψ ∶ (�̇� − �̇�𝑝) + 𝜕𝜃Ψ �̇� + 𝜕𝜶Ψ ∶ �̇�. (4.7)
Considering 𝝈 ∶ 𝑳 = 𝝈 ∶ 𝜺 in the global dissipation (Eq. (3.10)), as well as replacing Eq. (4.7) and Eq. (4.6) for Ψ̇ and �̇�,

respectively, and using Eqs. (F.3) and (F.4) allows for the definition of the following constitutive relations:
𝝈 = 𝜌𝜕(𝜺−𝜺𝑝)Ψ (4.8a)
𝜂 = −𝜕𝜃Ψ + 1

𝜌
∇ ×

(

𝜌𝜕𝜶Ψ
)

∶ 𝜸 (4.8b)

𝒗𝑑 = 1
𝐵

[

(𝝈 + ∇ × 𝜌𝜕𝜶Ψ)𝑇𝜶
]

∶ 𝐗 (4.8c)
𝒒 = 𝑲∇𝜃. (4.8d)

For the temperature evolution equation, in the small-strains case, Eq. (3.21) becomes
𝜌
[

𝜕(𝜺−𝜺𝑝)Ψ ∶ (�̇� − �̇�𝑝) + 𝜕𝜃Ψ�̇� + 𝜕𝜶Ψ ∶ �̇� + �̇�𝜂 + 𝜃�̇�
]

= 𝝈 ∶ �̇� − ∇ ⋅ 𝒒 + 𝜌𝑟. (4.9)
Now, by taking the derivative of Eq. (4.8b) with respect to time, we get

�̇� = −𝜕2𝜃(𝜺−𝜺𝑝)Ψ ∶ (�̇� − �̇�𝑝) − 𝜕2𝜃𝜃Ψ�̇� − 𝜕2𝜃𝜶Ψ ∶ �̇� + 1
𝜌
∇ ×

(

𝜌𝜕2𝜶(𝜺−𝜺𝑝)Ψ ∶ (�̇� − �̇�𝑝) + 𝜌𝜕2𝜶𝜃Ψ�̇� + 𝜌𝜕2𝜶𝜶Ψ ∶ �̇�
)

∶ 𝜸. (4.10)

Inserting Eq. (4.10) into Eq. (4.9), considering Eqs. (4.2), (4.6) and (4.8a), and rearranging terms, results in the temperature
evolution equation

[(

∇ × 𝜌𝜕𝜶Ψ − 𝜌𝜃𝜕2𝜃(𝜺−𝜺𝑝)Ψ
)

∶ 𝜸 − 𝜌𝜃𝜕2𝜃𝜃Ψ
]

�̇� + 𝜃∇ ×
(

𝜌𝜕2𝜶𝜃Ψ�̇�
)

∶ 𝜸 − 𝜌
(

𝜕𝜶Ψ + 𝜃𝜕2𝜃𝜶Ψ
)

∶ ∇ × (𝜸�̇�)

+ 𝜃∇ ×
[

𝜌𝜕2𝜶(𝜺−𝜺𝑝)Ψ ∶ 𝜸�̇� − 𝜌𝜕2𝜶𝜶Ψ ∶ ∇ × (𝜸�̇�)
]

∶ 𝜸 = 𝝈 ∶
(

𝜶 × 𝒗𝑑
)

+ 𝜌𝜃𝜕2𝜃(𝜺−𝜺𝑝)Ψ ∶ �̇�𝑒 − ∇ ⋅ 𝒒 + 𝜌𝑟

+
{

𝜌(𝜕𝜶Ψ − 𝜃𝜕2𝜃𝜶Ψ) ∶ ∇ × (𝜶 × 𝒗𝑑) + 𝜃∇ ×
[

𝜌𝜕2𝜶𝜶Ψ ∶ ∇ × (𝜶 × 𝒗𝑑)
]

∶ 𝜸
}

− 𝜃∇ ×
(

𝜌𝜕2𝜶(𝜺−𝜺𝑝)Ψ ∶ �̇�𝑒
)

∶ 𝜸,

(4.11)

where the left-hand side represents the heat storage, with coefficients depending on the thermodynamic driving force of 𝜶,
thermoelastic coupling, heat capacity and coupling between 𝜶 and 𝜃 or (𝜺 − 𝜺𝑝); on the right-hand side, from left to right, we
have plastic work, thermoelastic effect, heat diffusion, heat source, heat generation due to thermomechanical defect density
evolution and a coupled term between 𝜶 and deformation evolution. Eq. (4.11) retains the same structure as Eq. (3.30) in terms
of the derivatives of 𝜃 involved, so that the analysis in Appendix D also applies to this case.

The equations of the geometrically linearised theory are grouped and presented in the set below. As in Section 3.8, we
direct the reader to Appendix E.2 for an approach to solving for 𝑼 𝑒 using the Stokes-Helmholtz decomposition.

Kinematics and dislocation density evolution
�̇� 𝑒 = ∇�̇� − 𝜶 × 𝒗𝑑 − 𝜸�̇� (4.12a)
�̇� = −∇ ×

(

𝜶 × 𝒗𝑑 + 𝜸�̇�
) (4.12b)

𝒗𝑑 = 1
𝐵

[

(𝝈 + ∇ × 𝜌𝜕𝜶Ψ)𝑇𝜶
]

∶ 𝐗 (4.12c)

Mechanical equilibrium
∇ ⋅ 𝝈 + 𝜌𝒃𝑓 = 𝜌�̈� (4.12d)
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𝝈 = 𝜌𝜕(𝜺−𝜺𝑝)Ψ (4.12e)

Temperature evolution
[(

∇ × 𝜌𝜕𝜶Ψ − 𝜌𝜃𝜕2𝜃(𝜺−𝜺𝑝)Ψ
)

∶ 𝜸 − 𝜌𝜃𝜕2𝜃𝜃Ψ
]

�̇� + 𝜃∇ ×
(

𝜌𝜕2𝜶𝜃Ψ�̇�
)

∶ 𝜸 − 𝜌
(

𝜕𝜶Ψ + 𝜃𝜕2𝜃𝜶Ψ
)

∶ ∇ × (𝜸�̇�)

+ 𝜃∇ ×
[

𝜌𝜕2𝜶(𝜺−𝜺𝑝)Ψ ∶ 𝜸�̇� − 𝜌𝜕2𝜶𝜶Ψ ∶ ∇ × (𝜸�̇�)
]

∶ 𝜸 = 𝝈 ∶
(

𝜶 × 𝒗𝑑
)

+ 𝜌𝜃𝜕2𝜃(𝜺−𝜺𝑝)Ψ ∶ �̇�𝑒

+
{

𝜌(𝜕𝜶Ψ − 𝜃𝜕2𝜃𝜶Ψ) ∶ ∇ × (𝜶 × 𝒗𝑑) + 𝜃∇ ×
[

𝜌𝜕2𝜶𝜶Ψ ∶ ∇ × (𝜶 × 𝒗𝑑)
]

∶ 𝜸
}

− 𝜃∇ ×
(

𝜌𝜕2𝜶(𝜺−𝜺𝑝)Ψ ∶ �̇�𝑒
)

∶ 𝜸 − ∇ ⋅ 𝒒 + 𝜌𝑟

(4.12f)

𝒒 = −𝑲∇𝜃. (4.12g)

4.1. Boundary conditions
Standard displacement and traction boundary conditions on complementary parts of the boundary are necessary to solve

for the equilibrium Eq. (4.12d).
To solve for 𝜶 and 𝜃, the required boundary conditions are similar to Eqs. (3.36) and (3.37).

4.2. Initial conditions
Similarly to Section 3.8.2, the defect transport Eq. (4.12b) is solved considering a given initial defect density 𝜶0, i.e.

𝜶(𝒙, 0) = 𝜶0(𝒙).The balance of linear momentum Eq. (4.12d) requires the specification of an initial displacement and velocity 𝒖0 and �̇�0,
respectively, such that 𝒖(𝒙, 0) = 𝒖0(𝒙) and �̇�(𝒙, 0) = �̇�0(𝒙).Furthermore, the temperature evolution Eq. (4.12f) requires the specification of an initial temperature profile in the body,
that is, 𝜃(𝒙, 0) = 𝜃0(𝒙) for a given 𝜃0.

5. Some examples for a given Helmholtz free energy density expressions

5.1. Finite deformation: Saint-Venant-Kirchoff model with defect core energy
Consider the following expression that models a Saint-Venant-Kirchhoff material and allows for large deformations and

temperature changes while specifying a quadratic dislocation core energy term (Arora & Acharya (2020a)):

Ψ(𝑾 , 𝜃,𝜶) = 1
2𝜌0

𝑬 ∶ ℂ ∶ 𝑬 + 𝑐𝜀

[

Δ𝜃 − 𝜃ln
(

𝜃
𝜃0

)]

+
𝜉
2𝜌0

𝜶 ∶ 𝜶, (5.1)

where 𝑬 = 1
2 (𝑪

𝑒 − 1) is the Green-Lagrange strain tensor, 𝑪𝑒 = 𝑾 −𝑇𝑾 −1 is the right Cauchy-Green deformation tensor,
and 𝜌0 is the mass density for a reference state, 𝐽 = det(𝑾 −1), and 𝜉 is a material constant with dimensions stress × length2.
The expression in Eq. (5.1) captures the elastic stored energy in the first term, the thermal contribution in the second term, and
the energy stored in dislocation cores (Acharya (2010), Acharya & Tartar (2011)) in the third term.

For the Ψ expression in Eq. (5.1), we show the partial derivatives with respect to its arguments in Appendix G. Using
these, the set in Eq. (3.35) becomes:
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Kinematics and dislocation density evolution
�̇� +𝑾𝑳 = 𝜶 × 𝒗𝑑 +𝑾 𝜸�̇� (5.2a)
◦𝜶 = −∇ ×

(

𝜶 × 𝒗𝑑 + 𝒀 �̇�
)

, ◦𝜶 = tr(𝑳)𝜶 + �̇� − 𝜶𝑳𝑇 (5.2b)

𝒗𝑑 = 1
𝐵

{[

𝝈𝐻 + 𝜉
(

∇ ×
𝜌
𝜌0

𝜶
)𝑇

𝑾

]

𝑾 −1𝜶

}

∶ X (5.2c)

Mass density evolution
�̇� + ∇ ⋅ (𝜌𝒗) = 0 (5.2d)

Mechanical equilibrium
∇ ⋅ 𝝈 + 𝜌𝒃𝑓 = 𝜌�̇� (5.2e)
𝝈 =

𝜌
𝜌0

𝑾 −1(ℂ ∶ 𝑬)𝑾 −𝑇 +
𝜌
𝜌0

𝜉
[

𝜶𝑇𝜶 −
(

𝜶 ∶ 𝜶)1
] (5.2f)

Temperature evolution
{

[

𝜉∇ ×
𝜌
𝜌0

𝜶(1 + 𝜃𝜸𝑇 ) − 𝜌𝜃𝑾 𝜸 ∶ A − 𝜃𝑾 −𝑇𝝈𝐻𝜸𝑇 − 𝜃(𝑾 −𝑇𝝈𝐻 − 𝜉∇ ×
𝜌
𝜌0

𝜶) ∶ 𝑾 G

]

∶ 𝑾 𝜸 + 𝜌𝑐𝜀

}

�̇�

− 𝜉
𝜌
𝜌0

𝜶 ∶ ∇ ×
(

𝑾 𝜸�̇�
)

− 𝜉𝜃∇ ×
[

𝜌
𝜌0

tr (∇ ×
(

𝑾 𝜸�̇�
))

1

]

∶ 𝑾 𝜸

= −∇ ⋅ 𝒒 + 𝜌𝑟 +
[

𝑾 −𝑇𝝈𝐻
(

1 − 𝜃𝜸𝑇
)

− 𝜃
(

𝑾 −𝑇𝝈𝐻 + 𝜉∇ ×
𝜌
𝜌0

𝜶
)

∶ 𝑾 G − 𝜉𝜃∇ ×
(

𝜌
𝜌0

𝜶
)

𝜸𝑇

+ 𝜌𝜃𝑾 𝜸 ∶ A
]

∶
(

𝜶 × 𝒗𝑑
)

+

{

− 𝜌𝜃𝑾 𝑇 (𝑾 𝜸 ∶ A) + 𝜃

[

𝝈𝐻𝜸𝑇 + 𝜉𝑾 𝑇∇ ×
(

𝜌
𝜌0

𝜶
)

𝜸𝑇

+
(

𝝈𝐻 + 𝜉𝑾 𝑇∇ ×
𝜌
𝜌0

𝜶
)

∶ 𝑾 G

]}

∶ 𝑳 + 𝜉
𝜌
𝜌0

𝜶 ∶ ∇ ×
(

𝜶 × 𝒗𝑑
)

+

{

𝜉𝜃
�̇�
𝜌
∇ ×

𝜌
𝜌0

𝜶 − 𝜃∇ ×
[

𝜉
�̇�
𝜌0

𝜶 − 𝜉
𝜌
𝜌0

tr(tr(𝑳)𝜶 − 𝜶𝑳𝑇 + ∇ × (𝜶 × 𝒗𝑑)
)

1

]

− 𝜉𝜃
[

∇
(

𝜌
𝜌0

𝜶
)

𝑳
]

∶ 𝐗
}

∶ 𝑾 𝜸

(5.2g)

𝒒 = −𝑲∇𝜃, (5.2h)

where 𝝈𝐻 is given by Eq. (G.2) and 𝔸 ∶= 𝜕2𝑾𝑾 Ψ by Eq. (G.3).
5.2. Small deformation: Saint-Venant-Kirchoff model with defect core energy

Considering Eq. (4.1), we take the same expression for Ψ from Section 5, which then becomes
Ψ(𝜺𝑒, 𝜃,𝜶) = 1

2𝜌0
𝜺𝑒 ∶ ℂ ∶ 𝜺𝑒 + 𝑐𝜀

[

Δ𝜃 − 𝜃ln
(

𝜃
𝜃0

)]

+
𝜉
2𝜌0

𝜶 ∶ 𝜶. (5.3)
From Eq. (4.3), we have that

𝜺𝑒 = 𝜺 − 𝜺𝑝 − 𝜺𝜃

such that we can write Eq. (5.3) as
Ψ(𝜺 − 𝜺𝑝, 𝜃,𝜶) = 1

2𝜌0
(𝜺 − 𝜺𝑝) ∶ ℂ ∶ (𝜺 − 𝜺𝑝) − Δ𝜃

𝜌0
𝜷 ∶ (𝜺 − 𝜺𝑝) + 𝑐𝜀

[

Δ𝜃 − 𝜃ln
(

𝜃
𝜃0

)]

+
𝜉
2𝜌0

𝜶 ∶ 𝜶, (5.4)
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where 𝜷 ∶= C ∶ 𝜸, and the term in (Δ𝜃)2 is neglected, the thermal contribution to Ψ being considered in the third term on the
right-hand side. Using Eqs. (4.8a), (E.11) and (G.6), we write the constitutive equation for the stress tensor as

𝝈 = C ∶ (𝜺 − 𝜺𝑝) − Δ𝜃𝜷 ∶ (𝜺 − 𝜺𝑝) = C ∶ 𝑼 𝑒 = C ∶ [∇(𝒖 − 𝒛) + 𝜻] , (5.5)
where the tensors ∇𝒛 and 𝜻 contains inelastic and thermal effects, as detailed in Appendix E.2.

The constitutive expression for the dislocation velocity is given by Eqs. (4.8c) and (G.4):

𝒗𝑑 = 1
𝐵

{[

𝝈 + 𝜉 (∇ × 𝜶)𝑇
]

𝜶
}

∶ X. (5.6)

Kinematics and dislocation density evolution
�̇� 𝑒 = ∇�̇� − 𝜶 × 𝒗𝑑 − 𝜸�̇� (5.7a)
�̇� = −∇ ×

(

𝜶 × 𝒗𝑑 + 𝜸�̇�
) (5.7b)

𝒗𝑑 = 1
𝐵

{[

𝝈 + 𝜉 (∇ × 𝜶)𝑇
]

𝜶
}

∶ X (5.7c)

Mechanical equilibrium
∇ ⋅ 𝝈 + 𝜌𝒃𝑓 = 𝜌�̈� (5.7d)
𝝈 = C ∶ (𝜺 − 𝜺𝑝) − Δ𝜃𝜷 ∶ (𝜺 − 𝜺𝑝) (5.7e)

Temperature evolution
[

(𝜉∇ × 𝜶 + 𝜃𝜷) ∶ 𝜸 + 𝜌𝑐𝜀
]

�̇� − 𝜉𝜶 ∶ ∇ × (𝜸�̇�) − 𝜉𝜃∇ ×
[tr (∇ ×

(

𝜸�̇�
))

1
]

∶ 𝜸
= 𝝈 ∶ (𝜶 × 𝒗𝑑) − 𝜃𝜷 ∶ �̇�𝑒 − ∇ ⋅ 𝒒 + 𝜌𝑟 + 𝜉𝜶 ∶ ∇ ×

(

𝜶 × 𝒗𝑑
)

+ 𝜉𝜃∇ ×
[tr (∇ ×

(

𝜶 × 𝒗𝑑
))

1
]

∶ 𝜸
(5.7f)

𝒒 = −𝑲∇𝜃. (5.7g)

5.3. Comparison with the model proposed by Upadhyay (2020)
In Eq. (4.6), the term �̇�𝑝 = −∇ × (𝜶 × 𝒗𝑑) represents the evolution of the line-character of the thermomechanical defect

and is directly associated with the evolution of the dislocation ensemble with velocity 𝒗𝑑 . On the other hand, 𝑺𝜃 = −∇× (𝜸�̇�)
contains the contribution of the incompatibility of the transient temperature field to the evolution of the defect character (Burgers
vector). The evolution statement in Eq. (4.6) is similar to the one derived in Upadhyay (2020) (Eq. 3.253). However, a notable
difference lies in the equation for �̇�𝑝. In Upadhyay (2020), 𝜶𝑝 was introduced as being the density of dislocation lines in the
body, independent of the areal density 𝑺𝜃 (defined there as 𝜶𝜃), and thus its evolution was given by �̇�𝑝 = −∇ × (𝜶𝑝 × 𝒗𝑑).
In this work, in �̇�𝑝 the whole thermomechanical defect 𝜶 is transported with velocity 𝒗𝑑 , while 𝑺𝜃 acts as a source term for
𝜶, i.e., there is no clear separation between a dislocation line and a “thermal” line-type defect. Such a description seems to
be better suited to describe the dislocation density state in a body involving transient thermal gradients since an experimental
observation of this state could not allow for a clear distinction of the contribution due to thermal effects.

In Upadhyay (2020), the total strain tensor was additively decomposed into a sum of elastic, plastic, and thermal parts, as
𝜺 = 𝜺𝑒+𝜺𝑝+𝜺𝜃 , with 𝜺𝜃 = 𝜸Δ𝜃. The Helmholtz free energy was taken as Ψ̂ = Ψ̂(𝜺𝑒) ≡ Ψ̂(𝜺−𝜺𝑝, 𝜃), such that the dependence
of Ψ on internal variables, such as 𝜶, was not studied. To establish a comparison, we consider the same expression for Ψ̂, i.e.

Ψ̂(𝜺 − 𝜺𝑝, 𝜃) = 1
2𝜌0

(𝜺 − 𝜺𝑝) ∶ ℂ ∶ (𝜺 − 𝜺𝑝) − Δ𝜃
𝜌0

𝜷 ∶ (𝜺 − 𝜺𝑝) + 𝑐𝜀

[

Δ𝜃 − 𝜃ln
(

𝜃
𝜃0

)]

, (5.8)

such that the dissipation can be written from Eq. (3.10)

𝐷 ∶= ∫Ω𝑡

[

−𝜌
(

𝜕(𝜺−𝜺𝑝)Ψ̂ ∶ (�̇� − �̇�𝑝) + 𝜕𝜃Ψ̂ ∶ �̇� + 𝜂�̇�
)

− 1
𝜃
𝒒 ⋅ ∇𝜃 + 𝝈 ∶ 𝑳

]

d𝑣 ≥ 0. (5.9)
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Noting that 𝝈 ∶ 𝑳 = 𝝈 ∶ �̇�, we arrive at the following constitutive relations based on Eq. (5.9)
𝝈 = 𝜌𝜕(𝜺−𝜺𝑝)Ψ̂ (5.10a)
𝜂 = −𝜕𝜃Ψ̂ (5.10b)
𝒗𝑑 = 1

𝐵
(𝝈𝜶) ∶ 𝐗 (5.10c)

𝒒 = −𝑲∇𝜃, (5.10d)
which corresponds to what was obtained in Upadhyay (2020). Note that, in our model, we do not explicitly introduce a plastic
distortion tensor. Instead, plasticity arises from the motion and generation of dislocations, which could be expressed in terms
of a plastic (slip) distortion rate in the form �̇� 𝑝 = 𝜶 × 𝒗𝑑 from Eq. (4.2). If we ignore the dislocation source term 𝑺 we have
that 𝝈 ∶ �̇� 𝑝 = 𝝈 ∶ �̇�𝑝 = 𝝈 ∶ (𝜶 × 𝒗𝑑), which leads to the definition in Eq. (5.10c).

From Eq. (5.10b), we have
�̇� = −𝜕2𝜃(𝜺−𝜺𝑝)Ψ̂ ∶ (�̇� − �̇�𝑝) − 𝜕2𝜃𝜃Ψ̂�̇�,

with which, by following a similar procedure from Section 3.6, the temperature evolution equation is obtained as
− 𝜌𝜃𝜕2𝜃𝜃Ψ̂�̇� = −∇ ⋅ 𝒒 + 𝜌𝜃𝜕2𝜃(𝜺−𝜺𝑝)Ψ̂ ∶ (�̇� − �̇�𝑝) + 𝝈 ∶ �̇�𝑝 + 𝜌𝑟. (5.11)

Considering the expression in Eq. (5.8), we get
𝜌𝑐𝜀�̇� = −∇ ⋅ 𝒒 − 𝜃𝜷 ∶ (�̇� − �̇�𝑝) + 𝝈 ∶ �̇�𝑝 + 𝜌𝑟. (5.12)

The equation set of the model in this case is
𝜺𝑒 = 𝜺 − 𝜺𝑝 − 𝜺𝜃 (5.13a)
�̇� = −∇ ×

(

𝜶 × 𝒗𝑑 + 𝜸�̇�
) (5.13b)

𝒗𝑑 = 1
𝐵

(𝝈𝜶) ∶ X (5.13c)
∇ ⋅ 𝝈 = 𝜌�̈� (5.13d)
𝝈 = C ∶ (𝜺 − 𝜺𝑝) − 𝜷Δ𝜃 (5.13e)
𝜌𝑐𝜀�̇� = −∇ ⋅ 𝒒 − 𝜃𝜷 ∶ (�̇� − �̇�𝑝) + 𝝈 ∶ �̇�𝑝 + 𝜌𝑟, (5.13f)

and is completed with the boundary and initial conditions in Sections 4.1 and 4.2. Hence, under a similar assumption of
the form of Ψ, the present model reduces to the theory proposed in Upadhyay (2020). The main difference stems from the
additive decomposition of the strain tensor into elastic, plastic and thermal parts in the latter, leading to the introduction
of the areal densities 𝜶𝑝 and 𝜶𝜃 which are independent of each other, as mentioned at the beginning of this section. From
this definition, each density has its evolution statement, with �̇�𝜃 = −∇ × ( ̇𝜸𝜃). In the present model, however, without
considering a multiplicative decomposition of the deformation gradient, which lies in the introduction of thermal and plastic
distortion tensors, the evolution of the thermomechanical defect density (Eq. (5.13b)) comprises both thermal and dislocation
line slip effects, without distinction, due to an indistinguishable contribution of thermal gradients and dislocation lines to the
incompatibility in 𝑾 (Eq. (2.1)).

6. Conclusion

In this work, a fully nonlinear model of field dislocations thermomechanics is proposed. The motivation behind its devel-
opment arose from the need for a continuum framework capable of computing the evolution of dislocations based on a physical
conservation argument under any thermomechanical boundary conditions while allowing for large deformations. It expands
on previous work on the isothermal field dislocation mechanics model (Acharya (2001), Acharya (2004), Arora et al. (2020))
and the small-strain thermal field dislocation mechanics with its numerical implementation (Upadhyay (2020), Lima-Chaves
& Upadhyay (2024)).

Although not adopting the standard multiplicative decomposition of the deformation gradient into multiple components,
as is customary in elastoplasticity models, the additive decomposition of the velocity gradient into elastic, plastic, and thermal
parts is recovered, purely as a result of the conservation of the Burgers vector (Acharya & Zhang (2015)), from which the
evolution statement for the dislocation density tensor is also derived. Based on the standard conservation laws from continuum
mechanics (mass, linear and angular momenta, and energy), the remaining governing equations are presented.
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A central point of the model is the kinematical assumption of the contribution of a transient heterogeneous temperature
field as a source term to the evolution of the thermomechanical defect character (which comprises dislocations and a line-type
defect that arises through the incompatibility in thermal strains). Considering a Helmholtz free energy density Ψ dependent
on the inverse elastic distortion tensor 𝑾 , temperature 𝜃 and thermomechanical defect density 𝜶, it is shown that the resulting
expression of the fraction of plastic work converted into heat (Eq. (3.33)) is a function of the material type and strain rates. This
fraction was introduced in the experimental work of Taylor & Quinney (1934), and has been shown to depend on the material
type and the loading conditions (Rittel et al. (2017)), with such dependence emerging in the present model as a consequence
of the evolution of the thermomechanical defect density obtained from the conservation of the Burgers vector. Moreover, the
temperature evolution equation is shown to allow for solutions in the form of dispersive waves with finite propagation speed,
despite using Fourier’s law of heat conduction as the constitutive assumption of the heat flux vector. Well-posedness of the
equation is shown in a linearised setting. Along with the expected decay for a range of wavenumbers, the solution also admits
well-posed growth, which can be the source of spatial patterning resulting from the growth of some Fourier components.

Considering Ψ for a Saint-Venant-Kirchhoff material, the set of fully coupled equations of the model is presented. A
linearisation of the model is also shown, which allows a comparison with the small deformation theory presented in Upadhyay
(2020). The main difference is shown to come from the additive decomposition of the strain tensor in that work into elastic,
plastic, and thermal parts, which results in separate evolution statements for dislocations �̇�𝑝 and “thermal” defects �̇�𝜃 . The
present framework, however, by not explicitly introducing a plastic distortion tensor, upon linearization results in a single
expression for the thermomechanical defect density �̇� (Eq. (5.13b)) that comprises both dislocation line evolution and thermal
effects.

Prospective work includes the numerical implementation of the proposed model in a finite element framework to (i) study
the model capabilities, (ii) verify the approach through comparison with experimentally-obtained conversion rates of plastic
work into heat (e.g. in Nieto-Fuentes et al. (2018), Rittel et al. (2017)) during deformation, and (iii) apply the theory to study
dislocation thermomechanics under extreme processing conditions, as in the context of metal additive manufacturing.

Appendix A. Notation

Scalars are denoted with an italic font (e.g., 𝑟 or 𝜃). Vectors are denoted by a lowercase bold and italic Latin font (e.g.,
𝒒). Considering fixed Cartesian reference frames, the orthonormal basis vectors in Ω𝑟 are denoted {�̂�𝑟𝐼}, 𝐼 = 1, 2, 3, while
the orthonormal basis vectors in Ω𝑡 are denoted {�̂�𝑖}, 𝑖 = 1, 2, 3. Lowercase (uppercase) indices refer to quantities in Ω𝑡 (Ω𝑟).Points in Ω𝑡 (Ω𝑟) are denoted 𝒙 (𝒙𝑟). The second-order identity tensor is denoted 1, whose components are 𝛿𝑖𝑗 (the Kronecker
delta). The third-order Levi-Civita permutation tensor is denoted 𝐗, with components 𝑒𝑖𝑗𝑘 (the permutation symbol). Fourth-
order tensors are denoted by double-stroke letters (e.g., C). The null tensor is denoted 0 for any tensor order. Summation of
repeated indices is implied unless otherwise stated. Consider the vectors 𝒖, 𝒗 ∈ Ω𝑡, as well as the tensors 𝜶,𝑩 ∈ Ω𝑡. Then,
we define the following operations:
Tensor product:

𝒖⊗ 𝒗 = 𝑢𝑖𝑣𝑗 �̂�𝑖 ⊗ �̂�𝑗
Inner product:

𝒖 ⋅ 𝒗 = 𝑢𝑖𝑣𝑖
𝜶 ∶ 𝑩 = 𝛼𝑖𝑗𝐵𝑖𝑗

Cross product:
𝒖 × 𝒗 = 𝑒𝑖𝑗𝑘𝑢𝑗𝑣𝑘 �̂�𝑖
𝜶 × 𝒖 = 𝑒𝑗𝑘𝑙𝛼𝑖𝑘𝑢𝑙 �̂�𝑖 ⊗ �̂�𝑗

Tensor multiplication and action on vectors:
𝜶𝑩 = 𝛼𝑖𝑗𝐵𝑗𝑘 �̂�𝑖 ⊗ �̂�𝑘
𝜶𝒖 = 𝛼𝑖𝑗𝑢𝑗 �̂�𝑖
𝒗𝑩 = 𝑣𝑖𝐵𝑖𝑗 �̂�𝑗

Double-dot product:
𝐗 ∶ 𝜶 = 𝑒𝑖𝑗𝑘𝛼𝑗𝑘 �̂�𝑖
C ∶ 𝜶 = C𝑖𝑗𝑘𝑙𝛼𝑘𝑙 �̂�𝑖 ⊗ �̂�𝑗

Differential operators on Ω𝑡 (comma indicates differentiation
with respect to a given coordinate):

∇𝒖 = grad 𝒖 = 𝑢𝑖,𝑗 �̂�𝑖 ⊗ �̂�𝑗
∇𝜶 = grad𝜶 = 𝛼𝑖𝑗,𝑘 �̂�𝑖 ⊗ �̂�𝑗 ⊗ �̂�𝑘
∇ ⋅ 𝒖 = div 𝒖 = 𝑢𝑖,𝑖
∇ ⋅ 𝜶 = div𝜶 = 𝛼𝑖𝑗,𝑗 �̂�𝑖
∇ × 𝒖 = curl 𝒖 = 𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 �̂�𝑖
∇ × 𝜶 = curl𝜶 = 𝑒𝑗𝑘𝑙𝛼𝑖𝑙,𝑘 �̂�𝑖 ⊗ �̂�𝑗 ,

A two-point tensor is defined as 𝑾 = 𝑊𝐼𝑗 �̂�𝑟𝐼 ⊗ �̂�𝑗 or 𝑭 = 𝐹𝑖𝐽 �̂�𝑖 ⊗ �̂�𝑟𝐽 .
The material time derivative in Ω𝑡 is denoted by a superposed dot ⬚̇. det(⬚) and tr(⬚) indicate the determinant and the
trace of a tensor, respectively. The symmetric and skew-symmetric parts of a tensor are denoted by sym(⬚) and skew(⬚),
respectively. The Frobenius norm of a second-order tensor is denoted by ‖𝑩‖ ∶= (𝑩 ∶ 𝑩)1∕2.

Appendix B. Invariance requirements of 𝒀

Consider a point in Ω𝑡 expressed as 𝒙(𝒙𝑟, 𝑡), with 𝒙𝑟 ∈ Ω𝑟. A rigid body motion of Ω𝑡 can be expressed as
𝒙∗(𝒙, 𝑡) = 𝑸(𝑡)𝒙(𝒙𝑟, 𝑡) + 𝒄(𝑡) (B.1)
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for any proper rotation tensor 𝑸 and translation vector 𝑐. A one-to-one mapping 𝝌(𝒙𝑟, 𝑡) can be defined between Ω𝑟 and Ω𝑡,with the corresponding inverse 𝝌−1(𝒙, 𝑡) (Willis (1967)). Considering a rotated configuration Ω∗
𝑡 , this allows us to write:

𝑭 𝑒∗ = 𝑸𝑭 𝑒 (B.2a)
𝑾 ∗ = 𝑾𝑸𝑇 . (B.2b)

For the transformation of 𝜶, we have the requirement that
𝜶�̂� = 𝜶∗�̂�∗ ∀�̂�, �̂�∗, (B.3)

with �̂�∗ = 𝑸�̂�, which leads to
𝜶�̂� = 𝜶∗𝑸�̂� ⇐⇒ (𝜶 − 𝜶∗𝑸)�̂� = 0 ∀�̂� ⇐⇒ 𝜶∗ = 𝜶𝑸𝑇 . (B.4)

Consistency with the evolution statement in Eq. (2.9) requires that
�̇� ∗ +𝑾 ∗𝑳∗ = 𝜶∗ × 𝒗𝑑∗ + 𝒀 ∗�̇� + 𝑺∗

⇐⇒
̇

𝑾𝑸𝑇 +𝑾𝑸𝑇 (

�̇�𝑸𝑇 +𝑸𝑳𝑸𝑇 ) = (𝜶𝑸𝑇 ) × 𝒗𝑑∗ + 𝒀 ∗�̇� + 𝑺∗

⇐⇒ �̇� 𝑸𝑇 +𝑾 �̇�𝑇 +𝑾𝑸𝑇 �̇�𝑸𝑇 +𝑾𝑳𝑸𝑇 = (𝜶𝑸𝑇 ) × 𝒗𝑑∗ + 𝒀 ∗�̇� + 𝑺∗

⇐⇒ �̇� +𝑾𝑳 +𝑾 �̇�𝑇𝑸 +𝑾𝑸𝑇 �̇� = [(𝜶𝑸𝑇 ) × 𝒗𝑑∗]𝑸 + 𝒀 ∗𝑸�̇� + 𝑺∗𝑸
⇐⇒ �̇� +𝑾𝑳 = [(𝜶𝑸𝑇 ) × 𝒗𝑑∗]𝑸 + 𝒀 ∗𝑸�̇� + 𝑺∗𝑸.

(B.5)

Assuming 𝒗𝑑∗ = 𝑸𝒗𝑑 , 𝒀 ∗ = 𝒀 𝑸𝑇 and 𝑺∗ = 𝑺𝑸𝑇 , it can be shown that Eq. (B.5) leads to
�̇� +𝑾𝑳 = 𝜶 × 𝒗𝑑 + 𝒀 �̇� + 𝑺 (B.6)

Hence, to comply with invariance requirements, under a rigid body motion 𝒗𝑑 must transform as an objective vector, and 𝒀 and
𝑺 must transform as second-order two-point tensors as in Eq. (B.2b) (Acharya (2004)). To satisfy this invariance requirement
of 𝒀 , the simplest candidate is

𝒀 = 𝑾 𝜸, (B.7)
with 𝜸 being a tensor of thermal expansion coefficients defined in Ω𝑡 that transforms under a rigid body motion as 𝜸∗ = 𝑸𝜸𝑸𝑇 ,
which would give 𝒀 ∗ = 𝑾 ∗𝜸∗ = 𝑾𝑸𝑇𝑸𝜸𝑸𝑇 = 𝑾 𝜸𝑸𝑇 = 𝒀 𝑸𝑇 .

Appendix C. Ericksen’s identity

The balance of angular momentum requires the symmetry of the Cauchy stress tensor 𝝈 (Eq. (3.3)). To analyze the consis-
tency of the right-hand side of Eq. (3.14) as an expression for 𝝈, we require that Ψ be invariant under any rigid body motion
(Acharya & Fressengeas (2015), Ericksen (1961)), i.e.

Ψ∗(𝑾 ∗, 𝜃∗,𝜶∗) = Ψ(𝑾 , 𝜃,𝜶) (C.1)
for a motion given by Eq. (B.1).

Consider Ψ in an arbitrarily fixed state (𝑾 , 𝜃,𝜶), at a given instant of time 𝑡, and a specific rigid body motion for which
𝑸(𝑡) = 1 and �̇�(𝑡) = 𝑷 , where 𝑷 is an arbitrarily fixed skew tensor. Next, noting that, under a rigid body motion, 𝑾 and 𝜶
transform as in Eq. (B.2b) and Eq. (B.4), respectively, we compute the rate Ψ̇∗ as

Ψ̇∗ = 𝜕𝑾 ∗Ψ∗ ∶
̇

𝑾𝑸𝑇 + 𝜕𝜃∗Ψ∗�̇�∗ + 𝜕𝜶∗Ψ∗ ∶
̇

𝜶𝑸𝑇

= 𝜕𝑾 Ψ ∶ (�̇� −𝑾 𝑷 ) + 𝜕𝜃Ψ�̇� − 𝜕𝜶Ψ ∶ (�̇� − 𝜶𝑷 ).
(C.2)

Eq. (C.1) implies Ψ̇∗ = Ψ̇, such that
(

𝑾 𝑇 𝜕𝑾 Ψ + 𝜶𝑇 𝜕𝜶Ψ
)

∶ 𝑷 = 0

⇐⇒
1
2
[

𝑾 𝑇 𝜕𝑾 Ψ − (𝜕𝑾 Ψ)𝑇𝑾 + 𝜶𝑇 𝜕𝜶Ψ − (𝜕𝜶Ψ)𝑇𝜶
]

= 0
(C.3)

due to the arbitrariness of 𝑷 . The left-hand side of Eq. (C.3)2 is equal to −skew(𝝈) = 0, with 𝝈 given by Eq. (3.14), which
is thus shown to be symmetric. Hence, Eq. (3.14) is consistent with the balance of the angular momentum Eq. (3.3), and also
with the requirement of no dissipation due to material spin, given by skew(𝑳).
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Appendix D. Linear stability analysis of the temperature evolution equation

In this section, a 1-d, constant coefficient linear PDE is used to clarify the implications of the temperature evolution state-
ment in Eq. (3.30). For that, we take into account the same temporal and spatial derivatives of 𝜃 present and consider

𝑎𝜃𝑡 + 𝑏𝜃𝑡𝑥 + 𝑐𝜃𝑡𝑥𝑥 = 𝑑𝜃𝑥𝑥 + 𝑔𝜃 (D.1)
for 𝑎, 𝑏, 𝑐, 𝑑, 𝑔 ∈ R, and assume 𝑎, 𝑑 ≥ 0. The subscripts 𝑡 and 𝑥 indicate partial differentiation with respect to time and
space, respectively, and the last term on the right-hand side incorporates the presence of source terms in Eq. (3.30) that depend
linearly on 𝜃. We take the ansatz of a plane-wave solution

𝜃 = exp
(

𝑖(𝑘𝑥 + 𝜔𝑡)
) (D.2)

considering 𝑘 ∈ R+ and insert it into Eq. (D.1) to get
𝑖𝑎𝜔 − 𝑏𝜔𝑘 − 𝑖𝑐𝜔𝑘2 = −𝑑𝑘2 + 𝑔

⇐⇒ 𝜔(𝑘) =
𝑑𝑘2 − 𝑔

𝑖(𝑐𝑘2 − 𝑎) + 𝑏𝑘

[

𝑏𝑘 − 𝑖(𝑐𝑘2 − 𝑎)
]

[

𝑏𝑘 − 𝑖(𝑐𝑘2 − 𝑎)
]

⇐⇒ 𝜔(𝑘) =
(𝑏𝑑𝑘3 − 𝑏𝑔𝑘) − 𝑖(𝑐𝑑𝑘4 − 𝑐𝑔𝑘2 − 𝑎𝑑𝑘2 + 𝑎𝑔)

(𝑐𝑘2 − 𝑎)2 + 𝑏2𝑘2

(D.3)

which corresponds to the dispersion relation of the plane wave in Eq. (D.2). Denoting 𝜔 = 𝜔𝑅 + 𝑖𝜔𝐼 , with 𝜔𝑅 and 𝜔𝐼 the real
and complex parts of 𝜔, respectively, Eq. (D.2) becomes

𝜃 = exp(−𝜔𝐼 𝑡) exp
(

𝑖(𝑘𝑥 + 𝜔𝑅𝑡)
)

, (D.4)
hence showing that the stability of the solution is dependent on the behaviour of 𝜔𝐼 (𝑘). Consider an initial condition as the
superposition of waves with different 𝑘:

𝜃0(𝑥) =
∑

𝑘
𝐴𝑘 exp(𝑖𝑘𝑥). (D.5)

Small perturbations in the initial condition, 𝛿𝜃0(𝑥) = ∑

𝑘 𝛿𝐴𝑘 exp(𝑖𝑘𝑥), may contain components with arbitrarily large 𝑘, such
that, after some time 𝑡, the perturbed solution would be

𝜃(𝑥, 𝑡) + 𝛿𝜃(𝑥, 𝑡) =
∑

𝑘
(𝐴𝑘 + 𝛿𝐴𝑘) exp(−𝜔𝐼 𝑡) exp

(

𝑖(𝑘𝑥 + 𝜔𝑅𝑡)
)

. (D.6)

If 𝜔𝐼 (𝑘) → −∞ when 𝑘 → ∞, then the arbitrarily large 𝑘 in 𝛿𝜃0 would result in unbounded growth of Eq. (D.6) for arbitrarily
small 𝑡, such that continuous dependence on initial data is not verified and thus the problem is ill-posed. More generally, for
a given 𝑀 ≫ 1 and 𝜖 ≪ 1 arbitrarily fixed, ill-posed growth implies exp(|𝜔(𝑘)|𝜖) ≥ 𝑀 for some 𝑘. In that case, 𝜔(𝑘) is an
unbounded function of 𝑘. Hence, we define “well-posed growth” as growth in the solution (Eq. (D.4)) with time that does not
attain arbitrary magnitudes in arbitrarily small time intervals with 𝜔(𝑘) thus being bounded as a function of 𝑘. To assess the
boundedness of 𝜔𝐼 (𝑘), we evaluate it on the limits 𝑘 → ∞ and 𝑘 → 0; for 𝑘 ∈ (0,∞), we solve 𝜔′

𝐼 (𝑘) = 0 to determine the
critical values 𝑘∗, and show that 𝜔(𝑘∗) is bounded.
Case 𝑑 = 0. From Eq. (D.3), we have that

𝜔(𝑘) =
−𝑏𝑔𝑘 + 𝑖(𝑐𝑔𝑘2 − 𝑎𝑔)
(𝑐𝑘2 − 𝑎)2 + 𝑏2𝑘2

(D.7)

which corresponds to the dispersion relation in the adiabatic case. From Eq. (D.7), we see that the presence of the term in 𝜃𝑡𝑥in Eq. (D.1) leads to a wave-like solution for temperature evolution, with a non-zero real part of 𝜔. In this case, from Eq. (D.7)
we have that

lim
𝑘→∞

𝜔(𝑘) = 0, lim
𝑘→0

𝜔(𝑘) = −𝑖
𝑔
𝑎
, (D.8)

which shows the boundedness of 𝜔𝐼 (𝑘), thus guaranteeing well-posed growth for the limiting values of 𝑘. Now, taking the
derivative of Eq. (D.7), we have

𝜔′
𝐼 (𝑘) =

2𝑔𝑘
[

𝑐
(

𝑏2𝑘2 +
(

𝑎 − 𝑐𝑘2
)2
)

+
(

𝑎 − 𝑐𝑘2
) (

𝑏2 − 2𝑐
(

𝑎 − 𝑐𝑘2
))

]

[

𝑏2𝑘2 +
(

𝑎 − 𝑐𝑘2
)2
]2

. (D.9)
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By solving 𝜔′
𝐼 (𝑘) = 0, we find each 𝑘∗𝑖 , 𝑖 = 1, .., 5, where 𝜔𝐼 (𝑘) attains a maximum or a minimum, which gives

𝑘∗1 = 0; 𝑘∗2 = −

√

𝑎𝑐2 − 𝑏
√

𝑎𝑐3

𝑐3
; 𝑘∗3 = −𝑘∗2; 𝑘∗4 = −

√

𝑎𝑐2 + 𝑏
√

𝑎𝑐3

𝑐3
; 𝑘∗5 = −𝑘∗4

𝜔𝐼
(

𝑘∗1
)

= −
𝑔
𝑎
; 𝜔𝐼

(

𝑘∗2
)

=
𝑔𝑐5∕2

√

𝑎

𝑏
(

𝑏
√

𝑎𝑐3 − 2𝑎𝑐2
) ; 𝜔𝐼

(

𝑘∗3
)

= 𝜔𝐼
(

𝑘∗2
)

;

𝜔𝐼
(

𝑘∗4
)

=
𝑔𝑐5∕2

√

𝑎

𝑏
(

𝑏
√

𝑎𝑐3 + 2𝑎𝑐2
) ; 𝜔𝐼

(

𝑘∗5
)

= 𝜔𝐼
(

𝑘∗4
)

.

(D.10)

Hence, since all the extrema of 𝜔𝐼 are bounded, we conclude that the solution admits well-posed growth or decay. The values
of 𝑘 that will result in the growth or decay of the solution depend on the sign of the coefficients 𝑔 and 𝑐 and can be analysed
from Eq. (D.7) by solving

𝜔𝐼 =
𝑐𝑔𝑘2 − 𝑎𝑔

(𝑐𝑘2 − 𝑎)2 + 𝑏2𝑘2
> 0 ⇐⇒ 𝑔(𝑐𝑘2 − 𝑎) > 0. (D.11)

From this equation, the decay of the solution occurs for

𝑔 > 0, 𝑐 > 0, 𝑘 >
√

𝑎
𝑐

𝑔 < 0,

{

𝑐 < 0, 𝑘 ∈ R+,

𝑐 > 0, 𝑘 <
√

𝑎
𝑐

,
(D.12)

whereas well-posed growth occurs for

𝑔 > 0,

{

𝑐 < 0, 𝑘 ∈ R+,

𝑐 > 0, 𝑘 <
√

𝑎
𝑐

𝑔 < 0, 𝑐 > 0, 𝑘 >
√

𝑎
𝑐
.

(D.13)

We highlight the fact that, considering the solution as a superposition of plane waves with different 𝑘, the wave components
whose 𝑘 lie in a growth region could give rise to a spatial patterning of the temperature profile.

The phase velocity of the adiabatic temperature wave is given by

𝑣𝑝(𝑘) =
𝜔𝑅
𝑘

=
−𝑏𝑔

(𝑐𝑘2 − 𝑎)2 + 𝑏2𝑘2
(D.14)

and is a function of the wavenumber 𝑘, such that the solution for 𝜃 is in the form of dispersive waves.
Case 𝑑 ≠ 0. From Eq. (D.3), we have

𝜔𝑅(𝑘) =
𝑏𝑑𝑘3 − 𝑏𝑔𝑘

(𝑐𝑘2 − 𝑎)2 + 𝑏2𝑘2
and 𝜔𝐼 (𝑘) =

(𝑎 − 𝑐𝑘2)(𝑑𝑘2 − 𝑔)
(𝑐𝑘2 − 𝑎)2 + 𝑏2𝑘2

. (D.15)

Similar to the previous case, we are interested in analysing the boundedness of 𝜔𝐼 (𝑘), and we have

lim
𝑘→−∞

𝜔𝐼 (𝑘) = −𝑑
𝑐
, lim

𝑘→0
𝜔𝐼 (𝑘) = −

𝑔
𝑎
, (D.16)

which once again ensures well-posed growth of the solution for the limiting values of 𝑘. Deriving 𝜔𝐼 in Eq. (D.15) with respect
to 𝑘 gives

𝜔′
𝐼 (𝑘) =

2𝑘
[

(

𝑐𝑘2 − 𝑎
) (

𝑏2 − 2𝑐
(

𝑎 − 𝑐𝑘2
)) (

𝑑𝑘2 − 𝑔
)

+
(

𝑏2𝑘2 +
(

𝑎 − 𝑐𝑘2
)2
)

(

𝑐
(

𝑔 − 𝑑𝑘2
)

+ 𝑑
(

𝑎 − 𝑐𝑘2
))

]

[

(

𝑎 − 𝑐𝑘2
)2 + 𝑏2𝑘2

]2
(D.17)
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As before, solving 𝜔′
𝐼 (𝑘) = 0 for 𝑘 yields five critical points 𝑘∗𝑖 , which results in bounded extrema 𝜔𝐼

(

𝑘∗𝑖
), 𝑖 = 1, ..., 5,

therefore also implying well-posed growth or decay of the solution (the solutions are not shown here due to their considerable
size). From Eq. (D.15), the conditions for growth or decay can be established by solving

(𝑐𝑘2 − 𝑎)(𝑑𝑘2 − 𝑔) < 0, (D.18)
from which the decay of the solution occurs for

𝑔 > 0,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐 < 0, 𝑘 >
√

𝑔
𝑑

𝑐 > 0,

⎧

⎪

⎨

⎪

⎩

√

𝑔
𝑑 < 𝑘 <

√

𝑎
𝑐 if 𝑎

𝑐 > 𝑔
𝑑

√

𝑎
𝑐 < 𝑘 <

√

𝑔
𝑑 if 𝑎

𝑐 < 𝑔
𝑑

𝑔 < 0,

{

𝑐 < 0, 𝑘 ∈ R+

𝑐 > 0, 𝑘 >
√

𝑔
𝑑

(D.19)

whereas well-posed growth occurs for

𝑔 > 0,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑐 < 0, 𝑘 <
√

𝑔
𝑑

𝑐 > 0,

⎧

⎪

⎨

⎪

⎩

0 < 𝑘 <
√

𝑔
𝑑 or 𝑘 >

√

𝑎
𝑐 if 𝑎

𝑐 > 𝑔
𝑑

0 < 𝑘 <
√

𝑎
𝑐 or 𝑘 >

√

𝑔
𝑑 if 𝑎

𝑐 < 𝑔
𝑑

𝑔 < 0, 𝑐 > 0, 𝑘 <
√

𝑔
𝑑

(D.20)

The phase velocity in this case is
𝑣𝑝(𝑘) =

𝜔𝑅
𝑘

=
𝑏(𝑑𝑘2 − 𝑔)

(𝑐𝑘2 − 𝑎)2 + 𝑏2𝑘2
, (D.21)

and the solution is again in the form of dispersive waves.

Appendix E. The Stokes-Helmholtz decomposition of 𝑾

Appendix E.1. Large deformations
It is sometimes convenient to adopt a Stokes-Helmholtz decomposition of 𝑾 into incompatible (i.e., divergence-free) and

compatible (i.e., curl-free) parts for solving problems, e.g. in dislocation statics, the equations of equilibrium and the incompat-
ibility equation pose 12 equations in 9 variables, while having solutions (unique, in the linear case) despite its overdetermined
appearance. Thus, we use

𝑾 = 𝝌 + ∇𝒇 (E.1)
where 𝒇 is to be considered as the plastic position vector (Acharya & Roy (2006)). Now, given 𝜶, the following equation set
allows for the unique determination of 𝝌 :

∇ × 𝝌 = −𝜶 in Ω𝑡 (E.2a)
∇ ⋅ 𝝌 = 0 in Ω𝑡 (E.2b)
𝝌�̂� = 0 on 𝜕Ω𝑡 (E.2c)

Note that Eq. (E.2) also ensures that 𝝌 = 0 whenever 𝜶 = 0.
To compute the rate of the inverse elastic distortion gradient tensor �̇� , we perform the analysis in a “relative” description

(Acharya (2004)), in which we fix the body in a given configuration Ω𝑡′ at time 𝑡 = 𝑡′, and consider a motion from this
configuration onwards, parametrised by a time-like variable 𝜏. By denoting 𝒙(𝑡′) the points in Ω𝑡′ , we have that 𝒙𝜏 (𝜏 = 0) =
𝒙(𝑡′), 𝒙𝜏 ∈ Ω𝜏 . Let 𝑭 𝜏 be the deformation gradient associated with this motion, and ∇𝜏 the nabla operator in Ω𝜏 . Then, we
can rewrite the decomposition in Eq. (E.1) as
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𝑾 = 𝝌 + (∇𝜏𝒇 )𝑭 −1
𝜏 ⇐⇒ 𝑾 𝑭 𝜏 = 𝝌𝑭 𝜏 + (∇𝜏𝒇 )

⇐⇒ �̇� 𝑭 𝜏 +𝑾 ̇𝑭 𝜏 =
̇𝝌𝑭 𝜏 + (∇𝜏 �̇� ) ⇐⇒ �̇� +𝑾 ̇𝑭 𝜏𝑭 −1

𝜏 = ̇𝝌𝑭 𝜏𝑭 −1
𝜏 + (∇𝜏 �̇� )𝑭 −1

𝜏

⇐⇒ �̇� = ̇𝝌𝑭 𝜏𝑭 −1
𝜏 + (∇𝜏 �̇� )𝑭 −1

𝜏 −𝑾𝑳.

(E.3)

Now, we can write
̇𝝌𝑭 𝜏 = �̇�𝑭 𝜏 + 𝝌�̇� 𝜏 ⇐⇒

̇𝝌𝑭 𝜏𝑭 −1
𝜏 = �̇� + 𝝌𝑳 (E.4)

such that Eq. (E.3) becomes
�̇� = �̇� + 𝝌𝑳 + (∇𝜏 �̇� )𝑭 −1

𝜏 −𝑾𝑳 (E.5)
At 𝜏 = 0, Eq. (E.5) evaluates to

�̇� = �̇� + 𝝌𝑳 + ∇�̇� −𝑾𝑳. (E.6)
which remains valid for any 𝑡, since the choice of 𝑡′ is arbitrary.

As established in Acharya (2004), ∇𝒇 is related to the permanent deformation of the body. Thus, we would like ∇�̇� to
bear a dependence on the general defect evolution in the body, given by 𝜶 × 𝒗𝑑 + 𝝓𝜃 (Eq. (2.4)). Considering Eq. (2.9), we
can write Eq. (E.6) as

�̇� +𝑾𝑳 = �̇� + 𝝌𝑳 + ∇�̇� = 𝜶 × 𝒗𝑑 + 𝝓𝜃

⇐⇒ ∇ ⋅ ∇�̇� = ∇ ⋅ (𝜶 × 𝒗𝑑 + 𝝓𝜃 − �̇� − 𝝌𝑳) in Ω𝑡
(E.7)

To obtain a unique solution for �̇� , Eq. (E.7) requires the following boundary condition
(∇�̇� )�̂� = (𝜶 × 𝒗𝑑 + 𝝓𝜃 − �̇� − 𝝌𝑳)�̂� on 𝜕Ω𝑡 (E.8)

where �̂� is the outward normal field to 𝜕Ω𝑡. It can be shown that the evolution statement in Eq. (E.7) is compatible with
dissipation requirements imposed by the second law of thermodynamics (Acharya (2004), Acharya (2011)).
Appendix E.2. Small deformations

Considering Eq. (4.3), we write
𝑼 𝑒 = ∇𝒖 − 𝑼 𝑝 − 𝜺𝜃 . (E.9)

By denoting 𝑨∥ the compatible part of a tensor 𝑨, we have that
𝑼 𝑒∥ = ∇𝒖 − 𝑼 𝑝∥ − 𝜺𝜃∥. (E.10)

Hence, we decompose 𝑼 𝑒, 𝑼 𝑝 and 𝜺𝜃 into compatible and incompatible parts as
𝑼 𝑒 = ∇(𝒖 − 𝒛) + 𝜁 ; 𝑼 𝑝 = ∇𝒛𝑝 + 𝜁𝑝; 𝜺𝜃 = ∇𝒛𝜃 + 𝜁𝜃 , (E.11)

such that, considering Eqs. (E.9) and (E.10), we have the following:

∇𝒛 = ∇𝒛𝑝 + ∇𝒛𝜃 (E.12)
𝜻 = −𝜻𝑝 − 𝜻𝜃 . (E.13)

The vector 𝒛 is the “plastic displacement” (Acharya & Roy (2006)) and 𝜻 is a divergence-free tensor, determined by solving
the system

∇ × 𝜻 = 𝜶
∇ ⋅ 𝜻 = 0

}

in Ω

𝜻�̂� = 0 on 𝜕Ω,
(E.14)

similarly to Eq. (E.2). In the small strains approximation, we have that 𝑳 = ∇𝒗 = ∇�̇�, such that, by using Eqs. (4.2) and (E.11),
we can write
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∇�̇� = ∇(�̇� − �̇�) + �̇� + 𝜶 × 𝒗𝑑 + 𝜸�̇�
⇐⇒ ∇ ⋅ ∇�̇� = ∇ ⋅ (𝜶 × 𝒗𝑑 + 𝜸�̇�) in Ω,

(E.15)

since, in the geometrically linear case, �̇� is incompatible (i.e., ∇ ⋅ �̇� = 0). Eq. (E.15) also requires the following boundary
condition to ensure the uniqueness of the solution:

(∇�̇�)�̂� = (𝜶 × 𝒗𝑑 + 𝜸�̇�)�̂� on 𝜕Ω. (E.16)

Appendix F. Derivation of global dissipation rate 𝑫

The following identities are used in the derivation:

𝜕𝑾 Ψ ∶ (𝑾𝑳) = 𝜕Ψ
𝜕𝑊𝑚𝑛

𝑊𝑚𝑖𝐿𝑖𝑛 = 𝑊𝑚𝑖
𝜕Ψ

𝜕𝑊𝑚𝑛
𝐿𝑖𝑛 =

(

𝑾 𝑇 𝜕𝑾 Ψ
)

∶ 𝑳; (F.1)

𝜕𝜶Ψ ∶
(

𝜶𝑳𝑇 ) = 𝜕Ψ
𝜕𝛼𝑖𝑗

𝛼𝑖𝑝𝐿𝑗𝑝 =
[

(𝜕𝜶Ψ)𝑇𝜶
]

∶ 𝑳; (F.2)

∫Ω
𝑨 ∶ ∇ × 𝑩 d𝑣 = ∫Ω

𝐴𝑖𝑗𝜖𝑗𝑘𝑙𝐵𝑖𝑙,𝑘 d𝑣 = ∫Ω
(𝐴𝑖𝑗𝜖𝑗𝑘𝑙𝐵𝑖𝑙),𝑘 d𝑣 − ∫Ω

𝐴𝑖𝑗,𝑘𝜖𝑗𝑘𝑙𝐵𝑖𝑙 d𝑣

= −∫𝜕Ω
𝐴𝑖𝑗𝜖𝑗𝑙𝑘𝐵𝑖𝑙�̂�𝑘 d𝑠 + ∫Ω

𝜖𝑙𝑘𝑗𝐴𝑖𝑗,𝑘𝐵𝑖𝑙 d𝑣 = −∫𝜕Ω
𝑨 ∶ (𝑩 × �̂�) d𝑠 + ∫Ω

(∇ ×𝑨) ∶ 𝑩 d𝑣;
(F.3)

𝑨 ∶
(

𝜶 × 𝒗𝑑
)

= 𝐴𝑖𝑗𝜖𝑗𝑘𝑙𝛼𝑖𝑘𝑣
𝑑
𝑙 = 𝐴𝑖𝑗𝛼𝑖𝑘𝜖𝑗𝑘𝑙𝑣

𝑑
𝑙 =

[

(𝑨𝑇𝜶) ∶ X
]

⋅ 𝒗𝑑 . (F.4)
For completeness, we recall the global dissipation inequality Eq. (3.12):

𝐷 =∫Ω𝑡

(

𝝈 ∶ 𝑳 − 1
𝜃
𝒒 ⋅ ∇𝜃

)

d𝑣 + ∫Ω𝑡

𝜌𝑾 𝑇 𝜕𝑾 Ψ ∶ 𝑳 d𝑣 − ∫Ω𝑡

𝜌𝜕𝑾 Ψ ∶
(

𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�
) d𝑣

− ∫Ω𝑡

𝜌𝜕𝜶Ψ ∶
[

−tr(𝑳)𝜶 + 𝜶𝑳𝑇 − ∇ ×
(

𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�
)] d𝑣 − ∫Ω𝑡

𝜌
(

𝜕𝜃Ψ + 𝜂
)

�̇� d𝑣 ≥ 0,
(F.5)

After separating terms, we get

𝐷 = ∫Ω𝑡

[

𝜌𝑾 𝑇 𝜕𝑾 Ψ ∶ 𝑾𝑳 − 𝜌𝑾 𝑇 𝜕𝑾 Ψ ∶ (𝜶 × 𝒗𝑑) − 𝜌𝑾 𝑇 𝜕𝑾 Ψ ∶ 𝑾 𝜸�̇� − 𝜌𝜕𝜃Ψ�̇�

− 𝜌𝜕𝜶Ψ ∶ (𝜶𝑳𝑇 ) + 𝜌tr(𝑳)𝜕𝜶Ψ ∶ 𝜶 + 𝜌𝜕𝜶Ψ ∶ ∇ × (𝜶 × 𝒗𝑑 +𝑾 𝜸�̇�) − 𝜌𝜂�̇�
]

d𝑣
+∫Ω𝑡

(

𝝈 ∶ 𝑳 − 1
𝜃
𝒒 ⋅ ∇𝜃

)

d𝑣 ≥ 0.

(F.6)

By using Eqs. (F.1) to (F.4) in Eq. (F.6), and regrouping the terms in 𝑳, �̇�, 𝒗𝑑 and 𝑺, we obtain Eq. (3.13).

Appendix G. Evaluation of the derivatives of 𝚿 for a Saint-Venant-Kirchhoff material

Appendix G.1. Large deformations
We make use of the following identity:

𝜕𝑊 −1
𝑖𝑙

𝜕𝑊𝑚𝑛
= −𝑊 −1

𝑖𝑚 𝑊 −1
𝑛𝑙

(

�̂�𝑖 ⊗ �̂�𝑙 ⊗ �̂�𝑚 ⊗ �̂�𝑛
)

, (G.1)

which can be readily obtained from partial derivation with respect to 𝑾 of 𝑾 −1𝑾 = 1. With this in hand, consider the
following derivatives of Ψ (Eq. (5.1)):

1
𝜌
𝑾 −𝑇𝝈𝐻 = 𝜕𝑾 Ψ = 1

2𝜌0
𝜕𝑾 (𝑬 ∶ ℂ ∶ 𝑬) = 1

𝜌0

𝜕𝐸𝑖𝑗

𝜕𝐹 𝑒
𝑝𝑞

𝜕𝑊 −1
𝑝𝑞

𝜕𝑊𝑚𝑛
𝐶𝑖𝑗𝑘𝑙𝐸𝑘𝑙 = − 1

𝜌0
(𝑾 −𝑇𝑾 −1)(ℂ ∶ 𝑬)𝑾 −𝑇 ; (G.2)
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𝜕2𝑾𝑾 Ψ = 𝜕2Ψ
𝜕𝑊𝑚𝑛𝜕𝑊𝑟𝑠

= 𝜕
𝜕𝑊𝑟𝑠

(

− 1
𝜌0

𝑊 −1
𝑖𝑚 𝑊 −1

𝑖𝑘 ℂ𝑘𝑗𝑝𝑞𝐸𝑝𝑞𝑊
−1
𝑛𝑗

)

= − 1
𝜌0

ℂ𝑘𝑗𝑝𝑞

(

𝜕𝑊 −1
𝑖𝑚

𝜕𝑊𝑟𝑠
𝑊 −1

𝑖𝑘 𝑊 −1
𝑛𝑗 𝐸𝑝𝑞 +𝑊 −1

𝑖𝑚

𝜕𝑊 −1
𝑖𝑘

𝜕𝑊𝑟𝑠
𝑊 −1

𝑛𝑗 𝐸𝑝𝑞 +𝑊 −1
𝑖𝑚 𝑊 −1

𝑖𝑘

𝜕𝑊 −1
𝑛𝑗

𝜕𝑊𝑟𝑠
𝐸𝑝𝑞

+𝑊 −1
𝑖𝑚 𝑊 −1

𝑖𝑘 𝑊 −1
𝑛𝑗

𝜕𝐸𝑝𝑞

𝜕𝐹 𝑒
𝑎𝑏

𝜕𝑊 −1
𝑎𝑏

𝜕𝑊𝑟𝑠

)

= 1
𝜌0

ℂ𝑘𝑗𝑝𝑞

(

𝑊 −1
𝑖𝑟 𝑊 −1

𝑠𝑚 𝑊 −1
𝑖𝑘 𝑊 −1

𝑛𝑗 𝐸𝑝𝑞 +𝑊 −1
𝑖𝑚 𝑊 −1

𝑖𝑟 𝑊 −1
𝑠𝑘 𝑊 −1

𝑛𝑗 𝐸𝑝𝑞 +𝑊 −1
𝑖𝑚 𝑊 −1

𝑖𝑘 𝑊 −1
𝑛𝑟 𝑊 −1

𝑠𝑗 𝐸𝑝𝑞

+𝑊 −1
𝑖𝑚 𝑊 −1

𝑖𝑘 𝑊 −1
𝑛𝑗 𝑊 −1

𝑎𝑞 𝑊 −1
𝑎𝑟 𝑊 −1

𝑠𝑝 +𝑊 −1
𝑖𝑚 𝑊 −1

𝑖𝑘 𝑊 −1
𝑛𝑗 𝑊 −1

𝑎𝑝 𝑊 −1
𝑎𝑟 𝑊 −1

𝑠𝑞

)

; (G.3)

𝜕𝜶Ψ =
𝜉
𝜌0

𝜶 ⇐⇒ 𝜕2𝜶𝜶Ψ =
𝜉
𝜌0
1⊗ 1; (G.4)

𝜕𝜃Ψ = − 1
𝜌0

𝜷 ∶ 𝑬 − 𝑐𝜀ln 𝜃
𝜃0

⇐⇒ 𝜕2𝜃𝜃Ψ = −
𝑐𝜀
𝜃
; (G.5)

Appendix G.2. Small deformations
The following derivatives are given for the Ψ expression in Eq. (5.4):

For compactness, denote 𝑨 ≡ (𝜺 − 𝜺𝑝). Then,

𝜕𝑨Ψ = 1
2𝜌0

𝜕
𝜕𝐴𝑚𝑛

(

𝐴𝑖𝑗C𝑖𝑗𝑘𝑙𝐴𝑘𝑙
)

− Δ𝜃
𝜌0

𝛽𝑖𝑗
𝜕𝐴𝑖𝑗

𝜕𝐴𝑚𝑛
= 1

2𝜌0

(

𝛿𝑖𝑚𝛿𝑗𝑛C𝑖𝑗𝑘𝑙𝐴𝑘𝑙 + 𝐴𝑖𝑗C𝑖𝑗𝑘𝑙𝛿𝑘𝑚𝛿𝑙𝑛
)

− Δ𝜃
𝜌0

𝛽𝑖𝑗𝛿𝑖𝑚𝛿𝑗𝑛

= 1
𝜌0
C ∶ 𝑨 − Δ𝜃

𝜌0
𝜷 since C𝑖𝑗𝑘𝑙 = C𝑘𝑙𝑖𝑗 (G.6)

𝜕2𝑨𝜃 = 𝜕2𝜃𝑨 = − 1
𝜌0

𝜷 (G.7)

The other partial derivatives of Ψ are the same as in Appendix G.1.
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