
Math 127: Chinese Remainder Theorem

Mary Radcliffe

1 Chinese Remainder Theorem

Using the techniques of the previous section, we have the necessary tools to solve congruences of the form
ax ≡ b (modn). The Chinese Remainder Theorem gives us a tool to consider multiple such congruences
simultaneously.

First, let’s just ensure that we understand how to solve ax ≡ b (modn).

Example 1. Find x such that 3x ≡ 7 (mod 10)

Solution. Based on our previous work, we know that 3 has a multiplicative inverse modulo 10,
namely 3ϕ(10)−1. Moreover, ϕ(10) = 4, so the inverse of 3 modulo 10 is 33 ≡ 27 ≡ 7 (mod 10).
Hence, multiplying both sides of the above equation by 7, we obtain

3x ≡ 7 (mod 10)

⇔ 7 · 3x ≡ 7 · 7 (mod 10)

⇔ x ≡ 49 ≡ 9 (mod 10)

Hence, the solution is x ≡ 9 (mod 10).

Example 2. Find x such that 3x ≡ 6 (mod 12).

Solution. Uh oh. This time we don’t have a multiplicative inverse to work with. So what to do?
Well, let’s take a look at what this would mean. If 3x ≡ 6 (mod 12), that means 3x− 6 is divisible
by 12, so there is some k ∈ Z such that 3x− 6 = 12k. Now that we’re working in the integers, we
can happily divide by 3, and we thus obtain that x − 2 = 4k. Hence, we have that x ≡ 2 (mod 4)
solves the desired congruence.

Of course, the strategy outlined here will not always work. Imagine, if instead of 3x ≡ 6 (mod 12), we
wanted 3x ≡ 7 (mod 12). Obviously that wouldn’t be possible, as writing out the corresponding integer
equation yields 3x− 7 = 12k, and there are no integers x, k such that 3x− 12k = 7, by Bezout’s Lemma.

In general, we have that ax− b = ny for some y ∈ Z, and hence ax− ny = b. This implies that we can
find a solution to this congruence if and only if gcd(a, n)|b, again by Bezout’s Lemma.

Proposition 1. Let n ∈ N, and let a, b ∈ Z. The congruence ax ≡ b (modn) has a solution for x if and
only if gcd(a, n)|b.

Moreover, the strategy we employed in Example 2 will in general work. Suppose that we have ax ≡
b (modn), and we have that gcd(a, n) = d. Then in order that this has a solution, we know that b is
divisible by d. In particular, there exist integers a′, b′, n′ such that a = a′d, b = b′d, n = n′d. We can then
work as we did in Example 2 to rewrite this equation as a′x ≡ b′ (modn′).
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Example 3. Find x, if possible, such that

2x ≡ 5 (mod 7),

and 3x ≡ 4 (mod 8)

Solution. First note that 2 has an inverse modulo 7, namely 4. So we can write the first equiva-
lence as x ≡ 4 · 5 ≡ 6 (mod 7). Hence, we have that x = 6 + 7k for some k ∈ Z.
Now we can substitute this in for the second equivalence:

3x ≡ 4 (mod 8)

3(6 + 7k) ≡ 4 (mod 8)

18 + 21k ≡ 4 (mod 8)

2 + 5k ≡ 4 (mod 8)

5k ≡ 2 (mod 8).

Recalling that 5 has an inverse modulo 8, namely 5, we thus obtain

k ≡ 10 ≡ 2 (mod 8).

Hence, we have that k = 2 + 8j for some j ∈ Z.
Plugging this back in for x, we have that x = 6 + 7k = 6 + 7(2 + 8j) = 20 + 56j for some j ∈ Z.
In fact, any choice of j will work here. Hence, we have that x is a solution to the system of
congruences if and only if x ≡ 20 (mod 56).

Example 4. Find x, if possible, such that

x ≡ 3 (mod 4),

and x ≡ 0 (mod 6).

Solution. Let’s work as we did above. From the first equivalence, we have that x = 3 + 4k
for some k ∈ Z. Then, the second equivalence implies that 3 + 4k ≡ 0 (mod 6), and hence
4k ≡ −3 ≡ 3 (mod 6). However, this is impossible, since we know that gcd(4, 6) = 2 and 2 6 |3.

Ok, so not every system of congruences will have a solution, but our strategy of trying to solve them
will reveal when there is no solution also.

Notice the problem that occurred here: when we considered the first equivalence, we ended up with
a coefficient of 4 in front of the k. Since 4 is not relatively prime to 6, there was a chance that the next
equivalence would not have a solution, and indeed that is what happened. In general this will be the case:
if we consider two equivalences of the form

x ≡ b1 (modn1)

x ≡ b2 (modn2),

then the method we developed above will take the following approach: first, write x = b1 + kn1. Plug
that in to the second equation to obtain kn1 ≡ b2 − b1 (modn2). If n1 and n2 share factors, then we
may not be able to solve this equivalence, per Proposition 1. Hence, we can demand that n1 and n2 are
relatively prime, and this should solve that problem.

Continuing, then, if we assume that n1 and n2 are relatively prime, we have reduced this system to
kn1 ≡ b2 − b1 (modn2). Then we obtain kn1 − b2 + b1 = jn2 for some j ∈ Z. Rearranging, we have
kn1 − jn2 = b2 − b1. Since n1 and n2 are relatively prime, we know from Bezout’s Lemma that we will be
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able to solve this equation for k and j. Once we know k and j, we can then backsolve to give us a solution
for x.

This strategy of considering relatively prime moduli, in general, will yield a solution to this problem.
The general form is given by the following theorem.

Theorem 1. Let n1, n2, . . . , nk be a set of pairwise relatively prime natural numbers, and let b1, b2, . . . , bk ∈
Z. Put N = n1n2 . . . nk, the product of the moduli. Then there is a unique x (modN) such that x ≡
bi (modni) for all 1 ≤ i ≤ k.

Note that working mod N should be unsurprising; this is how we ended up in the first example as well.
You can see that the method of backsolving for x will end up multiplying the moduli together.

Proof. For each i with 1 ≤ i ≤ k, put mi = N
ni

. Notice that since the moduli are relatively prime, and
mi is the product of all the moduli other than ni, we have that ni ⊥ mi, and hence mi has a multiplicative
inverse modulo ni, say yi. Moreover, note that mi is a multiple of nj for all j 6= i.

Put x = y1b1m1 + y2b2m2 + · · ·+ ykbkmk.

Notice that for each i with 1 ≤ i ≤ k, we obtain

x ≡ y1b1m1 + y2b2m2 + · · ·+ ykbkmk (modni)

≡ yibimi (modni) (since each mj with j 6= i is a multiple of ni)

≡ bi (modni) (since yi is an inverse to mi modulo ni).

Therefore, we have that x ≡ bi (modni) for all 1 ≤ i ≤ k.

Finally, we wish to show uniqueness of the solution (modN). Suppose that x and y both solve the
congruences. Then we have that for each i, ni is a divisor of x− y. Since the ni are relatively prime, this
means that N is a divisor of x− y, and hence x− y are congruent modulo N . �

Example 5. Use the Chinese Remainder Theorem to find an x such that

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

x ≡ 10 (mod 11)

Solution. Set N = 5 × 7 × 11 = 385. Following the notation of the theorem, we have m1 =
N/5 = 77, m2 = N/7 = 55, and m3 = N/11 = 35.
We now seek a multiplicative inverse for each mi modulo ni. First: m1 ≡ 77 ≡ 2 (mod 5), and
hence an inverse to m1 mod n1 is y1 = 3.
Second: m2 ≡ 55 ≡ 6 (mod 7), and hence an inverse to m2 mod n2 is y2 = 6.
Third: m3 ≡ 35 ≡ 2 (mod 11), and hence an inverse to m3 mod n3 is y3 = 6.
Therefore, the theorem states that a solution takes the form:

x = y1b1m1 + y2b2m2 + y3b3m3 = 3× 2× 77 + 6× 3× 55 + 6× 10× 35 = 3552.

Since we may take the solution modulo N = 385, we can reduce this to 87, since 2852 ≡
87 (mod 385).
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Example 6. Find all solutions x, if they exist, to the system of equivalences:

2x ≡ 6 (mod 14)

3x ≡ 9 (mod 15)

5x ≡ 20 (mod 60)

Solution. As in Example 2, we first wish to reduce this, where possible, using the strategy outlined
following the statement of Proposition 1. Since gcd 2, 14 = 2, we can cancel a 2 from all terms in
the first equivalence to write x ≡ 3 (mod 7). Likewise, we simplify the other two equivalences to
reduce the entire system to

x ≡ 3 (mod 7)

x ≡ 3 (mod 5)

x ≡ 4 (mod 12).

We can now follow the strategy of the Chinese Remainder Theorem. Following the notation in the
theorem, we have

m1 = 5 ∗ 12 = 60 ≡ 4 (mod 7); y1 ≡ 45 ≡ 1024 ≡ 2 (mod 7)

m2 = 7 ∗ 12 = 84 ≡ 4 (mod 5); y2 ≡ 43 ≡ 64 ≡ 4 (mod 5)

m3 = 7 ∗ 5 = 35 ≡ 11 (mod 12); y3 ≡ 113 ≡ (−1)3 ≡ −1 ≡ 11 (mod 12).

Hence, we have x = y1m1b1 + y2m2b2 + y3m3b3 = 2 ∗ 60 ∗ 3 + 4 ∗ 84 ∗ 3 + 11 ∗ 35 ∗ 4 = 2908.
Hence, we have any solution x ≡ 2908 ≡ 388 (mod 420).
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