Problem 1. Let V be the subspace of M_{23} consisting of all matrices A that satisfy the condition $A \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Find a basis for V.

Problem 2. Let V be the subset of \mathbb{P}_3 consisting of all polynomials p that have the property $p(3) = 2p(-3)+3$. Is V a vector space, if addition and scalar multiplication are the standard ones?

Problem 3. Are the following statements true or false? Give a brief reason or a counterexample for each.
 a. If A is a 3×4 matrix, then the rows of A are linearly independent.
 b. If A is a 3×3 matrix and the rows of A are linearly dependent, then the columns of A are linearly dependent too.

Problem 4. Problem 9 from section 4.7

Problem 5. Suppose A is an invertible matrix. Show, that if $\{v_1, v_2, \ldots, v_n\}$ form a basis for \mathbb{R}^n, then so do $\{Av_1, Av_2, \ldots, Av_n\}$.