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Abstract This paper is a review of recent results on a variational model in the
context of the gradient theory for fluid-fluid phase transitions with small scale
heterogeneities. We present a Γ−convergence result that identifies an anisotropic
limiting surface energy, and investigate some of its properties.

1 Introduction

The study of pattern formation in equilibrium configurations phase separation
is an extremely complex phenomenon which has attracted the interest of many
mathematicians. In the case of homogeneous substances, variational models such as
theModica-Mortical functional (see [?, ?, ?]) and its vectorial (see [?, ?]), anisotropic
(see [?, ?]), and non-isothermal variants (see [?]) have been proven capable
of describing the stable configurations observed in experiments. For composite
materials, it has been realized experimentally (see [?]) that the microscopic scale
heterogeneities can affect the macroscopic equilibrium configurations as well as
the dynamics of interfaces. Therefore, physics requires the mathematical models to
include these microscopic effects.
In this paper, we consider a variational approach to the study of phase transitions

in heterogeneous media in the case where the scale of the heterogeneities is the
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same as those at which the phase transitions phenomenon takes place. In particular,
we study a Modica-Mortola like phase field model where the heterogeneities are
modeled by oscillations in the potential. To be precise, let 𝑑, 𝑁 ≥ 1, fix an open
bounded set Ω ⊂ R𝑁 with Lipschitz boundary and, for 𝜀 > 0, define the energy
F𝜀 : 𝐻1 (Ω;R𝑑) → [0,∞] as

F𝜀 (𝑢) :=
∫
Ω

[
1
𝜀
𝑊

( 𝑥
𝜀
, 𝑢(𝑥)

)
+ 𝜀 |∇𝑢(𝑥) |2

]
d𝑥 . (1)

Here 𝑢 ∈ 𝐻1 (Ω;R𝑑) represents the phase field variable. The assumptions that the
double well potential 𝑊 : R𝑁 × R𝑑 → [0,∞) has to satisfy differ according to the
questions addressed, and therefore we will present them in each section.
We are interested in understanding what is the sharp interface limit as the

parameter 𝜀 → 0. Local minimizers of this limit under a mass constraint will
describe equilibrium configurations.
Previous investigations on models related to the one considered in this paper have

been undertaken by several authors. In particular, in [?] (see also [?]) Ansini, Braides
and Chiadò Piat considered the case where oscillations are in the forcing term 𝑓 (∇𝑢)
(which generalizes |∇𝑢 |2), while in [?] and [?] byDirr, Lucia andNovaga investigated
the interaction of the fluid with a periodic mean zero external field. Moreover, in [?],
Braides and Zeppieri studied the Γ expansion of the scalar one dimensional case,
allowing the zeros of the potential to jump in a specific way. Finally, the case of
higher order derivatives is examined in [?] by Francfort and Müller.

2 Phase field model

In this section we present the results obtained in [?, ?, ?, ?].

2.1 Sharp interface limit

In order to study the sharp interface limit of the energy (1), we assume that the
double well potential𝑊 : R𝑁 × R𝑑 → [0,∞) satisfies the following properties:

(A1) For all 𝑝 ∈ R𝑑 , 𝑥 ↦→ 𝑊 (𝑥, 𝑝) is 𝑄-periodic, where 𝑄 := (−1/2, 1/2)𝑁 ;
(A2) 𝑊 is a Carathéodory function, i.e.,

(i) for all 𝑝 ∈ R𝑑 , the function 𝑥 ↦→ 𝑊 (𝑥, 𝑝) is measurable,
(ii) for a.e. 𝑥 ∈ 𝑄, the function 𝑝 ↦→ 𝑊 (𝑥, 𝑝) is continuous;

(A3) There exist 𝑧1, 𝑧2 ∈ R𝑑 such that, for a.e. 𝑥 ∈ 𝑄, 𝑊 (𝑥, 𝑝) = 0 if and only if
𝑝 ∈ {𝑧1, 𝑧2},

(A4) There exists a continuous function 𝑊 : R𝑑 → [0,∞), vanishing only at 𝑝 = 𝑧1
and at 𝑝 = 𝑧2, such that𝑊 (𝑝) ≤ 𝑊 (𝑥, 𝑝) for a.e. 𝑥 ∈ 𝑄;
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(A5) There exist 𝐶 > 0 and 𝑞 ≥ 2 such that

1
𝐶
|𝑝 |𝑞 − 𝐶 ≤ 𝑊 (𝑥, 𝑝) ≤ 𝐶 (1 + |𝑝 |𝑞)

for a.e. 𝑥 ∈ 𝑄 and all 𝑝 ∈ R𝑑 .

Remark 1 The assumption (A2)(i) above is the strongest we can ask when modeling
periodic inclusions of different materials. Indeed, when each cell 𝑄 is composed of
𝑘 different inclusions of materials each in a region 𝐸1, . . . , 𝐸𝑘 ⊂ 𝑄, the potential𝑊
takes the form

𝑊 (𝑥, 𝑝) :=
𝑘∑︁
𝑖=1
𝑊𝑖 (𝑝)𝜒𝐸𝑖

(𝑥) ,

where𝑊𝑖 : R𝑑 → [0,∞) are continuous functions with quadratic growth at infinity
and such that𝑊𝑖 (𝑝) = 0 if and only if 𝑝 ∈ {𝑧1, 𝑧2}. Therefore the function𝑊 in the
first variable is, in general, only measurable. Moreover, the continuity of 𝑊 in the
second variable, as well as the non degeneracy of the potential (A4) and the growth
at infinity in the second variable (A5) are compatible with what is usually assumed
in the physical literature.

The limiting functional will be an interfacial energy whose energy density is
defined via a cell formula as follows.

Definition 1 For 𝜈 ∈ S𝑁−1, let 𝑢0,𝜈 : R𝑁 → R𝑑 be the function

𝑢0,𝜈 (𝑥) :=
{
𝑧1 if 𝑥 · 𝜈 ≤ 0 ,
𝑧2 if 𝑥 · 𝜈 > 0 ,

and denote by Q𝜈 the family of cubes centered at the origin with unit length sides
and having two faces orthogonal to 𝜈. For 𝑇 > 0, 𝑄𝜈 ∈ Q𝜈 , and 𝜌 ∈ 𝐶∞

𝑐 (𝐵(0, 1))
with

∫
R𝑁

𝜌(𝑥)d𝑥 = 1, where 𝐵(0, 1) is the unit ball in R𝑁 , consider the class of
functions

C(𝜌, 𝑄𝜈 , 𝑇) :=
{
𝑢 ∈ 𝐻1 (𝑇𝑄𝜈;R𝑑) : 𝑢 = 𝑢0,𝜈 ∗ 𝜌 on 𝜕 (𝑇𝑄𝜈)

}
.

We define the function 𝜎 : S𝑁−1 → [0,∞) as

𝜎(𝜈) := lim
𝑇→∞

𝑔(𝜈, 𝑇) ,

where, for each 𝜈 ∈ S𝑁−1 and 𝑇 > 0,

𝑔(𝜈, 𝑇) := 1
𝑇𝑁−1 inf

{ ∫
𝑇𝑄𝜈

[
𝑊 (𝑦, 𝑢(𝑦)) + |∇𝑢 |2

]
d𝑦 : 𝑄𝜈 ∈ Q𝜈 , 𝑢 ∈ C(𝜌, 𝑄𝜈 , 𝑇)

}
.

Remark 2 It was observed by Müller in [?] that, in the case the potential 𝑊 is
vectorial, in the definition of the cell formula it is not enough to take the minimum
only on a single cell, but to consider the sequence of minima taken on larger and
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larger cells 𝑇𝑄𝜈 . In case the potential𝑊 is scalar, it is possible to reduce to a single
cell problem with𝑊 replaced by𝑊∗∗ (see Lemma 4.1 and the remark after that, in
[?]).

The main properties of the function 𝜎 : S𝑁−1 → [0,∞) that are relevant for our
study are collected in the following result. For the proof, see [?, Lemma 4.1, Remark
4.2, Lemma 4.3, Proposition 4.4].

Lemma 1 The following hold:

(i) For every 𝜈 ∈ S𝑁−1, the quantity 𝜎(𝜈) is well defined and finite;
(ii) The value of 𝜎(𝜈) does not depend on the choice of the mollifier 𝜌;
(iii) The map 𝜈 ↦→ 𝜎(𝜈) is upper semi-continuous on S𝑁−1;
(iv) The infimum in the definition of 𝑔(𝜈, 𝑇) may be taken with respect to one fixed

cube 𝑄𝜈 ∈ Q𝜈 . Namely, given 𝜈 ∈ S𝑁−1, for any 𝑄𝜈 ∈ Q𝜈 it holds

𝜎(𝜈) = lim
𝑇→∞

1
𝑇𝑁−1 inf

{ ∫
𝑇𝑄𝜈

[
𝑊 (𝑦, 𝑢(𝑦)) + |∇𝑢 |2

]
d𝑦 : 𝑢 ∈ C(𝜌, 𝑄𝜈 , 𝑇)

}
.

We are now in position to introduce the limiting functional.

Definition 2 Define the functional F0 : 𝐿1 (Ω;R𝑑) → [0,∞] as

F0 (𝑢) :=


∫
𝜕∗𝐴

𝜎(𝜈𝐴(𝑥)) dH𝑁−1 (𝑥) if 𝑢 ∈ 𝐵𝑉 (Ω; {𝑧1, 𝑧2}),

+∞ else,

(2)

where 𝐴 := {𝑢 = 𝑧1} and 𝜈𝐴(𝑥) denotes the measure theoretic external unit normal
to the reduced boundary 𝜕∗𝐴 of 𝐴 at the point 𝑥.

Remark 3 Note that by Lemma 1(i), it holds F0 (𝑢) < ∞ for all 𝑢 ∈ 𝐵𝑉 (Ω; {𝑧1, 𝑧2}),
and, by Lemma 1(ii), the definition does not depend on the choice of the mollifier 𝜌.

Theorem 1 Let {𝜀𝑛}𝑛∈N ⊂ (0, 1) be a sequence such that 𝜀𝑛 → 0+ as 𝑛 → ∞.
Assume that (A1), (A2), (A3), (A4), and (A5) hold.

(i) If {𝑢𝑛}𝑛∈N ⊂ 𝐻1 (Ω;R𝑑) is such that

sup
𝑛∈N

F𝜀𝑛 (𝑢𝑛) < +∞

then, up to a subsequence (not relabeled), 𝑢𝑛 → 𝑢 in 𝐿1 (Ω;R𝑑), for some function
𝑢 ∈ 𝐵𝑉 (Ω; {𝑧1, 𝑧2}).

(ii) The functional F0 is the Γ-limit in the 𝐿1 topology of the family of functionals
{F𝜀𝑛 }𝑛∈N.
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Fig. 1 The source of anistropy for the limiting functional. If 𝜈𝐴 (𝑥 ) is oriented with a direction
of periodicity of 𝑊 , the (local) recovery sequence would simply be obtained by using a rescaled
version of the recovery sequence for 𝜎 (𝜈𝐴 (𝑥 ) ) in each yellow cube and by setting 𝑧1 in the green
region, and 𝑧2 in the pink one. If, instead, 𝜈𝐴 (𝑥 ) is not oriented with a direction of periodicity of
𝑊 , the above procedure does not guarantee that we recover the desired energy, since the energy of
such functions is not the sum of the energy of each cube.

Remark 4 The most interesting aspect of the above result is the anisotropic character
of the limiting functional. This might come as a surprise since the initial functional
F𝜀 is isotropic, but there is a hidden anisotropy: the possible mismatch between the
directions of periodicity of𝑊 and the local orientation of the limiting interface 𝜕∗𝐴
(see Figure 1).

We would like to comment on the main ideas behind the proof of Theorem 1.
Compactness follows by using classical arguments (see [?]) since the non degeneracy
assumption (A4) allows to reduce to the case of a non oscillating potential

F𝜀𝑛 (𝑢𝑛) ≥
∫
Ω

[
1
𝜀𝑛
𝑊 (𝑢𝑛 (𝑥)) + 𝜀𝑛 |∇𝑛𝑢(𝑥) |2

]
d𝑥.

The liminf inequality (see [?, Proposition 6.1]) is based on a standard blow-up
argument (see [?]) at a point 𝑥0 ∈ 𝜕∗𝐴 to reduce to the case where the limiting
function is 𝑢0,𝜈 and the domain is 𝑄𝜈 ∈ Q𝜈 , where 𝜈 = 𝜈𝐴(𝑥0). Then, a technical
lemma (see [?, Lemma 3.1]) in the spirit of De Giorgi’s slicing method (see [?])
allows to modify the given sequence {𝑢𝑛}𝑛∈N ⊂ 𝐻1 (𝑄𝜈;R𝑑) into a new sequence
{𝑣𝑛}𝑛∈N ⊂ 𝐻1 (𝑄𝜈;R𝑑) with 𝑣𝑛 → 𝑢0,𝜈 in 𝐿1, such that

lim inf
𝑛→∞

F𝜀𝑛 (𝑢𝑛) ≥ lim sup
𝑛→∞

F𝜀𝑛 (𝑣𝑛),

and 𝑣𝑛 = 𝜌𝑛 ∗ 𝑢0,𝜈 on 𝜕𝑄𝜈 , where 𝜌𝑛 (𝑥) := 𝜀−𝑁𝑛 𝜌(𝑥/𝜀𝑛). The required inequality
then follows by using a change of variable, and the definition of 𝜎(𝜈) together with
Lemma 1(iv).
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The main challenges are related to the proof of the limsup inequality (see [?,
Proposition 7.1]) for a function 𝑢 ∈ 𝐵𝑉 (Ω, {𝑎, 𝑏}), which requires new geometric
arguments. The idea is first to prove the result for functions 𝑢 ∈ 𝐵𝑉 (Ω; {𝑎, 𝑏})
whose outer normals to the reduce boundary have rational coordinates, and then use
the density of this class of functions in 𝐵𝑉 (Ω; {𝑎, 𝑏}) together with Reshetnyak’s
upper semi-continuity theorem (by Lemma 1(iii) the function 𝜈 ↦→ 𝜎(𝜈) is upper
semi-continuous on S𝑁−1) to conclude in the general case. In order to tackle the
first step, we use a general strategy developed by De Giorgi, which can be seen as a
sort of reverse blow-up argument: we consider the localized Γ-limsup as a map on
Borel sets and we prove that it is indeed a Radon measure 𝜆. This is done by using
a simplification of the De Giorgi-Letta coincidence criterion for Borel measures
(see [?]) by Dal Maso, Fonseca, and Leoni (see [?, Corollary 5.2]). Next, we show
that 𝜆 is absolutely continuous with respect to the measure 𝜇 := H𝑁−1 ¬

𝜕∗𝐴. The
result follows by proving that the density of 𝜆 with respect to 𝜇 at a point 𝑥0 ∈ 𝜕∗𝐴
is bounded above by 𝜎(𝜈𝐴(𝑥0)). It is in this step that we exploit the fact that
𝜈𝐴(𝑥0) ∈ S𝑁−1∩Q𝑁−1: indeed, by using the fact that𝑊 is periodic (with a different
period) also as a function on any cube 𝑄 whose faces are normal to directions in
S𝑁−1∩Q𝑁−1, we can estimate the energy of a configuration similar to that in Figure
1 on the left.

Remark 5 The strategy used to prove the above result is robust enough to be easily
adapted to prove the analogous result when a mass constraint is enforced. Moreover,
as a consequence of the Γ-limit result, we get that the function 𝜎 : S𝑁−1 → [0,∞)
is continuous, and its 1-homogeneous extension is convex.

The upshot of the foregoing result is that microscopic heterogeneities during
phase transitions result in anisotropic surface tensions at the macroscopic level.
Natural follow-up questions are:

1. beyond convexity, what can one say about the effective surface tension 𝜎? What
functions 𝜎 are attainable as effective surface tensions of phase transitions in
periodic media?

2. considering the gradient flow dynamics of an energy as in (1), what are the 𝜀 → 0+
asymptotics ? Does one indeed obtain a suitable weak formulation of anisotropic
mean curvature flow, by analogy with the isotropic setting?

In [?] we provide partial answers to the first question above, by relating it to a
geometry problem. In [?], we address dynamics. In the rest of this survey we will
summarize the results of [?], and a similar review of the results on dynamics will
appear elsewhere [?].
In the sequel, we assume the product form of the potential𝑊 :

𝑊 (𝑦, 𝜉) := 𝑎(𝑦) (1 − 𝑢2)2, 𝑦 ∈ R𝑁 , 𝑢 ∈ R. (3)

Here 𝑎 : R𝑁 → R is 𝑄-periodic, and non-degenerate in the sense that

𝜃 ⩽ 𝑎(𝑦) ⩽ Θ, 𝑦 ∈ R𝑁 , (4)
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for some 0 < 𝜃 < Θ < ∞. Note that assumptions (A1)-(A5) of Section 2.1 are
satisfied with 𝑧1 = −1, 𝑧2 = 1 and𝑊 = 𝑊 . The fact that 𝑢 is scalar-valued is crucial
for a number of the results proven in [?, ?] since we use arguments based on the
maximum principle. However, this isn’t true of all the results, and we will indicate
this as appropriate.

2.2 Bounds on the Anisotropic Surface Tension 𝝈

2.2.1 A Geometric Framework

Consider the periodic Riemannian metric on R𝑁 that is conformal to the Euclidean
one, defined as follows: given points 𝑥, 𝑦 ∈ R𝑁 , we set

𝑑√𝑎 (𝑥, 𝑦) := inf
𝛾

∫ 1

0

√︁
𝑎(𝛾(𝑡)) | ¤𝛾(𝑡) | 𝑑𝑡,

where the infimum is taken over Lipschitz continuous curves 𝛾 : [0, 1] → R𝑁 such
that 𝛾(0) = 𝑥, 𝛾(1) = 𝑦. It is easily seen that the formula defining 𝑑√𝑎 is independent
of the parameterization of the competitor curves 𝛾. Furthermore, standard arguments
via the Hopf-Rinow theorem imply that R𝑁 with the metric 𝑑√𝑎 is a complete metric
space. Equivalently, geodesically complete: given any pair of points 𝑥, 𝑦 ∈ R𝑁
there exists a distance-minimizing geodesic joining them, whose length is equal to
𝑑√𝑎 (𝑥, 𝑦) (see [?] for details). Now fix a direction 𝜈 ∈ S𝑁−1, and consider the plane
Σ𝜈 through the origin with normal 𝜈,

Σ𝜈 := {𝑦 ∈ R𝑁 : 𝑦 · 𝜈 = 0}.

Next, define the signed distance function in the 𝑑√𝑎−metric to the plane Σ𝜈 , via

ℎ𝜈 (𝑦) := sgn(𝑦 · 𝜈) inf
𝑧∈Σ𝜈

𝑑√𝑎 (𝑦, 𝑧),

where the signum function is defined as

sgn(𝑡) :=
{
1 𝑡 ⩾ 0,
−1 𝑡 < 0.

It is easily shown (see [?, Lemma 2.2]) that ℎ𝜈 is Lipschitz continuous, with

|∇ℎ𝜈 (𝑦) | =
√︁
𝑎(𝑦) at a.e. 𝑦 ∈ R𝑁 . (5)

These observations, together with (4), yield
√
𝜃 (𝑦 · 𝜈) ⩽ ℎ𝜈 (𝑦) ⩽

√
Θ(𝑦 · 𝜈), 𝑦 · 𝜈 ⩾ 0,

√
Θ(𝑦 · 𝜈) ⩽ ℎ𝜈 (𝑦) ⩽

√
𝜃 (𝑦 · 𝜈), 𝑦 · 𝜈 < 0.

(6)
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In order to explain the relationship that the 𝑑√𝑎−metric bears with the anisotropic
surface tension 𝜎, it is useful to revisit the case 𝑎 ≡ 1, and the celebrated Modica-
Mortola example. In this case,

𝜎(𝜈) = lim
𝑇→∞

1
𝑇𝑁−1 inf

{∫
𝑇𝑄𝜈

[
𝑊 (𝑢(𝑦)) + |∇𝑢 |2

]
: 𝑢 ∈ C(𝜌, 𝑄𝜈 , 𝑇)

}
.

Elementary algebraic manipulations that effectively boil down to completing the
square, yield that the infimum above is asymptotically reached by the one-
dimensional profile satisfying equipartition of energy. This entails, in the model
case of (3), that the optimal cost is achieved by the choice 𝑢(𝑦) = 𝑞 ◦ (𝑦 · 𝜈), where
𝑞 := tanh . The associated cost is given by

𝜎(𝜈) ≡ 𝜎0 :=
∫ ∞

−∞

[
𝑊 (𝑞 ◦ (𝑦 · 𝜈)) + |∇(𝑞 ◦ (𝑦 · 𝜈)) |2

]
𝑑 (𝑦 · 𝜈) = 2

∫ 1

−1

√︁
𝑊 (𝑠) 𝑑𝑠.

To make the connection to the
√
𝑎− metric, we begin by noting that when 𝑎 ≡ 1

we have ℎ𝜈 (𝑦) ≡ 𝑦 · 𝜈. Our main motivation, then, is to obtain a similar formula
that is exact when 𝑎 is non-constant, or at least supplies reasonable bounds for the
non-constant 𝜈 ↦→ 𝜎(𝜈). We do so by encoding the heterogeneous effects of 𝑎 into
the geometry of the underlying space, i.e., by working in the

√
𝑎-metric. We turn to

making these comments precise.
Fix 𝜈 ∈ S𝑁−1. Then, the cell formula defining 𝜎(𝜈), proven in [?, ?] and

specialized to our setting, reads (see Lemma 1 (iv))

𝜎(𝜈) = lim
𝑇→∞

1
𝑇𝑁−1 inf

{∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑢) + |∇𝑢 |2

]
𝑑𝑦 : 𝑢 ∈ 𝐻1 (𝑇𝑄𝜈),

𝑢 = 𝜌 ∗ 𝑢0,𝜈 on 𝜕 (𝑇𝑄𝜈)
}
.

Here, we recall that 𝑢0,𝜈 (𝑦) := sgn(𝑦 · 𝜈) and 𝜌 is any standard smooth normalized
mollifier (it is shown in Lemma 1(ii) that 𝜎(𝜈) is independent of this choice). A
preliminary step is to observe, by De Giorgi’s slicing method (see [?, Lemma A.1])
that, equivalently,

𝜎(𝜈) = lim
𝑇→∞

1
𝑇𝑁−1 inf

{∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑢) + |∇𝑢 |2

]
𝑑𝑦 : 𝑢 ∈ 𝐻1 (𝑇𝑄𝜈),

𝑢 = 𝑞 ◦ ℎ𝜈 along 𝜕 (𝑇𝑄𝜈)
}
. (7)

For each fixed 𝑇 ≫ 1, by the Direct Method of the Calculus of Variations, the
variational problem inside the limit has a minimizer. Such a minimizer is, perhaps,
not unique, but for each𝑇 we select one, and call it 𝑢𝑇 .We discuss various properties
of 𝑢𝑇 below in Section 2.2.2. In light of (7), it is clear by energy comparison, that

𝜎(𝜈) ⩽ lim inf
𝑇→∞

1
𝑇𝑁−1

∫
𝑇𝑄𝜈

[𝑎(𝑦)𝑊 (𝑞 ◦ ℎ𝜈) + |∇(𝑞 ◦ ℎ𝜈) |2] 𝑑𝑦.
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Towards proving the opposite bound, we introduce the function 𝜙 : R→ R, by

𝜙(𝑧) := 2
∫ 𝑧

0

√︁
𝑊 (𝑠) 𝑑𝑠.

This function plays a fundamental role in theModica-Mortola analysis corresponding
to 𝑎 ≡ 1. For any 𝑇 ≫ 1, using (5) and completing squares, we find

1
𝑇𝑁−1

∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑢𝑇 ) + |∇𝑢𝑇 |2

]
𝑑𝑦

=
2

𝑇𝑁−1

∫
𝑇𝑄𝜈

∇ℎ𝜈 ·
√︁
𝑊 (𝑢𝑇 )∇𝑢𝑇 𝑑𝑦 +

1
𝑇𝑁−1

∫
𝑇𝑄𝜈

���∇𝑢𝑇 −
√︁
𝑊 (𝑢𝑇 )∇ℎ𝜈

���2
≥ 1
𝑇𝑁−1

∫
𝑇𝑄𝜈

∇ℎ𝜈 · ∇(𝜙(𝑢𝑇 )) 𝑑𝑦

=
1

𝑇𝑁−1

∫
𝑇𝑄𝜈

∇ℎ𝜈 · ∇(𝜙(𝑞 ◦ ℎ𝜈)) 𝑑𝑦 +
1

𝑇𝑁−1

∫
𝑇𝑄𝜈

∇ℎ𝜈 · ∇ (𝜙(𝑢𝑇 ) − 𝜙(𝑞 ◦ ℎ𝜈)) 𝑑𝑦

=
1

𝑇𝑁−1

∫
𝑇𝑄𝜈

|∇ℎ𝜈 |2𝜙′ (𝑞 ◦ ℎ𝜈)𝑞′ (ℎ𝜈) 𝑑𝑦

+ 1
𝑇𝑁−1

∫
𝑇𝑄𝜈

∇ℎ𝜈 · ∇ (𝜙(𝑢𝑇 ) − 𝜙(𝑞 ◦ ℎ𝜈)) 𝑑𝑦

=
1

𝑇𝑁−1

∫
𝑇𝑄𝜈

2𝑎(𝑦)𝑊 (𝑞 ◦ ℎ𝜈) 𝑑𝑦 +
1

𝑇𝑁−1

∫
𝑇𝑄𝜈

∇ℎ𝜈 · ∇ (𝜙(𝑢𝑇 ) − 𝜙(𝑞 ◦ ℎ𝜈)) 𝑑𝑦

=
1

𝑇𝑁−1

∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑞 ◦ ℎ𝜈) + |∇(𝑞 ◦ ℎ𝜈) |2

]
𝑑𝑦

+ 1
𝑇𝑁−1

∫
𝑇𝑄𝜈

∇ℎ𝜈 · ∇ (𝜙(𝑢𝑇 ) − 𝜙(𝑞 ◦ ℎ𝜈)) 𝑑𝑦,

(8)
where in the last line we used the fact that the function 𝑞 ◦ ℎ𝜈 achieves equipartition
of energy. Indeed, by the definition of ℎ𝜈 , we have

|∇(𝑞 ◦ ℎ𝜈) (𝑦) |2 = (𝑞′ (ℎ𝜈 (𝑦))2 |∇ℎ𝜈 (𝑦) |2 = 𝑎(𝑦)𝑊 (𝑞(ℎ𝜈 (𝑦)).

Defining

𝜆(𝜈) := lim sup
𝑇→∞

1
𝑇𝑁−1

∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑞 ◦ ℎ𝜈) + |∇(𝑞 ◦ ℎ𝜈) |2

]
𝑑𝑦,

𝜆(𝜈) := lim inf
𝑇→∞

1
𝑇𝑁−1

∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑞 ◦ ℎ𝜈) + |∇(𝑞 ◦ ℎ𝜈) |2

]
𝑑𝑦,

provided we can control the error term

lim sup
𝑇→∞

���� 1𝑇𝑁−1

∫
𝑇𝑄𝜈

∇ℎ𝜈 (𝑦) · ∇ (𝜙(𝑢𝑇 ) − 𝜙(𝑞 ◦ ℎ𝜈)) 𝑑𝑦
���� := 𝜆0 (𝜈),
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we observe that the test function 𝑞 ◦ ℎ𝜈 gives two-sided bounds on 𝜎(𝜈). Controlling
the term 𝜆0 is complicated by the fact that it couples a product of weakly converging
sequences (on expanding domains). Indeed, rescaling using 𝑦 = 𝑇𝑥 in order to work
in a fixed domain𝑄𝜈 , the twoweakly converging factorsmaking up the above product
are:

1. the oscillatory factor: by (5) and (4), the term {∇ℎ𝜈 (𝑇 ·)}𝑇 , which is bounded in
𝐿∞, converges weakly-*; and

2. the concentration factor: the terms ∇𝜙(𝑢𝑇 (𝑇 ·)) and ∇𝜙(𝑞 ◦ ℎ𝜈 (𝑇 ·) converge
weakly-* to measures (see Section 2.2.2 for precise statements).

In particular, as one of the factors converges to a measure, standard tools such
as compensated compactness, used traditionally to pass to the limit in products
of weakly converging sequences, are unavailable, and we must control this term
“by hand”. In Section 2.2.2 below, we obtain fine information on the concentration
effects, in Section 2.2.3 we deduce partial results concerning the oscillatory effects.
Finally, we put these together in Section 2.2.4 where we obtain bounds on 𝜆0 (𝜈).

2.2.2 Structure of Minimizers of the Cell Formula

For fixed𝑇 ≫ 1, let 𝑢𝑇 ∈ 𝐶2 (𝑇𝑄𝜈) (by elliptic regularity) a minimizer of the energy∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑢) + |∇𝑢 |2

]
𝑑𝑦,

among competitors that equal 𝑞 ◦ ℎ𝜈 along the boundary 𝜕 (𝑇𝑄𝜈), and set

𝑣𝑇 (𝑥) := 𝑢𝑇 (𝑇𝑥), 𝑥 ∈ 𝑄𝜈 .

Lemma 2 The functions 𝑣𝑇 converge in 𝐿1 to 𝑢0,𝜈 : 𝑄𝜈 → {±1}.

The proof of this lemma (see [?, Lemma 3.1]) is a nice application of the convexity
of the one-homogeneous extension of 𝜎 (see Remark 5), using Jensen’s inequality.
The argument, without any changes, holds in the complete generality of the setting of
[?] on the potential (vectorial, coupled, measurable dependence on the fast variable),
and does not rely on the specific structure requested in (3). Combining Lemma 2
with the results of Caffarelli-Cordoba [?], we find that the level sets of 𝑣𝑇 , for 𝑇
sufficiently large, converge uniformly to Σ𝜈 ∩𝑄𝜈 .
Restricting ourselves to the scalar setting of (3), an argument using the strong

maximum principle yields that for all 𝑇 < ∞, we have

−1 < 𝑢𝑇 (𝑦) < 1,

(see [?, Lemma 3.2]) . In particular, 𝑤𝑇 := 1√
2
tanh−1 𝑢𝑇 is well-defined, finite, and

smooth in𝑇𝑄𝜈 . Further, the function 𝑤𝑇 verifies the elliptic boundary value problem
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Δ𝑤𝑇 = 4√

2
tanh𝑤𝑇

(
|∇𝑤𝑇 |2 − 𝑎(𝑦)

)
, 𝑦 ∈ 𝑇𝑄𝜈 ,

𝑤𝑇 (𝑦) = ℎ𝜈 (𝑦) 𝑦 ∈ 𝜕 (𝑇𝑄𝜈).

Proposition 1 Let 𝑤𝑇 be as above, and let 𝑇 ≫ 1. There exist universal constants
𝛼0 and 𝜂0 > 0 such that the following holds:

√
Θ(𝑦 · 𝜈) − 𝛼0 ≥ 𝑤𝑇 (𝑦) ≥

√
𝜃 (𝑦 · 𝜈) − 𝜂0 if 𝑤𝑇 (𝑦) > 0,

−
√
𝜃 (𝑦 · 𝜈) + 𝜂0 ≥ 𝑤𝑇 (𝑦) ≥ −

√
Θ(𝑦 · 𝜈) + 𝛼0 if 𝑤𝑇 (𝑦) < 0.

(9)

Proposition 1 asserts that, up to universal constants, the function 𝑤𝑇 satisfies
exactly the same growth rates as the function ℎ𝜈 , see (6). To prove Proposition 1,
consider, for instance, the lower bound in the first of the two inequalities in (9). The
main observation is that the function 𝑦 ↦→ 𝜁𝑇 (𝑦) := 𝑦 ·𝜈

𝑤𝑇 (𝑦)+𝜂0 satisfies an elliptic
PDE that verifies a maximum principle. The remaining inequalities follow from
similar arguments, and we refer the reader to [?, Proposition 3.4] for details.

2.2.3 The Planar Metric Problem

Our results on the distance function ℎ𝜈 concern its large-scale behavior. The bounds
on𝜎 that we discuss in Section 2.2.4 below, depend solely on the large-scale behavior
of the distance functions ℎ𝜈 for which one can readily invoke efficient numerical
algorithms, for example fast marching and sweeping methods [?].
A natural question concerns the large-scale homogenized behavior of ℎ𝜈 , i.e.,

characterize the limit

lim
𝑇→∞

ℎ𝜈 (𝑇𝑦)
𝑇

, 𝑦 ∈ R𝑁 ,

in a suitable topology of functions. We fully resolve this question (see also [?]) by
characterizing uniform limits of the function ℎ(𝑇 ·)/𝑇.

Theorem 2 Let 𝜈 ∈ S𝑁−1. Then, there exists a real number 𝑐(𝜈) ∈ [
√
𝜃,
√
Θ], for

each 𝐾 ⊆ R𝑁 compact, we have

lim
𝑇→∞

sup
𝑦∈𝐾

���� 1𝑇 ℎ𝜈 (𝑇𝑦) − 𝑐(𝜈) (𝑦 · 𝜈)���� = 0.
Moreover, for all compact subsets 𝐿 of R𝑁 \ Σ𝜈 , we have

lim
𝑇→∞

sup
𝑦∈𝐿

���� 1
𝑇 (𝑦 · 𝜈) ℎ𝜈 (𝑇𝑦) − 𝑐(𝜈)

���� = 0.
We can interpret Theorem 2 as a homogenization result for the Eikonal equation

in half-spaces. Indeed, it is well known (see for example [?]) that for each fixed
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𝜈 ∈ S𝑁−1, the functions 𝑘𝑚 (𝑦) := 𝑇−1
𝑚 ℎ𝜈 (𝑇𝑚 (𝑦)) and ℓ(𝑦) := 𝑐(𝜈) (𝑦 · 𝜈) are the

unique viscosity solutions to{
|∇𝑘𝑚 | =

√︁
𝑎(𝑇𝑚𝑦) in {𝑦 · 𝜈 ≥ 0},

𝑘𝑚 = 0 on Σ𝜈 ,
and

{
|∇ℓ | = 𝑐(𝜈) in {𝑦 · 𝜈 ≥ 0},
ℓ = 0 on Σ𝜈 .

(10)

In fact, small modifications of our proofs permit us to prove almost periodic
homogenization theorems for convex hamiltonians with Bohr almost periodic
dependence on the fast variable, and Lipschitz continuous dependence on the slow
variable (see [?, Theorem 1.4] for a precise statement). Theorem 2 shows that
viscosity solutions of the PDEs on the left side of
converge locally uniformly to the viscosity solution of the PDE on the right.

A viscous and stochastic version of these equations (termed the “planar metric
problem”) was introduced by Armstrong and Cardaliaguet [?] and studied by others
[?, ?] in the context of stochastic homogenization of geometric flows.

2.2.4 Bounds on the Anisotropic Surface Tension

As explained in the string of inequalities (8), the function 𝑞 ◦ ℎ𝜈 provides tight upper
and lower bounds for the effective anisotropy 𝜎(𝜈). To be precise,

Theorem 3 Let 𝜎 : S𝑁−1 → [0,∞) be the anisotropic surface energy as in (1). Let
𝑞 : R→ R be defined by

𝑞(𝑧) := tanh(𝑧), 𝑧 ∈ R.

For 𝜈 ∈ S𝑁−1, define

𝜆(𝜈) := lim inf
𝑇→∞

1
𝑇𝑁−1

∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑞 ◦ ℎ𝜈) + |∇(𝑞 ◦ ℎ𝜈) |2

]
𝑑𝑦,

𝜆(𝜈) := lim sup
𝑇→∞

1
𝑇𝑁−1

∫
𝑇𝑄𝜈

[
𝑎(𝑦)𝑊 (𝑞 ◦ ℎ𝜈) + |∇(𝑞 ◦ ℎ𝜈) |2

]
𝑑𝑦.

There exist Λ0 > 0 and 𝜆0 : S𝑁−1 → [0,Λ0] such that

𝜆(𝜈) − 𝜆0 (𝜈) ⩽ 𝜎(𝜈) ⩽ 𝜆(𝜈).

We do not expect these to agree when 𝜈 ∈ Q𝑁 ∩S𝑁−1 owing to finite-size effects:
in such directions, ℎ𝜈 is periodic, and the problem is restricted to an infinite strip,
rather than all of space (see [?, Lemma 2.3]). However, generically, i.e., when 𝜈 is
an irrational direction, we conjecture that 𝜆0 (𝜈) = 0, so that 𝜆(𝜈) = 𝜆(𝜈).
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2.3 Open problems

The studies presented above are a good source of interesting open problems. Here
we list some of them.

2.3.1 Different scales.

For 𝜀, 𝛿 > 0, consider the energy

F𝜀, 𝛿 (𝑢) :=
∫
Ω

[
1
𝜀
𝑊

( 𝑥
𝛿
, 𝑢(𝑥)

)
+ 𝜀 |∇𝑢(𝑥) |2

]
d𝑥.

defined for functions 𝑢 ∈ 𝐻1 (Ω;R𝑑). Here the parameter 𝜀 is related to the phase
transition process, while 𝛿 describes the scale of periodicity. In the functional (1) we
considered the case 𝜀 = 𝛿, namely when the two phenomena act at the same scale,
but it is interesting to understand what happens when one scale is dominant with
respect to the other. Heuristically, we expect the limiting energy to be the same in
the green and in the blue region (see Figure 2). In particular, when 𝜀 ≪ 𝛿 we expect
the limiting functional F 𝑃

0 to be the homogenization of a surface energy functional,
while in the other case, namely when 𝛿 ≪ 𝜀, we expect to obtain the limit F 𝐻

0 of
a classical Modica-Mortola functional whose potential is the homogenization of the
original potential𝑊 .

Fig. 2 The situation when phase transitions and homogenization act at possibly different scales.

This latter situation was investigated in [?] under the additional assumption that
the positive infinitesimal sequences {𝜀𝑛}𝑛∈N and {𝛿𝑛}𝑛∈N satisfy

lim
𝑛→∞

𝜀
3/2
𝑛

𝛿𝑛
= +∞, (11)
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and by assuming the potential 𝑊 to be locally Lipschitz in the second variable,
uniformly in the first one. In particular, it was proved that the limiting functional is

F 𝐻
0 (𝑢) :=


𝐾𝐻P({𝑢 = 𝑧1};Ω) if 𝑢 ∈ 𝐵𝑉 (Ω; {𝑧1, 𝑧2}),

+∞ otherwise,

where P({𝑢 = 𝑧1};Ω) denotes the perimeter of the set {𝑢 = 𝑧1} in Ω, and the
constant 𝐾𝐻 is given by

𝐾𝐻 := 2 inf
{∫ 1

0

√︁
𝑊𝐻 (𝛾(𝑠)) |𝛾′ (𝑠) |d𝑠 : 𝛾 ∈ 𝐶1 ( [0, 1];R𝑑), 𝛾(0) = 𝑧1, 𝛾(1) = 𝑧2

}
,

with the homogenized potential 𝑊𝐻 : R𝑑 → [0, +∞) given by 𝑊𝐻 (𝑝) :=∫
𝑄
𝑊 (𝑦, 𝑝) d𝑦.
Some questions are still open: is this true also when 𝛿 ≪ 𝜀 but without the extra

assumption (11)? And what about the other regime?

2.3.2 Sharpness of Bounds and Inverse Homogenization.

Various questions remain open from our discussion in 2.2. Our main contribution
in that section was to relate the anisotropic surface tension 𝜎 to a purely geometric
problem that had no concentration effects. Related to these bounds, we offer two
open questions:

1. Examine the tightness of the bounds in Theorem 3, and closely related,
2. what does the set of effective anisotropies 𝜎 look like? In other words, which
𝜎 : S𝑁−1 → (0,∞) with convex one-homogeneous extensions arise as a result
of the homogenization procedure in [?]? Our bounds provide an approach to
approximately solving this inverse homogenization question.
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