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Abstract

We prove the existence of small solitary waves for one-dimensional
lattices of particles that each repel every other particle with a force that
decays as a power of distance. For force exponents α+1 with 4

3
< α < 3,

we employ fixed-point arguments to find near-sonic solitary waves having
scaled velocity profiles close to non-degenerate solitary-wave profiles of
fractional KdV or generalized Benjamin-Ono equations. These equations
were recently found to approximately govern unidirectional long-wave mo-
tions in these lattices.
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1 Introduction

In this work we prove an existence theorem for solitary waves of small amplitude
in an infinite lattice of particles which all interact with each other through long-
range power-law forces. The equations of evolution that govern the particle
positions xj (required to increase with j) are

ẍj = −α
∞∑

m=1

(
(xj+m − xj)

−α−1 − (xj − xj−m)−α−1
)
, j ∈ Z. (1.1)
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When 1 < α < 3, we showed in a previous work [16] that the unidirectional
propagation of long-wave solutions of (1.1) is formally governed by the nonlocal
dispersive PDE

∂tu+ u∂xu+H|D|αu = 0, (1.2)

where H is the Hilbert transform and the dispersion term f = H|D|αu has

Fourier transform f̂(k) = (−i sgn k)|k|αû(k). Subsequently, Wright [23] has
rigorously proved that long-wave solutions of (1.1) are close to solutions of
(1.2) over a suitable long time-scale provided α∗ < α < 3, where α∗ ≈ 1.48.

It is our aim in the present paper to prove that the system (1.1) admits
exact solitary wave solutions for speeds slightly exceeding the ‘sound speed’ cα,
which is the maximum speed of linear waves and is given by

cα =
√
α(α+ 1)ζα , (1.3)

where ζs =
∑∞

n=1 n
−s denotes the Riemann zeta function. We will find such

waves by approximation to solitary waves of (1.2), which were first proved to
exist by Weinstein [22] and Benjamin et al. [3]. The waves that we approximate
need to have a non-degeneracy property proved for a class of solutions including
ground states by Frank and Lenzmann [7].

In the case α = 2, the system (1.1) is an infinite Calogero-Moser system. For
this case, in [16] we also established explicit formulas providing solitary waves
having any supersonic speed c > c2 = π. The proof exploited some of the well-
known completely integrable structure of finite Calogero-Sutherland systems to
find periodic waves.

Our present study builds instead on the formulation and methods devised
by Herrmann and Mikikits-Leitner in [15] in order to find solitary waves that
approximate KdV solitons for particle lattices with forces of any finite range.
The work [15] in turn improved and simplified the method earlier employed by
Friesecke and Pego in [8] to obtain such a result for Fermi-Pasta-Ulam-Tsingou
(FPUT) lattices, which are lattices with nearest-neighbor forces. Vainchtein [21]
has recently reviewed the literature concerning solitary waves in particle lattices
of various kinds.

We seek solitary waves having the following form:

xj(t) = j − ϵνU(x), x = ϵ(j − ct), c2 = c2α + ϵµ. (1.4)

Consistent with the formal long-wave scaling found in [16, Thm. 2.1] we take

µ = α− 1, ν = α− 2.

For waves of the form in (1.4), the particle velocity ẋj(t) = cϵµU ′(x). As we
discuss in Section 3 below, the scaled velocity profile W = U ′ needs to satisfy
a nonlocal, nonlinear eigenvalue problem, which formally reduces in the limit
ϵ→ 0 to a nonlocal quadratic equation, namely

W + κ3|D|µW = 1
2κ2W

2 , (1.5)
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where κ3 and κ2 are positive constants as found in [16]; see (3.15) and (3.17) be-
low. Solutions of (1.5) provide solitary waves of (1.2) after appropriate scaling.
A profile W satisfying (1.5) is called non-degenerate if the linearized operator

L+ = I + κ3|D|µ − κ2W , (1.6)

acting in L2(R), has one-dimensional kernel spanned by the derivative W ′.
As stated by Frank and Lenzmann [7, p. 262], for (1.5) to admit any solution

having finite energy (i.e., in Hµ/2(R) ∩ L3(R)), it is necessary that

4
3 < α < 3 , (1.7)

due to Pohozaev identities. (See [1, sec. 3.5] for the key to the nontrivial proof
of these identities.) Consequently our results for 1 < α < 3 will be restricted to
the smaller range in (1.7). For all α in this smaller range, however, ground-state
solutions (positive, even, energy-minimizers) exist and are proved in [7] to be
non-degenerate. Moreover, any solution of (1.5) must be positive, as discussed
in Section 5 below.

To find profiles of solitary waves of (1.1), similar to [8] and [15] we formulate
a fixed-point equation and regard it as a perturbation of a corresponding fixed-
point equation for solutions of (1.5). We analyze the fixed-point equations,
however, in the space of even functions in H1(R), rather than in L2(R) as was
done in [15]. This has the natural advantage of working in a Banach algebra of
functions, and we obtain further simplification by initially seeking less precise
control over the size of the correction. In principle, spectral analysis of the
linearization of the fixed-point equation could have become more complicated
in H1(R) instead of L2(R). But we were able to substantially simplify spectral
analysis in H1(R) by extracting from [15] a key compactness argument and
casting it into an abstract form; see Lemma 4.14 below.

The plan of this paper is as follows. In Section 2 we develop preliminaries.
We derive the fixed-point equations governing solitary wave profiles for (1.1)
and its formal limit (1.5) in Section 3 and precisely state the main theorem.
In Section 4 we prove the existence of solitary wave profiles for (1.1). For
4
3 < α < 3, given any non-degenerate even solution W0 ∈ H1(R) of (1.5), when
c − cα is positive and small we find a (locally unique) scaled profile Wϵ = U ′

that is even, positive, and close to W0 in H1, providing a solitary wave for
(1.1) as in (1.4). We carry out a fixed-point analysis based on a quantitative
fixed-point lemma from [8]. Control over the deviation ∥Wϵ −W0∥H1 comes by
adapting the rigorous residual estimates of Wright [23]. When α = 2 and ϵ is
sufficiently small, the waves we find here agree with the ones provided by the
implicit formulas in [16]; see Subsection 4.6.

We establish positivity and smoothness of the profilesWϵ in Section 5. There
we also show that the unscaled velocity profiles, given by vc(z) = cϵµWϵ(ϵz), are
analytic as functions of wave speed. We study a Hamiltonian energy H for the
solitary waves of (1.1) in Section 6. For α = 2 we find explicit formulas by using
results from [16]. The sign of dH/dc agrees with the sign of α− 3

2 when the latter
is non-zero, for sufficiently small ϵ depending on α. In a variety of lattice wave
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and other Hamiltonian wave stability problems, a change in the sign of dH/dc
has been associated with transitions to instability; e.g., see [11, 12, 9, 10, 21, 5, 6].
Whether this may be the case for systems such as (1.1) remains an open problem.

The value α = 3
2 is L2-critical for (1.5). In this regard it is curious that

Wright’s result in [23], showing that solutions of (1.2) approximate long-wave
solutions of (1.1) over long times, is valid for all α in a neighborhood of 3

2 .
In the interest of brevity, we do not address the range α ≥ 3 in the present

paper. In that range naturally one expects a KdV limit, but also one should be
able to treat a much more general family of interparticle forces. In particular, the
case of alternating signs studied formally in [16] seems particularly challenging
and deserves a separate study.

2 Preliminaries

The Maclaurin series for Z(r) := α(1− r)−α−1 takes the form

Z(r) =

∞∑
k=0

αkr
k , αk =

α(α+ 1) · · · (α+ k)

k!
. (2.1)

The coefficients αk are defined differently than in [16] for present convenience.
In the standard Sobolev space Hs = Hs(R), s ≥ 0, we use the inner product

given in terms of the Fourier transform f̂(k) = 1
2π

∫
R f(x)e

−ikx dx by

⟨f, g⟩Hs =

∫
R
(1 + |k|2)sf̂(k)ĝ(k) dk . (2.2)

We recall that for each s > 1
2 , there is a constant CHs ≥ 1 such that

∥fg∥Hs ≤ CHs∥f∥Hs∥g∥Hs for all f, g ∈ Hs. (2.3)

We take the inner product in L2 = L2(R) identical to that for s = 0 above.
We let L2

even denote the subspace of even elements of L2, elements f for which

f(−x) = f(x) for a.e. x ∈ R (or equivalently f̂(−k) = f̂(k) for a.e. k ∈ R), and
we let Hs

even = Hs ∩ L2
even. The space L(Hs) is the space of bounded linear

operators on Hs, equipped with the operator norm.
Following [15], we will make heavy use of the symmetric averaging operators

Aη defined for η > 0 on Hs for s ≥ 0 by

Aηf(x) =
1

η

∫ η/2

−η/2

f(x+ z) dz, (2.4)

which satisfy

f(x+ 1
2η)− f(x− 1

2η) = ηAη(∂xf)(x) = η∂x(Aηf)(x) , (2.5)

Âηf(k) = sinc(12ηk)f̂(k) . (2.6)
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Here sinc(z) = (sin z)/z. From the Fourier representation it is clear that the
operators Aη map Hs into Hs+1 continuously. Moreover since sinc( 12ηk) lies in
[−1, 1] and converges to 1 as η → 0 for any k, it is clear that Aη is nonexpansive
on Hs and converges to the identity strongly (but not in operator norm). That
is, for any f ∈ Hs we have

∥Aηf∥Hs ≤ ∥f∥Hs , (2.7)

and

∥Aηf − f∥2Hs =

∫
R

(
1 + k2

)s ∣∣sinc( 12ηk)− 1
∣∣2 |f̂(k)|2 dk → 0 (2.8)

as η → 0. Because |1− sinc z| ≤ 1
6z

2 for all z it also follows

∥Aηf − f∥Hs ≤ η2

24
∥f∥Hs+2 (2.9)

for all f ∈ Hs+2. Note further that Aηf is even if and only if f is even.
Moreover, if f is even and unimodal (i.e., even, and decreasing on (0,∞)) then
Aηf is also, since for f smooth we have ∂x(Aηf) ≤ 0 by (2.5).

3 Equations for solitary-wave profiles

In this section, we follow the approach of Herrmann and Mikikits-Leitner in [15]
to formulate a fixed point equation whose solution provides velocity profiles of
solitary waves for (1.1).

3.1 Equations for profiles on lattices

Due to the ansatz (1.4), by (2.5) and since µ = α− 1 = ν + 1 we can write

xj+m − xj = m− ϵν(U(x+ ϵm)− U(x)) = m(1− ϵµAmϵW (x+ 1
2mϵ)),

xj − xj−m = m− ϵν(U(x)− U(x− ϵm)) = m(1− ϵµAmϵW (x− 1
2mϵ)),

where
W = U ′.

By consequence,

α(xj+m − xj)
−α−1 = Z(ϵµAmϵW (x+ 1

2mϵ))m
−α−1,

α(xj − xj−m)−α−1 = Z(ϵµAmϵW (x− 1
2mϵ))m

−α−1,

and after taking the difference and using formula (2.5) again, we find that for
system (1.1) to be satisfied it is necessary and sufficient that

c2ϵα ∂xW (x) =

∞∑
m=1

mϵ

mα+1
∂xAmϵZ(ϵ

µAmϵW ) . (3.1)
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We seek (weak) solutions of this equation in H1. By requiring that

ϵµCH1∥W∥H1 < 1 , (3.2)

we ensure that the MacLaurin series for Z(ϵµAmϵW ) − Z(0) converges in H1,
avoiding the singularity of Z(r) at r = 1. Since Z(0) = α, we thus find it
necessary and sufficient that W should satisfy the nonlocal nonlinear eigenvalue
problem

c2W =

∞∑
m=1

ϵ−µ

mα
Amϵ(Z(ϵ

µAmϵW )− α). (3.3)

As in [15], we recast this equation by collecting linear terms on the left-hand
side and separating the quadratic terms. Recall that c2 = ϵµ + α1

∑
m≥1m

−α

from (1.4) and (1.3), and define

Z3(r) = α(1− r)−α−1 − α− α1r − α2r
2, (3.4)

BϵW =W + α1

∞∑
m=1

ϵ−µ

mα
(W −A2

mϵW ), (3.5)

Qϵ(W ) = α2

∞∑
m=1

1

mα
Amϵ(AmϵW )2, (3.6)

Zϵ(W ) =

∞∑
m=1

ϵ−2µ

mα
AmϵZ3(ϵ

µAmϵW ). (3.7)

After substitution and further dividing by ϵµ we find (3.3) equivalent to

BϵW = Qϵ(W ) + Zϵ(W ). (3.8)

3.2 Formal limit equations

The operator Bϵ is a Fourier multiplier, with B̂ϵW (k) = bϵ(k)Ŵ (k) where the
symbol bϵ is given by

bϵ(k) = 1 + α1ϵ

∞∑
m=1

1− sinc2( 12kmϵ)

(mϵ)α
. (3.9)

We have

1 ≤ bϵ(k) ≤ ϵ−µα1ζα for all k, (3.10)

so Bϵ is bounded on Hs for any fixed ϵ > 0, with nonexpansive inverse B−1
ϵ .

For 1 < α < 3, similar to what was noted in [16], the sum in (3.9) approxi-
mates a convergent integral. Indeed, as h→ 0+,

Sα(h) := α1h

∞∑
m=1

1− sinc2( 12mh)

(mh)α
→ κ3 , (3.11)
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where, with notation consistent with [16, Thm. 2.1],

κ3 := α1

∫ ∞

0

1− sinc2(z/2)

zα
dz . (3.12)

Since bϵ(k) = bϵ(|k|) = 1 + |k|α−1Sα(ϵ|k|), we have that for each fixed k ∈ R,

bϵ(k) → b0(k) := 1 + κ3|k|α−1 as ϵ→ 0. (3.13)

We let B0 denote the Fourier multiplier with symbol b0(k), writing

B0W =W + κ3|D|α−1W . (3.14)

We remark that due to the formula for the integral in [16, Remark 3], we have

κ3 =

{
π, α = 2,

−2 sin( 12πα)Γ(1− α), α ∈ (1, 2) ∪ (2, 3).
(3.15)

For the quadratic term in (3.8), we find that Amϵ(Amϵf)
2 → f2 in Hs for

any f ∈ Hs with s > 1
2 , by using the strong convergence property (2.8) and the

fact that Hs is a Banach algebra. Hence by dominated convergence,

∥Qϵ(f)−Q0(f)∥Hs → 0 as ϵ→ 0, (3.16)

where
Q0(f) :=

1
2κ2f

2, κ2 = 2α2ζα . (3.17)

We will establish a rigorous bound on the higher-order term Zϵ(W ) later.
For now, we note that it is formally O(ϵµ) since Z3(r) = O(r3). Thus we expect
that as ϵ→ 0, (3.8) should approximate equation (1.5), which we can recast in
the form

B0W = Q0(W ) . (3.18)

This equation determines the profile of solitary waves of speed c̃ = 1/κ1 of the
nonlocal dispersive equation

κ1∂tu+ κ2u∂xu+ κ3H|D|αu = 0 . (3.19)

According to [16, Thm. 2.1] and the rigorous results of Wright [23], this equation,
with κ1 = 2cα, is the correctly scaled formal limit of (1.1) consistent with the
long-wave ansatz

xj = j + ϵνv(ϵ(j − cαt), ϵ
αt) , u = −∂xv.

3.3 Fixed-point formulation and main result

Similar to [15], our approach to find solutions of (3.8) is to fix a known even
solution W0 to (3.18), meaning an even solution of the fixed-point equation

W0 = F(W0) := B−1
0 Q0(W0) , (3.20)
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and solve the fixed-point corresponding to (3.8), which is

W = Gϵ(W ) := B−1
ϵ (Qϵ(W ) + Zϵ(W )) , (3.21)

through a perturbation analysis. We will suppose that W0 ∈ H1
even is a given

solution of (3.18) that is non-degenerate. Recall this means that the linearized
operator

L+ = B0 −DQ0(W0) , (3.22)

acting in L2, has one-dimensional kernel spanned by the odd function W ′
0. By

a bootstrapping argument, it follows that W0 = B−1
0 ( 12κ2W

2
0 ) belongs to H

s
even

for all s > 0, hence is smooth. Moreover, W0 is positive, since W 2
0 is positive

and the Green’s function for the operator B0 is positive (see Section 5 below).
Our main results are stated precisely as follows.

Theorem 3.1. Assume 4
3 < α < 3 and W0 ∈ H1 is an even solution of (3.18)

that is non-degenerate. Then there exist positive constants ϵ0, δ, and C such
that the following hold, for each ϵ ∈ (0, ϵ0):

(i) Gϵ has a unique fixed point Wϵ ∈ H1
even satisfying ∥Wϵ −W0∥H1 ≤ δ.

(ii) ∥Wϵ −W0∥H1 ≤ Cϵγ , where γ =

{
α− 1 α ∈ (1, 2],

3− α α ∈ (2, 3).

(iii) Wϵ is everywhere positive.

(iv) W is smooth, with W ∈ H∞.

Furthermore, the map c 7→ vc ∈ H1
even, from wave speed c to the unscaled velocity

profile vc given by

vc(z) := cϵµWϵ(ϵz), c2 = c2α + ϵµ, (3.23)

is analytic.

Note that the unscaled velocity profile function vc determines the particle
velocities according to ẋj(t) = vc(j − ct), cf. (1.4). Note as well that given
f ∈ H1

even, the dilation map ϵ 7→ f(ϵ·) may not be analytic, or even differentiable;
thus we do not discuss the regularity of the map ϵ 7→Wϵ.

4 Fixed-point analysis

In order to prove the existence of wave profiles as fixed points in equation (3.21),
we make use of the quantitative version of the standard inverse function theorem
stated as Lemma A.1 in [8] and proved there. Restated for clarity, it takes the
following form, in which ∥ · ∥ denotes the norm in E or the operator norm on
L(E) as appropriate.
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Lemma 4.1. Let F and G be C1 maps from a ball B in a Banach space E to
E. Suppose u0 = F (u0) and that L = I − DF (u0) is invertible with operator
norm ∥L−1∥ ≤ C0 <∞. Assume that positive constants C1, C2, θ and δ satisfy

C0(C1 + C2) ≤ θ < 1 , (4.1)

∥F (u0)−G(u0)∥ ≤ δ(1− θ)/C0 , (4.2)

and that whenever ∥u− u0∥ ≤ δ, u is in the ball B and

∥DF (u)−DF (u0)∥ ≤ C1 , (4.3)

∥DF (u)−DG(u)∥ ≤ C2 . (4.4)

Then u = G(u) for some unique u ∈ B satisfying ∥u− u0∥ ≤ δ, and moreover

∥u− u0∥ ≤ C0(1− θ)−1∥F (u0)−G(u0)∥ .

We will apply this lemma to the functions F = F and G = Gϵ on E = H1
even,

for ϵ > 0 sufficiently small. The functions F and Gϵ will be shown to be analytic
on a suitable ball in H1. The operator

L0 = I −DF(W0) = I − B−1
0 DQ0(W0) (4.5)

will be shown to be Fredholm, and is invertible because W0 is non-degenerate.
Establishing (4.3) will be easy. To obtain the residual estimate (4.2) we will
use rigorous residual bounds established by Wright [23]. Our proof of (4.4)
involves a contradiction argument based on a key compactness property. This
is essentially a distillation of Herrmann & Mikikits-Leitner’s proof in [15] of
invertibility in L2

even for an operator analogous to I −DGϵ(W0), uniformly for
all small enough ϵ > 0. In the present context, uniform invertibility in H1

even

follows from conditions (4.1)–(4.4) together with a Neumann series expansion.

4.1 Analyticity and symmetry

We first establish the analyticity of various maps on H1, referring to [4, Ch. 2.3]
for the basic theory of analytic maps on Banach spaces. Note the maps Q0

and Qϵ are continuous quadratic maps on H1, hence are analytic. Any mono-
mial map f 7→ fk is analytic, and compositions and uniform limits of analytic
functions are analytic. Regarding Zϵ we have the following.

Lemma 4.2. Let ϵ, ρ ∈ (0, 1), and for R > 0 let

B̃R = {f ∈ H1 : CH1∥f∥H1 ≤ R}

be the closed ball of radius R/CH1 in H1. Then Zϵ : B̃R → H1 is analytic
provided ϵµR ≤ ρ < 1, and the following bounds hold for all f ∈ B̃R:

∥Zϵ(f)∥H1 ≤ ϵµζαZ3(ρ)

(
R

ρ

)3

, ∥DZϵ(f)∥L(H1) ≤ ϵµζαZ
′
3(ρ)

(
R

ρ

)2

.
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Proof. Recall the series expansion for Z3(r) =
∑∞

k=3 αkr
k converges for |r| < 1.

Since ∥fk∥H1 ≤ (CH1∥f∥H1)k for all k, it follows that the Nemytskii operator
f 7→ Z3 ◦ f is analytic on the ball B̃ρ provided ρ < 1, with ∥Z3 ◦ f∥H1 ≤ Z3(ρ)

for all f ∈ B̃ρ.
Thus, for any R > 0 and each m ≥ 0, the map W 7→ AmϵZ3(ϵ

µAmϵW ) is
analytic on the ball B̃R provided ϵµR ≤ ρ, and

∥AmϵZ3(ϵ
µAmϵW )∥H1 ≤ Z3(ϵ

µR) ≤ Z3(ρ)

(
ϵµR

ρ

)3

.

It follows that the series expansion for Zϵ(W ) in (3.7) then converges uniformly
in H1 on B̃R under the same condition, with the stated bound on the H1 norm.

It is then straightforward to show in a similar way that that for all W ∈ B̃R

and V ∈ H1, since Z ′
3(ϵ

µR) ≤ Z ′
3(ρ)(ϵ

µR/ρ)2,

DZϵ(W )V = ϵ−2µ
∑
m≥1

m−αAmϵ(Z
′
3(ϵ

µAmϵW )(ϵµAmϵV )) , (4.6)

and

∥DZϵ(W )V ∥H1 ≤ ϵµζαZ
′
3(ρ)

(
R

ρ

)2

∥V ∥H1 .

This finishes the proof.

Regarding symmetry, we note that since the symbols of the operators Aη,
Bϵ and B0 are real, even, and bounded, these operators map even functions in
Hs to even functions in Hs. For s > 1

2 the monomial maps f 7→ fk also have
the same property. From this and the lemma above we infer the following.

Proposition 4.3. The map F in (3.20) is an analytic map from H1
even into

itself. For any ϵ ∈ (0, 1) and R > 0 such that ϵµR < 1, the map Gϵ in (3.21) is
analytic from B̃R ∩H1

even into H1
even.

4.2 Residual estimates

According to the definitions in (3.20) and (3.21) we can write

F(W0)− Gϵ(W0) = Rϵ − Sϵ , (4.7)

where

Rϵ = B−1
0 Q0(W0)− B−1

ϵ Qϵ(W0) , Sϵ = B−1
ϵ Zϵ(W0) . (4.8)

We have ∥Sϵ∥H1 ≤ ∥Zϵ(W0)∥H1 since B−1
ϵ is non-expansive on H1, so we find

the following by simply applying Lemma 4.2 and recalling µ = α− 1.

Lemma 4.4. For all ϵ > 0 sufficiently small we have ∥Sϵ∥H1 ≤ Cϵα−1.

For the term Rϵ we claim the following.
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Proposition 4.5. For all ϵ > 0 sufficiently small we have

∥Rϵ∥H1 ≤

{
Cϵ α ∈ (1, 2],

Cϵ3−α α ∈ (2, 3).

The proof will be provided presently. But the last two results together
immediately imply the following residual estimate.

Corollary 4.6. For all sufficiently small ϵ > 0 we have

∥F(W0)− Gϵ(W0)∥H1 ≤

{
Cϵα−1 α ∈ (1, 2],

Cϵ3−α α ∈ (2, 3).

To prove Proposition 4.5 we adapt Wright’s method of estimating residuals
in the long-wave approximation of (1.1) in [23]. We begin with an estimate on
the difference of quadratic functions.

Lemma 4.7. There exists C > 0 independent of ϵ such that

∥Qϵ(W0)−Q0(W0)∥H1 ≤ Cϵα−1 .

Proof. First observe that

∥Qϵ(W0)−Q0(W0)∥H1 ≤
∑
m≥1

α2

mα
∥Amϵ(AmϵW0)

2 −W 2
0 ∥H1 . (4.9)

We claim that for some constant C independent of ϵ and m,

∥(Amϵ(AmϵW0)
2 −W 2

0 ∥H1 ≤ Cm2ϵ2. (4.10)

Indeed, by the triangle inequality,

∥Amϵ(AmϵW0)
2 −W 2

0 ∥H1 ≤ ∥(Amϵ − I)(AmϵW0)
2∥H1

+ ∥(AmϵW0)
2 −W 2

0 ∥H1 ,

from which one can infer (4.10) by using (2.9) and the H3 regularity of W0.
Using the estimate (4.10) in (4.9) for small m, we find

⌊1/ϵ⌋∑
m=1

m−α∥Amϵ(AmϵW0)
2 −W 2

0 ∥H1 ≤
⌊1/ϵ⌋∑
m=1

m−αC(mϵ)2 ≤ Cϵα−1

3− α
.

In the last line, we used a simple integral bound
∑⌊1/ϵ⌋

m=1 m
2−α ≤ 1

3−αϵ
α−3 as in

[23]. For large m, we simply bound the norms in (4.9) by a constant, and get
through a similar integral bound∑

m>⌊1/ϵ⌋

α2

mα
∥Amϵ(AmϵW0)

2 −W 2
0 ∥H1 ≤ C ′ϵα−1

α− 1
,

where C ′ is another constant independent of ϵ and m.
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Next we deal with estimates on differences of symbols and operators.

Lemma 4.8. For all ϵ > 0 sufficiently small we have (i) For all k ∈ R,

|bϵ(k)−1 − b0(k)
−1| ≤

{
C|k|ϵ α ∈ (1, 2],

C|k|3−αϵ3−α α ∈ (2, 3).

(ii) For each s ≥ 0 and all f ∈ Hs+3,

∥(B−1
ϵ − B−1

0 )f∥Hs ≤

{
Cϵ ∥f∥Hs+1 α ∈ (1, 2],

Cϵ3−α∥f∥Hs+3−α α ∈ (2, 3).

Proof. First we note the estimates

Sα(h) = h1−α
∑
m≥1

1− sinc2(mh/2)

mα
≤ h1−αζα , (4.11)

∣∣b−1
ϵ (k)− b−1

0 (k)
∣∣ = |b0(k)− bϵ(k)|

b0(k)bϵ(k)
=

|k|α−1 |Sα(ϵk)− κ3|
b0(k)bϵ(k)

≤ |Sα(ϵk)− κ3|
κ3bϵ(k)

, (4.12)

since by its definition in (3.13), b0(k) = 1 + κ3|k|α−1.
Now we invoke Lemma 3 of [23], which directly implies that for all h > 0,

|Sα(h)− κ3| ≤

{
Ch α ∈ (1, 2],

Ch3−α α ∈ (2, 3).

Part (i) follows using this in (4.12). Plancherel’s identity yields part (ii).

Proof of Proposition 4.5. From (4.8) and the triangle inequality, we get

∥Rϵ∥H1 ≤ ∥Qϵ(W0)−Q0(W0)∥H1 + ∥(B−1
ϵ − B−1

0 )Q0(W0)∥H1 ,

which are estimated respectively by Lemmas 4.7 and 4.8, using smoothness of
W0. Considering each case α ∈ (1, 2] and (2, 3) gives the desired result.

4.3 Derivative estimates

Here our goal is to prove derivative estimates which will entail the conditions
(4.3) and (4.4) in Lemma 4.1. In fact, we seek to prove the following.

Proposition 4.9. (i) Given any C1 > 0, if 0 < δ ≤ C1/κ2CH1 then

∥DF(W )−DF(W0)∥L(H1) ≤ κ2CH1∥W −W0∥H1 ≤ C1

for all W ∈ H1 with ∥W −W0∥H1 ≤ δ.

(ii) For any W ∈ H1, the operator DF(W ) is compact on H1.
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Proposition 4.10. Given any C2 > 0 there exist positive constants δ and ϵ0
such that whenever ϵ ∈ (0, ϵ0) and ∥W −W0∥H1 ≤ δ we have

∥DF(W )−DGϵ(W )∥L(H1) ≤ C2 .

Proof of Proposition 4.9. Define N : H1 → L(H1) by

N (W )f = B−1
0 (Wf) . (4.13)

Then DF = κ2N , and Proposition 4.9 follows immediately from the following
lemma.

Lemma 4.11. (i) For any W1,W2 ∈ H1 we have

∥N (W1)−N (W2)∥L(H1) ≤ CH1∥W1 −W2∥H1 .

(ii) For any W ∈ H1, the operator N (W ) is compact on H1.

Proof. For all V ∈ H1 we have

N (W1)V −N (W2)V = B−1
0 ((W1 −W2)V ) .

Since B−1
0 is nonexpansive on H1 the estimate in (i) follows.

For part (ii), assume at first that W ∈ C∞
c (R). Then the operators N (W )

and N (W ′) are compact on L2 by the compactness criteria in [18], since the
functions b−1

0 , W and W ′ are continuous and vanish at ∞. It follows easily
that N (W ) is compact on H1. For a general W ∈ H1, choose a sequence of
functions Wn ∈ C∞

c (R) approximating W in H1. Then part (i) implies N (W )
is approximated in L(H1) by the compact operators N (Wn), hence is itself
compact.

Proof of Proposition 4.10. Recall κ2 = 2α2ζα and

DF(W )V = B−1
0 (DQ0(W )V ) = κ2N (W )V = κ2B−1

0 (WV ) ,

DGϵ(W )V = B−1
ϵ (DQϵ(W )V +DZϵ(W )V ) ,

where

DQϵ(W )V = 2α2

∑
m≥1

m−αAmϵ((AmϵW )(AmϵV )
)
.

Based on the multiplicative inequality for H1 and the non-expansivity of B−1
0 ,

B−1
ϵ , and Amϵ, the proof of the following lemma is easy and is omitted.

Lemma 4.12. For all W ∈ H1 we have

∥B−1
ϵ (DQϵ(W )−DQϵ(W0))∥L(H1) ≤ κ2CH1∥W −W0∥H1 .
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By this result and the bounds on DZϵ in Lemma 4.2, to prove Proposi-
tion 4.10 it suffices to prove that

∥B−1
0 DQ0(W0)− B−1

ϵ DQϵ(W0)∥L(H1) → 0 as ϵ→ 0. (4.14)

Key to our approach is the following result on operator norm convergence
of Fourier multipliers. It will be proved in the subsection to follow, by use of
Plancherel’s identity and a proof that bϵ(k)

−1 → b0(k)
−1 uniformly in k.

Proposition 4.13. As ϵ→ 0 we have ∥B−1
ϵ − B−1

0 ∥L(H1) → 0.

Taking this for granted at present, since DQϵ(W0) is uniformly bounded we
infer that to prove Proposition 4.10 it suffices to replace B−1

ϵ by B−1
0 in (4.14),

i.e., to prove

∥B−1
0 DQ0(W0)− B−1

0 DQϵ(W0)∥L(H1) → 0 as ϵ→ 0. (4.15)

To proceed we define operators Nη and N0 by

Nηf = B−1
0 ((AηW0)f) , N0f = B−1

0 (W0f). (4.16)

Evidently by Lemma 4.11 we have that

∥Nη −N0∥L(H1) ≤ CH1∥(Aη − I)W0∥H1 → 0 as η → 0. (4.17)

And we may write

B−1
0 DQϵ(W0)V = 2α2

∑
m≥1

m−αAmϵNmϵAmϵV . (4.18)

Since Aη is self-adjoint and Aη → I strongly as η → 0, we can use the fact
that N0 is compact and the abstract Lemma 4.14 below to conclude that

∥AηNηAη −N0∥L(H1) → 0 as η → 0. (4.19)

Then (4.15) follows by dominated convergence from the fact that

B−1
0 DQ0(W0)− B−1

0 DQϵ(W0) = 2α2

∑
m≥1

m−α(N0 −AmϵNmϵAmϵ).

Modulo the proofs of Proposition 4.13 and Lemma 4.14 to come, this completes
the proof of Proposition 4.10.

4.4 Lemmas on compactness and Fourier multipliers

4.4.1 Compactness and operator convergence

Lemma 4.14. Let X be a Banach space. Let S, T ∈ L(X ), and assume T is
compact. Let (Sn)n and (Tn)n be sequences in L(X ), and assume ∥Tn−T∥ → 0
as n→ ∞. Then:
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(i) If Sn → S strongly, then ∥SnTn − ST∥ → 0.

(ii) If the adjoints S∗
n → S∗ strongly, then ∥TnSn − TS∥ → 0.

Proof. To prove (i), suppose the claimed convergence fails. Then there must
exist a constant c > 0 and a sequence (xn)n in X such that ∥xn∥ = 1 and
c ≤ ∥(SnTn − ST )xn∥ for all n. However, since T is compact we may pass to
a subsequence (denoted the same) such that Txn → y for some y ∈ X . Then
Tnxn → y also, while

∥(SnTn − ST )xn∥ ≤ ∥Sn(Tnxn − y)∥+ ∥(Sn − S)y∥+ ∥S(y − Txn)∥ .

But the hypotheses ensure this tends to 0, since ∥Sn∥must be uniformly bounded.
This contradiction proves (i).

For (ii) we note that the compactness of T on X implies the compactness of
its adjoint T ∗ on X ∗, and that

∥TnSn − TS∥ = ∥S∗
nT

∗
n − S∗T ∗∥.

Then applying part (i) to the adjoints yields part (ii).

4.4.2 Convergence of Fourier multipliers

Due to Plancherel’s identity it is evident that

∥B−1
ϵ − B−1

0 ∥L(H1) ≤ ωb(ϵ) := sup
k∈R

|bϵ(k)−1 − b0(k)
−1| . (4.20)

Then Proposition 4.13 is implied by the following.

Lemma 4.15. As ϵ→ 0 we have ωb(ϵ) → 0.

We prepare for the proof with some lower bounds on bϵ(k).

Lemma 4.16. Fix h0 > 3
√
ζα+2/ζα. Then there exist positive constants ν1, ν2

such that

bϵ(k) ≥

{
1 + ν1|k|α−1, |k| ≤ h0/ϵ ,

ν2ϵ
1−α, |k| > h0/ϵ .

(4.21)

Proof. 1. Suppose h := ϵ|k| ≤ h0. Recall from (3.11) that Sα(h) → κ3 as
h→ 0+. Since Sα is continuous and positive, it attains a positive minimum on
[0, h0]. That is, there exists ν1 > 0 such that

Sα(h) ≥ ν1 for 0 ≤ h ≤ h0 , (4.22)

and hence
bϵ(k) ≥ 1 + ν1|k|α−1 for ϵ|k| ≤ h0. (4.23)

2. Now suppose h = ϵ|k| > h0. Then

∞∑
m=1

1− sinc2( 12mh)

mα
= ζα −

∞∑
m=1

4 sin2( 12mh)

h2mα+2
≥ ζα − 4

h2
ζα+2 .
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But since h > h0, we get Sα(h) ≥ α1ζα
(
1− 4

9

)
. Then

bϵ(k) = 1 + |k|α−1Sα(h) ≥ 1 + ν2ϵ
1−α , (4.24)

where ν2 = 5
9α1ζαh

α−1
0 . The lemma follows.

Proof of Lemma 4.15. Since bϵ and b0 are even, it suffices to confine attention
to k > 0. Recall from (4.12) that

∣∣b−1
ϵ (k)− b−1

0 (k)
∣∣ ≤ |Sα(ϵk)− κ3|

κ3bϵ(k)
. (4.25)

Let δ > 0. We proceed in three steps. 1. Choose hδ > 0 such that whenever
0 < h ≤ hδ,

|Sα(h)− κ3| < C−1
0 δ . (4.26)

Assuming 0 < ϵk ≤ hδ, since bϵ(k) ≥ 1 we find from (4.12) that∣∣b−1
ϵ (k)− b−1

0 (k)
∣∣ ≤ C0|Sα(ϵk)− κ3| < δ . (4.27)

2. Next, assume hδ ≤ ϵk ≤ h0, where h0 was introduced in the previous lemma.
By (4.11) we get

|Sα(ϵk)− κ3| < h1−α
δ ζα + κ3 =: C1.

Then from the previous lemma, it follows

C0
|Sα(ϵk)− κ3|

bϵ(k)
≤ C0C1

1 + ν1kα−1
≤ C0C1h

1−α
δ ϵα−1 . (4.28)

3. Lastly, assume h0 ≤ ϵk < ∞. With the second bound from the previous
lemma, we get

C0
|Sα(ϵk)− κ3|

bϵ(k)
≤ C0C1

ν2
ϵα−1 . (4.29)

Using the inequalities above, we see there exists ϵ0 > 0 (depending on δ)
such that for all ϵ ∈ (0, ϵ0) and all k ∈ (0,∞),∣∣b−1

ϵ (k)− b−1
0 (k)

∣∣ < δ. (4.30)

This finishes the proof of the lemma.

4.5 Existence proof

We are now in a position to prove the part of Theorem 3.1 concerning the
existence and local uniqueness of solitary wave profiles, by invoking Lemma 4.1
to obtain fixed points of (3.21) for small ϵ > 0.
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Proof of Theorem 3.1 (existence and local uniqueness). Let E = H1
even and sup-

pose W0 ∈ E is a non-degenerate solution of (3.18). Then u0 = W0 is a fixed
point of F = F in E. The operator L0 = I − DF(W0) on E is Fredholm
due to Proposition 4.9(ii) and has trivial kernel in E, hence is invertible. Let
C0 = ∥L−1

0 ∥L(E) and choose positive constants θ, C1 and C2 such that (4.1)
holds, i.e., C0(C1 + C2) < θ < 1.

Let R > CH1∥W0∥H1 and let

B = {f ∈ E : CH1∥f∥H1 ≤ R}.

By applying Corollary 4.6 and Propositions 4.3, 4.9 and 4.10, we can find posi-
tive constants δ and ϵ0 sufficiently small, such that whenever 0 < ϵ < ϵ0, then:

(i) F and Gϵ are analytic on B,

(ii) the residual bound (4.2) holds, and

(iii) whenever ∥u − u0∥E ≤ δ we have u ∈ B and estimates (4.3) and (4.4)
hold.

Then with G = Gϵ, Lemma 4.1 applies and we conclude that for every ϵ ∈ (0, ϵ0),
Gϵ has a unique fixed point W = Wϵ ∈ H1

even satisfying ∥W − W0∥H1 ≤ δ.
Moreover there is a constant C independent of ϵ such that

∥Wϵ −W0∥H1 ≤ C∥F(W0)− Gϵ(W0)∥H1 ≤

{
Cϵα−1 α ∈ (1, 2],

Cϵ3−α α ∈ (2, 3).
(4.31)

the last bound being due to Corollary 4.6.

4.6 The Calogero-Moser case

In the case α = 2 that corresponds to an infinite Calogero-Moser lattice, we
recall from [16, Theorem 1.1] that traveling waves in the form xj(t) = j−φ(j−ct)
exist for any c > cα = π, where the function φ = φ(z) takes values in (− 1

2 ,
1
2 )

and is determined for all z ∈ R by the implicit equation

(c2 − π2)(z − φ) = π tanπφ . (4.32)

We seek to relate the velocity profile vc(z) = cφ′(z) to the fixed point Wϵ

provided by Theorem 3.1 with W0 taken to be the ground state solution of
(3.18) (known to be non-degenerate by [7]). Here, equation (3.18) takes the
form

W + π|D|W =
1

2
(2πW )2 , (4.33)

since κ2 = 4π2 and κ3 = π when α = 2. Using that f(z) = i/(z + iπ) satisfies
f ′ = if2, one can check that a solution of (4.33) is given by Re f(x)/π. By the
classical uniqueness result of Amick and Toland [2], this is the only solution of
(4.33) in H1

even. Therefore,

W0(x) =
1

x2 + π2
.
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Corollary 4.17. If α = 2 and ϵ > 0 is sufficiently small, then the fixed point
Wϵ from Theorem 3.1 with c2 = π2+ϵ precisely satisfies φ′(z) = ϵWϵ(ϵz), where
φ satisfies (4.32).

Proof. Let c2 = π2 + ϵ. Define ψϵ by φ′(z) = ϵψϵ(ϵz) where φϵ satisfies (4.32)
with z = j−ct. Since φ determines a solitary wave for (1.1) by [16, Theorem 1.1],
and by the discussion in Section 3 above, ψϵ must satisfy the fixed point equa-
tion (3.21). From Theorem 3.1, Wϵ is the unique fixed point of (3.21) satisfying
∥W −W0∥H1 ≤ δ. Thus to show ψϵ =Wϵ it remains to show ∥ψϵ −W0∥H1 ≤ δ
for small enough ϵ > 0.

Now, by differentiation of (4.32), one derives that

ψϵ(x) =
1

(x− ϵφ)2 + π2 + ϵ
.

Then it straightforward to check that ψϵ converges to W0 in H1 as ϵ → 0 due
to the boundedness of ψ′

ϵ and ψ′′
ϵ . By the local uniqueness in Theorem 3.1, the

proof is complete.

5 Positivity and regularity

In this section we establish the positivity and regularity properties of the velocity
profiles that were stated in Theorem 3.1.

5.1 Positivity

First we remark on reasons why any solution W0 ∈ H1 of (3.18) is positive.
As we have pointed out, the Green’s function for B0 = I + κ3|D|µ is positive.
This follows by scaling from [7, Lemma A.4]. Alternatively, it can be proved by
invoking Kato’s formula [17] to show that for any λ > 0 and s ∈ (0, 1),

(λ+ |D|2s)−1 =
sinπs

π

∫ ∞

0

ts

λ2 + 2λts cos(πs) + t2s
(tI −∆)−1 dt , (5.1)

and using the positivity of the Green’s function for tI −∆, which in dimension
one is e−

√
t|x|/2

√
t. Curiously, we can get a third proof by taking the limit ϵ→ 0

in the next lemma, which we will use to study (3.21).

Lemma 5.1. Let f ∈ H1
even. If f is positive (resp. unimodal) then B−1

ϵ f is
positive (resp. unimodal).

Proof. The proof is essentially similar to one provided in [15, Cor. 2.7] for the
corresponding operator in the case of finite-range interactions. From (3.9) we
may write bϵ(k) = 1 + α1ζαϵ

−µ(1− jϵ(k)), where

jϵ(k) = ζ−1
α

∑
m≥1

m−α sinc2( 12kmϵ). (5.2)
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Then jϵ is even, takes values in [0, 1], and is the symbol of the Fourier multiplier

Jϵ = ζ−1
α

∑
m≥1

m−αA2
mϵ . (5.3)

The operator norm ∥Jϵ∥L(H1) ≤ 1, hence by Neumann series expansion,

B−1
ϵ =

ϵµ

α1ζα

∞∑
n=0

J n
ϵ

(1 + ϵµ/α1ζα)n+1
, (5.4)

and the series converges in operator norm. Suppose f ∈ H1
even and f is positive

(resp. unimodal). Since the same is true for Amϵf , for all f , we infer that Jϵf
is positive (resp. unimodal). By induction, the same is true for J n

ϵ f , for all
n ≥ 1. It follows that B−1

ϵ f is positive (resp. unimodal) as well.

Lemma 5.2. Let f ∈ H1
even with CH1∥f∥H1 < 1. Then Gϵ(f) is positive. More-

over, if f is unimodal, then Gϵ(f) is unimodal.

Proof. From the definitions (3.6)–(3.7), we find

ϵ2µ(Qϵ(f) + Zϵ(f)) =

∞∑
m=1

1

mα
AmϵZ2(ϵ

µAmϵf) , (5.5)

where Z2(r) = α(1 − r)−α−1 − α − α1r. Because Z2 is strictly convex with
Z2(0) = Z ′

2(0) = 0 we have Z2(r) > 0 for 0 < |r| < 1. Because Amϵ preserves
positivity, by Lemma 5.1 it follows Gϵ(f) is positive. A similar argument applies
to the unimodality statement.

Proof of Theorem 3.1(positivity). The positivity of the fixed points Wϵ of Gϵ

proved to exist in Section 4.5 follows immediately from Lemma 5.2.

Remarks on unimodality. Regarding the question of whether Wϵ is unimodal if
W0 is, we can only reiterate what was said on this subject by Herrmann and
Mikikits-Leitner [15, p. 2065]. Unimodality would follow, if, starting from W0,
one could show that Wϵ arose as a fixed-point limit of a suitable variant of the
(unstable) iteration scheme

W 7→ Gϵ(W ) = B−1
ϵ (Qϵ(W ) + Zϵ(W )),

Perhaps for this one could use Petviashvili iteration [20, 19], say, or compactness
arguments similar to those Herrmann used in [13] for nearest-neighbor forces.
Also see [14]. The analysis involved is outside the scope of the present paper,
however.
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5.2 Regularity of velocity

We will prove that the fixed points Wϵ are in H∞ by a bootstrap argument
based on equation (3.3). We provide details since the terms in the infinite series
depend on m (though weakly).

Proof of Theorem 3.1(regularity). Throughout the proof we keep ϵ ∈ (0, ϵ0)
fixed and write W = Wϵ and am = ϵµAmϵW . By the choice of ϵ0 in the
existence proof we have that CH1∥am∥H1 ≤ ϵµR ≤ ρ where ρ < 1. We note
that for every m ≥ 1 and every k ≥ 1, we have Z(k) ◦ am − Z(k)(0) ∈ H1 with

∥Z(k) ◦ am − Z(k)(0)∥H1 ≤ Z(k)(ρ)− Z(k)(0) , (5.6)

due to the fact that the Maclaurin series for Z(r) has positive coefficients and
unit radius of convergence.

We will prove by induction that for every integer n ≥ 0, W ∈ Hn+1 and

ϵµc2W (n) =

∞∑
m=1

m−αAmϵ(Z1 ◦ am)(n) , (5.7)

where Z1(r) = Z(r)−α, with the series converging in H1. This holds for n = 0,
since W ∈ H1 and (3.3) holds in H1.

Now fix n ∈ N and suppose W ∈ Hn+1 with (5.7) holding in H1. Then
W ∈ Cn, (Z1 ◦ am)(n) = (Z ◦ am)(n), and by the Faà di Bruno formula,

(Z ◦ am)(n) =
∑
k∈Λn

(
n

k

)
(Z(|k|) ◦ am) ·

n∏
j=1

(
a
(j)
m

j!

)kj

, (5.8)

where

Λn =

k = (k1, . . . , kn) ∈ Nn :

n∑
j=1

jkj = n

 ,

(
n

k

)
=

n!

k1! · · · kn!
,

and |k| = k1 + . . .+ kn. From (5.8) and (5.6), it follows easily that (Z ◦ am)(n)

is bounded in H1 uniformly in m, by writing

Z(|k|) ◦ am = Z(|k|) ◦ am − Z(|k|)(0) + Z(|k|)(0) ,

and using the the Banach algebra property of H1 together with the fact that

∥a(j)m |H1 ≤ ∥ϵµW (j)∥H1 for all m.
The map Amϵ is bounded from H1 into H2 with bound independent of m.

(The bound depends on ϵ but it does not matter here.) We infer therefore that
the series (5.7) converges in H2. Hence W ∈ Hn+2 and (5.7) holds in H1 with
n replaced by n + 1. This completes the induction step, and finishes the proof
that W ∈ H∞.
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5.3 Regularity in wave speed

In this subsection we prove the part of Theorem 3.1 stating that the unscaled
velocity profile is analytic as a function of wave speed. Similar to what was
done in [8], we look at a fixed scaling, and apply the analytic implicit function
theorem in complexified Banach spaces, as provided by Berger [4, Section 3.3B].

LetWϵ be the wave profiles provided by the existence proof in Subsection 4.5
for 0 < ϵ < ϵ0. Fixing some such ϵ, define

Wϵ,β(x) := ηµWηϵ(ηx) , β = ηµ , (5.9)

whenever 0 < ηϵ < ϵ0. This function is related to the unscaled velocity profiles
described in (3.23) by

vc(z) = cϵµWϵ,β(ϵz) with c2 = c2α + βϵµ . (5.10)

Thus, to study the regularity of vc as a function of c, it suffices to fix ϵ and
study Wϵ,β as a function of β in an interval around β = 1. Define

Bϵ,β = βI + α1

∑
m≥1

ϵ−µ

mα
(I −A2

mϵ) . (5.11)

Proposition 5.3. (1) For 0 < ηϵ < ϵ0, Wϵ,β satisfies the traveling wave equa-
tion

Bϵ,βV = Qϵ(V ) + Zϵ(V ) . (5.12)

(2) Moreover, there exists an interval (β−, β+), which contains 1 and depends
upon ϵ, on which the map β 7→Wϵ,β ∈ H1

even is analytic.

Proof of (1). Using the scaling formulas in the following lemma, we get that
Wϵ,β solves the traveling wave equation (5.12) after setting ϵ̂ = ηϵ and multi-
plying

(Bϵ̂Wϵ̂)(ηx) = (Qϵ̂(Wϵ̂) + Zϵ̂(Wϵ̂))(ηx) (5.13)

by η2µ.

Lemma 5.4. We have

ηµ(Amϵ̂Wϵ̂)(ηx) = (AmϵWϵ,β)(x) , (5.14)

ηkµAmϵ̂[(Amϵ̂Wϵ̂)]
k(ηx) = Amϵ[(AmϵWϵ,β)]

k(x) , (5.15)

Amϵ̂Z3(ϵ̂
µ(Amϵ̂Wϵ̂))(ηx) = AmϵZ3(ϵ

µ(AmϵWϵ,β))(x) . (5.16)

Proof. Through the change of variables z = ηy, we get

ηµ(Amϵ̂Wϵ̂)(ηx) =
1

mϵ̂

∫ mϵ̂/2

−mϵ̂/2

ηµWϵ̂(ηx+ z) dz

=
1

mϵ

∫ mϵ/2

−mϵ/2

Wϵ,β(x+ y) dy = (AmϵWϵ,β)(x) .
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Similarly, for all k ≥ 1,

ηkµAmϵ̂[(Amϵ̂Wϵ̂)]
k(ηx) =

1

mϵ̂

∫ mϵ̂/2

−mϵ̂/2

[ηµ(Amϵ̂Wϵ̂)(ηx+ z)]
k
dz

=
1

mϵ

∫ mϵ/2

−mϵ/2

[(AmϵWϵ,β)(x+ y)]k dy

= Amϵ[(AmϵWϵ,β)]
k(x) .

Finally,

Amϵ̂Z3(ϵ̂
µ(Amϵ̂Wϵ̂))(ηx) =

∑
k≥3

αkAmϵ̂[ϵ
µηµ(Amϵ̂Wϵ̂)]

k(ηx)

=
∑
k≥3

αkAmϵ[ϵ
µ(AmϵWϵ,β)]

k(x)

= AmϵZ3(ϵ
µ(AmϵWϵ,β))(x) .

Lemma 5.5. The mapping β 7→ B−1
ϵ,β ∈ L(H1) is analytic on (0,∞).

Proof. First, by linearity of the inverse Fourier transform, it suffices to show that
β 7→ b−1

ϵ,β ∈ L∞ is analytic. Let β0 ∈ (0,∞). Naming f(k) = |k|α−1Sα(ϵ|k|), we
get

b−1
ϵ,β(k) =

1

β + f(k)
=

1

β0 + f(k)

1
β−β0

β0+f(k) + 1

=
∑
n≥0

(−1)n

(β0 + f(k))n+1
(β − β0)

n ,

granted that |β − β0| ≤ β0, since f(k) ≥ 0. Hence, the mapping is analytic.

Lemma 5.6. Let ϵ > 0. The operator G̃ϵ : (0,∞) × (B̃R ∩ H1
even) → H1

even

defined by
G̃ϵ(β, V ) = B−1

ϵ,β(Qϵ(V ) + Zϵ(V ))

is analytic, jointly in β and V .

We omit the proof of this lemma, as it is straightforward to justify local
convergence of power series expansions given the results of Lemmas 4.2 and 5.5.

Proof of Proposition 5.3 (2). For small enough ϵ, it follows from estimates in
Theorem 3.1 that I−DGϵ(Wϵ) is invertible. This is the partial derivative of the
function f(β, V ) := V − G̃(β, V ) with respect to V , at the point (1,Wϵ) where
f vanishes. Using the joint analyticity to develop a power series expansion at
the point (1,Wϵ), we can extend f to be analytic in a ball around (1,Wϵ) in
the complexification of the real Hilbert space R×H1

even. The Frechèt derivative
DV f at this point is the natural extension of the real operator I − DGϵ(Wϵ)
and remains invertible. We can deduce then from the analytic implicit function
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theorem (see [4, Theorem 3.3.2]) that for some interval (β−, β+) containing 1,
there exists an analytic mapping β 7→ W̃ϵ,β taking values inH1

even (complexified)

such that W̃ϵ,β is a solution of (5.12). But by local uniqueness, we deduce that

W̃ϵ,β =Wϵ,β .

6 Hamiltonian energy and wave speed

Let us study the behavior of the Hamiltonian as a function of wave speed. We
have not yet written a Hamiltonian for system (1.1), due to complications over
convergence of the double sums that appear. To proceed we describe a potential
function related to the force function Z(r) = α(1−r)−α−1 =

∑∞
k=0 αkr

k, defined
so that φ2(0) = 0 and φ′

2(r) = Z(r)− α, whence

φ2(r) = (1− r)−α − 1− αr =

∞∑
k=2

αk−1r
k

k
. (6.1)

The lattice Hamiltonian, kinetic, and potential energies are regarded as func-
tions of the particle positions xj and momenta pj = ẋj and are given by

H = K + P, K =
∑
j∈Z

1
2p

2
j , P =

∑
j∈Z

∞∑
m=1

m−αφ2(rj+m,j) , (6.2)

where the quantities rk,j , representing normalized relative compressions, are
defined via

1− rk,j =
xk − xj
k − j

.

In particular, note

(xj+m − xj)
−α = m−α(1− rj+m,j)

−α .

It is straightforward to check that the canonical Hamiltonian equations for H
yield (1.1) and that H is finite and constant in time for solitary wave solutions.
The main result in this section is the following result which links the value of
the Hamiltonian to an approximation of the squared L2 norm of the unscaled
velocity profile

ẋj(t) = cϵµWϵ(ϵz), z = j − ct.

Theorem 6.1. For the Hamiltonian H evaluated along the family of solitary
waves given by Theorem 3.1, we have

H = ϵ2µ−1

(∫
R
c2αW0(x)

2 dx+O(ϵγ)

)
, (6.3)

dH
dϵ

= (2µ− 1)ϵ2µ−2

(∫
R
c2αW0(x)

2 dx+ o(1)

)
. (6.4)

Thus for α ̸= 3
2 , sgn dH/dc agrees with sgn(α− 3

2 ) for small enough ϵ > 0.
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For the Calogero-Moser case α = 2, when the solitary waves are determined
through (4.32) by [16, Theorem 1.1], we can be more explicit.

Theorem 6.2. In the case α = 2, for the solitary waves determined by (4.32),
for every wave speed c > π we have

H = 1
2 (c

2 − π2) .

To study the Hamiltonian on solitary waves, we write the waves provided by
Theorem 3.1 in the form

xj(t) = j − q(j − ct), ẋj(t) = −p(j − ct) ,

temporarily suppressing dependence on wave speed (and with apologies for the
sign reversals but noting ∂tq = p = −cq′). With z = j − ct we then have that

rj+m,j = δ+mq(z) :=
q(z +m)− q(z)

m
.

As in [8], we average the Hamiltonian over a time interval [0, 1/c] to reduce it
to an integral over R. Because dz = −c dt, we find the expressions

H = c

∫ 1/c

0

H dt = c

∫ ∞

−∞

(
1
2p(z)

2 +

∞∑
m=1

m−αφ2(δ
+
mq(z))

)
dt

=

∫ ∞

−∞

(
1
2p(z)

2 +

∞∑
m=1

m−αφ2(δ
+
mq(z))

)
dz . (6.5)

Although the lattice system (1.1) does not admit a continuous spatial sym-
metry, we note that traveling wave profiles are nevertheless formally critical
points of an “energy-momentum” functional H + cI, where I is the Noether
functional associated with the (Lagranian) translation invariance of (6.5) and
is given by

I =

∫ ∞

−∞
p(z)∂zq(z) dz. (6.6)

Indeed, setting to zero the variations of cI +H with respect to p and q yields

0 = c∂zq(z) + p(z) , (6.7)

0 = −c∂zp+
∞∑

m=1

m−α−1
(
Z(δ+mq(z))− Z(δ+mq(z −m))

)
, (6.8)

which are the correct equations for solitary wave profiles. In other words, on soli-
tary wave profiles we have δH = −cδI, a fact which will simplify a monotonicity
calculation below. (This functional I differs from the physical momentum

∑
j pj

generated by the translational symmetry xj 7→ xj + h, however.)
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Proof of Theorem 6.1. With these relations established, let us now insert the
scaled form of solitary wave profiles provided by our main theorem. We indicate
by subscript the dependence of the profile tuple uc = (qc, pc) upon wave speed
c. In particular, our ansatz (1.4) and the relation U ′ =Wϵ yields

q(z) = ϵνU(x) , p(z) = −c∂zq(z) = −cϵµWϵ(x) , (6.9)

with x = ϵ(j − ct) = ϵz. Then, we have the relation

δ+mq(z) = ϵµAmϵWϵ(x+ 1
2mϵ) ,

and, using the facts that φ2(r) = O(r2) and Wϵ ∈ H1, we obtain

H(uc) = ϵ2µ−1

∫
R

(1
2
c2Wϵ(x)

2 +
∞∑

m=1

m−αϵ−2µφ2(ϵ
µAmϵWϵ(x))

)
dx , (6.10)

I(uc) = −ϵ2µ−1

∫
R
cWϵ(x)

2 dx . (6.11)

Write φ3(r) =
∑∞

k=3 αk−1r
k/k, so that φ2(r) =

1
2α1r

2 + φ3(r), and define

P2,ϵ(W ) =
α1

2

∫
R

∞∑
m=1

m−α(AmϵW (x))2 dx , (6.12)

P3,ϵ =

∫
R

∞∑
m=1

m−αϵ−2µφ3(ϵ
µAmϵWϵ(x)) dx . (6.13)

In terms of these expressions we have

H(uc) = ϵ2µ−1

(∫
R

1

2
c2W 2

ϵ dx+ P2,ϵ(Wϵ) + P3,ϵ

)
. (6.14)

Proposition 6.3. As ϵ→ 0 we have

H(uc) = ϵ2µ−1

(∫
R
c2αW

2
0 dx+O(ϵγ)

)
.

Proof. 1. By Theorem 3.1 we have that ∥Wϵ −W0∥H1 = O(ϵγ), hence∣∣∣∣∫
R
W 2

ϵ dx−
∫
R
W 2

0 dx

∣∣∣∣ ≤ C∥Wϵ −W0∥L2 ≤ Cϵγ .

2. Noting that∣∣∣∣∫
R
(AmϵWϵ)

2 dx−
∫
R
(AmϵW0)

2 dx

∣∣∣∣ ≤ C∥Amϵ(Wϵ −W0)∥L2 ≤ Cϵγ ,

straightforward estimates imply

|P2,ϵ(Wϵ)− P2,ϵ(W0)| ≤ Cϵγ .



26 Solitary waves in lattices with power-law forces

Furthermore, by using (2.9) and the regularity of W0 we get∣∣∣∣∫
R
(AmϵW0)

2 dx−
∫
R
W 2

0 dx

∣∣∣∣ ≤ C∥AmϵW0 −W0∥L2 ≤ C(mϵ)2 ,

so by splitting the sum in (6.12) just as in the proof of Lemma 4.7, we find∣∣∣∣P2,ϵ(W0)− 1
2α1ζα

∫
R
W 2

0 dx

∣∣∣∣ ≤ Cϵµ . (6.15)

3. By arguments nearly identical to those that establish the estimates for
Z3 in Lemma 4.2, we find that

|P3,ϵ| ≤ Cϵµ.

4. Recalling that c2α = α1ζα and c2 = c2α + ϵµ and µ ≥ γ, the proof is finished
by using the estimates in steps 1-3 to estimate the terms in (6.14).

This proposition establishes (6.3), and it remains to discuss the monotonicity
of solitary-wave energy as a function of wave speed. Define

W0,β(x) = ηµW0(ηx) where η = β1/µ .

Through scaling, we find W0,β to be a solution of the limiting equation

B0,βV = Q0(V ), B0,β = βI + κ3|D|µ , (6.16)

which reduces to (1.5) when β = 1.

Lemma 6.4. We have∫
R
2W0

∂

∂β
W0,β

∣∣∣
β=1

=
2µ− 1

µ

∫
R
W 2

0 , (6.17)

and that as ϵ→ 0, ∥∥∥∥ ∂∂β (Wϵ,β −W0,β)
∣∣∣
β=1

∥∥∥∥
H1

→ 0 . (6.18)

Proof. 1. We have∫
R
W 2

0,β(x) dx = β2

∫
R
W0(β

1/µx) dx = β2−1/µ

∫
R
W 2

0 (z) dz . (6.19)

Hence at β = 1,

d

dβ

∫
R
W 2

0,β dx =

∫
R
2W0

∂

∂β
W0,β dx =

2µ− 1

µ

∫
R
W 2

0 dx . (6.20)

2. From differentiating the traveling wave equations, (5.12) for Wϵ,β and (6.16)
for W0,β , against β, we get

Vϵ :=
∂

∂β
Wϵ,β

∣∣∣
β=1

= −(I −DGϵ(Wϵ))
−1(B−1

ϵ Wϵ) , (6.21)

V0 :=
∂

∂β
W0,β

∣∣∣
β=1

= −(I −DF(W0))
−1(B−1

0 W0) . (6.22)
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The convergence Vϵ → V0 in H1 is obtained through the operator norm conver-
gence B−1

ϵ → B−1
0 and the estimates in Proposition 4.10. One should note that

we lack a rate of convergence due to our result for B−1
ϵ → B−1

0 .

Lemma 6.5. We have that as ϵ→ 0,

d

dc
H(uc) = 2c3αϵ

µ−1 2µ− 1

µ

∫
R
W 2

0 dx+ o(ϵµ−1) . (6.23)

Proof. Using the definition (5.9) of Wϵ,β and with the scaling c2 = c2α + βϵµ,
from (6.11) we get

I(uc) = −c
∫
R
(ϵµWϵ,β(ϵz))

2 dz = −cϵ2µ−1

∫
R
W 2

ϵ,β(x) dx . (6.24)

Then, fixing ϵ and differentiating in β at β = 1, since dβ/dc = 2cϵ−µ we find

d

dc
I(uc) = −ϵ2µ−1

∫
R
W 2

ϵ,β(z) dx− cϵ2µ−1

∫
R
2Wϵ,β

∂

∂β
Wϵ,β dx

dβ

dc

∣∣∣
β=1

= O(ϵ2µ−1)− 2c2ϵµ−1

∫
R
2Wϵ Vϵ dx . (6.25)

Recalling that δH = −cδI, we have

d

dc
H(uc) = 2c3ϵµ−1

∫
R
2Wϵ Vϵ dx+O(ϵ2µ−1) . (6.26)

Expanding c2 = c2α + ϵµ and using the previous lemma gives

d

dc
H(uc) = 2c3αϵ

µ−1

∫
R
2W0 V0 dx+ o(ϵµ−1)

= 2c3αϵ
µ−1 2µ− 1

µ

∫
R
W 2

0 dx+ o(ϵµ−1) . (6.27)

This completes the proof.

Now, through multiplying (6.23) by

dc

dϵ
=
µϵµ−1

2c
=
µϵµ−1

2cα
+O(ϵ2µ−1) ,

we deduce (6.4). This completes the proof of Theorem 6.1.

We conclude by calculating the Hamilonian in the case of the Calogero-Moser
lattice when α = 2.

Proof of Theorem 6.2. We have H(uc) → 0 as c → π+ by Proposition 6.3, so
the claimed formula H(uc) =

1
2 (c

2−π2) follows by integration from the formula

dH
dc

= −cdI
dc

= c , (6.28)

which holds due to the following computation.
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Lemma 6.6. When α = 2, for all c > π we have I(uc) = π − c.

Proof. For α = 2, the solitary waves satisfy xj(t) = j − φ(j − ct) with φ(z)
satisfying (4.32). Hence q(z) = φ(z), so from (6.6) and (6.7) it follows

I(uc) = −c
∫
R

(
dφ

dz

)2

dz = −c
∫ 1/2

−1/2

dφ

dz
dφ ,

since φ→ ± 1
2 as z → ±∞. Differentiating (4.32), we see

(c2 − π2) =
dφ

dz
(c2 + π2 tan2 πφ) ,

whence

I(uc) = −c
∫ 1/2

−1/2

(
1− π2 sec2 πφ

c2 + π2 tan2 πφ

)
dφ .

Using the substitution cy = π tanπφ one finds the claimed result.
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