First Stability Cardinals of AECs 2023 North American Annual Meeting

Samson Leung

Carnegie Mellon University

March 28, 2023

→ ∃ →

Overview

- Main results
- Abstract elementary classes (AECs)
- Proof idea
- Possible directions
- Seferences

< ∃⇒

Fact

(Shelah) Let T be a stable first-order theory. The first stability cardinal is bounded above by 2^{|T|}.

Fact

- (Shelah) Let T be a stable first-order theory. The first stability cardinal is bounded above by 2^{|T|}.
- (Vasey) Let K be a tame stable AEC with the amalgamation property (AP). The first stability cardinal is bounded above by the first Hanf number = □_{(2^{LS(K)})+}.

Fact

- (Shelah) Let T be a stable first-order theory. The first stability cardinal is bounded above by 2^{|T|}.
- (Vasey) Let K be a tame stable AEC with the amalgamation property (AP). The first stability cardinal is bounded above by the first Hanf number = □_{(2^{LS(K)})+}.

Open question

Can we lower the bound of (2) to $2^{LS(K)}$? Or are there counterexamples?

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

4/13

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

First stability cardinal		$Tame+(\neg AP)$
Upper bound	$\beth_{(2^{LS(K)})^+} (Vasey)$? (Open)
Can go up to	? (Open)	$\beth_{(2^{LS(\kappa)})^+}$ (4.1)

Shelah developed an axiomatic framework to contain certain classes of models, including models of first-order theories.

Definition

Let *L* be a finitary language. An abstract elementary class $\mathbf{K} = \langle K, \leq_{\mathbf{K}} \rangle$ in $L = L(\mathbf{K})$ satisfies the following axioms:

() *K* is a class of *L*-structures and $\leq_{\mathbf{K}}$ is a partial order on *K*.

② For $M_1, M_2 \in K$, $M_1 \leq_{\mathbf{K}} M_2$ implies $M_1 \subseteq M_2$ (as *L*-substructure).

Definition (Continued)

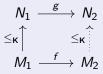
- Isomorphism axioms:
 - **a** If $M \in K$, N is an L-structure, $M \cong N$, then $N \in K$.

→ ∃ →

< 🗗 🕨

Definition (Continued)

- Isomorphism axioms:
 - **a** If $M \in K$, N is an L-structure, $M \cong N$, then $N \in K$.
 - Let $M_1, M_2, N_1, N_2 \in K$. If $f : M_1 \cong M_2$, $g : N_1 \cong N_2$, $g \supseteq f$ and $M_1 \leq_{\mathbf{K}} N_1$, then $M_2 \leq_{\mathbf{K}} N_2$.



Definition (Continued)

• Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.

< ∃ >

< 4 ₽ × <

Definition (Continued)

- Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.
- Solution Solution Solution: There exists an infinite cardinal $\lambda \ge |L(\mathbf{K})|$ such that: for any $M \in K$, $A \subseteq |M|$, there is some $N \in K$ with $A \subseteq |N|$, $N \le_{\mathbf{K}} M$ and $||N|| \le \lambda + |A|$. We call the minimum such λ the Löwenheim-Skolem number LS(**K**).

Definition (Continued)

- Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.
- Solution Solution Solution: There exists an infinite cardinal λ ≥ |L(K)| such that: for any M ∈ K, A ⊆ |M|, there is some N ∈ K with A ⊆ |N|, N ≤_K M and ||N|| ≤ λ + |A|. We call the minimum such λ the Löwenheim-Skolem number LS(K).
- Chain axioms: Let α be an ordinal and $\langle M_i : i < \alpha \rangle \subseteq K$ such that for $i < j < \alpha$, $M_i \leq_{\mathbf{K}} M_j$.
 - Then $M = \bigcup_{i < \alpha} M_i$ is in K and for all $i < \alpha$, $M_i \leq_{\mathbf{K}} M$.
 - **2** Let $N \in K$. If in addition for all $i < \alpha$, $M_i \leq_{\mathbf{K}} N$, then $M \leq_{\mathbf{K}} N$.

Definition

K has the *amalgamation property* (*AP*) if for any $M_0, M_1, M_2 \in K$ with $M_0 \leq_{\mathbf{K}} M_1$ and $M_0 \leq_{\mathbf{K}} M_2$, then there exist $M_3 \in K$ and **K**-embeddings $f_1 : M_1 \xrightarrow{M_0} M_3$ and $f_2 : M_2 \xrightarrow{M_0} M_3$.

Definition

K has the *amalgamation property* (*AP*) if for any $M_0, M_1, M_2 \in K$ with $M_0 \leq_{\mathbf{K}} M_1$ and $M_0 \leq_{\mathbf{K}} M_2$, then there exist $M_3 \in K$ and **K**-embeddings $f_1 : M_1 \xrightarrow[M_0]{} M_3$ and $f_2 : M_2 \xrightarrow[M_0]{} M_3$.

$$\begin{array}{cccc} M_1 & -\stackrel{\prime_1}{---} & M_3 \\ \uparrow & & \uparrow \\ M_0 & \stackrel{\uparrow}{\longrightarrow} & M_2 \end{array}$$

Definition (Galois types)

Let $a_i \in N_i$ and $M_i \leq_{\mathbf{K}} N_i$ for i = 1, 2. We define $(a_1, M_1, N_1) \sim (a_2, M_2, N_2)$ when $M_1 = M_2$ and there are $N \in K$, $f_i : N_i \xrightarrow{M_1} N$ such that $f_1(a_1) = f_2(a_2)$.

く 何 ト く ヨ ト く ヨ ト

9/13

Definition (Galois types)

Let $a_i \in N_i$ and $M_i \leq_{\mathbf{K}} N_i$ for i = 1, 2. We define $(a_1, M_1, N_1) \sim (a_2, M_2, N_2)$ when $M_1 = M_2$ and there are $N \in K$, $f_i : N_i \xrightarrow{M_1} N$ such that $f_1(a_1) = f_2(a_2)$.

く 目 ト く ヨ ト く ヨ ト

Definition (Galois types)

Let $a_i \in N_i$ and $M_i \leq_{\mathbf{K}} N_i$ for i = 1, 2. We define $(a_1, M_1, N_1) \sim (a_2, M_2, N_2)$ when $M_1 = M_2$ and there are $N \in K$, $f_i : N_i \xrightarrow{M_1} N$ such that $f_1(a_1) = f_2(a_2)$.

$$a_1 \in N_1 \xrightarrow{f_1} N$$

 $\uparrow \qquad \qquad \uparrow f_2$
 $M_1 = M_2 \longrightarrow N_2 \ni a_2$

Take the transitive closure of \sim to \equiv . We define $gtp(a_1/M_1; N_1) = (a_1, M_1, N_1) / \equiv$. The *Galois types over* M is written as $gS(M) = \{(a, M, N) / \equiv : a \in N, M \leq_{\mathbf{K}} N\}.$

(人間) トイヨト イヨト ニヨ

Definition (Tameness)

• Let $p = \operatorname{gtp}(a/M; N)$, $M_0 \leq M$ and $a \in N$. $p \upharpoonright M_0 = \operatorname{gtp}(a/M_0; N)$.

э

Definition (Tameness)

- Let $p = \operatorname{gtp}(a/M; N)$, $M_0 \leq M$ and $a \in N$. $p \upharpoonright M_0 = \operatorname{gtp}(a/M_0; N)$.
- Let κ be a cardinal. **K** is κ -tame if for any Galois types $p \neq q$ both in gS(M), there is $M_0 \leq M$, $||M_0|| \leq \kappa$ such that $p \upharpoonright M_0 \neq q \upharpoonright M_0$.

< □ > < □ > < □ > < □ > < □ > < □ >

10/13

Definition (Tameness)

- Let $p = \operatorname{gtp}(a/M; N)$, $M_0 \leq M$ and $a \in N$. $p \upharpoonright M_0 = \operatorname{gtp}(a/M_0; N)$.
- Let κ be a cardinal. **K** is κ -tame if for any Galois types $p \neq q$ both in gS(M), there is $M_0 \leq M$, $||M_0|| \leq \kappa$ such that $p \upharpoonright M_0 \neq q \upharpoonright M_0$.

10/13

First-order theories are $(< \aleph_0)$ -tame!

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

Idea of the construction:

く 何 ト く ヨ ト く ヨ ト

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

Idea of the construction:

• Encode $\alpha < (2^{\lambda})^+$ with LS(K) = λ ;

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

Idea of the construction:

- Encode $\alpha < (2^{\lambda})^+$ with LS(K) = λ ;
- Build the cumulative hierarchy using α as base;

A (1) < A (1) < A (1) </p>

11/13

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

Idea of the construction:

- Encode $\alpha < (2^{\lambda})^+$ with LS(K) = λ ;
- Build the cumulative hierarchy using α as base;
- Check instability below $\beth_{\alpha}(\lambda)$ and stability at $\beth_{\alpha}(\lambda)$.

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

Idea of the construction:

- Encode $\alpha < (2^{\lambda})^+$ with LS(K) = λ ;
- Build the cumulative hierarchy using α as base;
- Check instability below $\beth_{\alpha}(\lambda)$ and stability at $\beth_{\alpha}(\lambda)$.
- **K** is $EC(\lambda, 2^{\lambda})$ ordered by L(**K**)-substructure.

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

Idea of the construction:

- Encode $\alpha < (2^{\lambda})^+$ with LS(K) = λ ;
- Build the cumulative hierarchy using α as base;
- Check instability below $\beth_{\alpha}(\lambda)$ and stability at $\beth_{\alpha}(\lambda)$.
- **K** is $EC(\lambda, 2^{\lambda})$ ordered by L(**K**)-substructure.
 - ► (< ℵ₀)-tameness;

3

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

Idea of the construction:

- Encode $\alpha < (2^{\lambda})^+$ with LS(K) = λ ;
- Build the cumulative hierarchy using α as base;
- Check instability below $\beth_{\alpha}(\lambda)$ and stability at $\beth_{\alpha}(\lambda)$.
- **K** is $EC(\lambda, 2^{\lambda})$ ordered by L(**K**)-substructure.
 - ► (< ℵ₀)-tameness;
 - Galois types are quantifier-free types.

くぼう くほう くほう

3

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with $\lambda \leq \alpha < (2^{\lambda})^+$. Then there is a stable AEC K such that $LS(K) = \lambda$ and its first stability cardinal is $\exists_{\alpha}(\lambda)$. Moreover, K is tame but fails AP.

Idea of the construction:

- Encode $\alpha < (2^{\lambda})^+$ with LS(K) = λ ;
- Build the cumulative hierarchy using α as base;
- Check instability below $\beth_{\alpha}(\lambda)$ and stability at $\beth_{\alpha}(\lambda)$.
- **K** is $EC(\lambda, 2^{\lambda})$ ordered by L(**K**)-substructure.
 - ► (< ℵ₀)-tameness;
 - Galois types are quantifier-free types.
 - \implies This ruins *AP*!

Possible directions

Sefine our examples (e.g. change the substructure relation);

3 N 3

Possible directions

- Refine our examples (e.g. change the substructure relation);
- **2** Lower the bound of the first stability cardinal below $\beth_{(2^{LS(K)})^+}$:
 - Find a substitute of Galois types?

Possible directions

- Refine our examples (e.g. change the substructure relation);
- **2** Lower the bound of the first stability cardinal below $\beth_{(2^{LS}(K))^+}$:
 - Find a substitute of Galois types?
 - Investigate the notion of "order property".

Definition

Let μ be a cardinal. **K** has the order property of length μ if there exist $\langle a_i : i < \mu \rangle$, $M \leq_{\mathbf{K}} N$ such that for $i_0 < i_1$ and $j_0 < j_1$, we have $gtp(a_{i_0}a_{i_1}/M; N) \neq gtp(a_{j_1}a_{j_0}/M; N)$.

12/13

References

- Samson Leung, Hanf number of the first stability cardinal in AECs, Annals of Pure and Applied Logic 174 (2), 103201
- Sebastien Vasey, Infinitary stability theory, *Archive for Mathematical Logic* 55 (2016), nos. 3-4, 562–592
- Sebastien Vasey, Shelah's eventual categoricity conjecture in universal classes: part I, Annals of Pure and Applied Logic 168 (2017), no. 9, 1609–1642