Prove that, for $x \neq 1$, n a nonnegative integer,

$$\sum_{i=0}^{n} x^i = \frac{x^{n+1} - 1}{x - 1}.$$
Similarly, we have alternate notation for the product of several numbers:

\[\prod_{i=1}^{n} a_i := (a_1)(a_2)\cdots(a_n). \]
Similarly, we have alternate notation for the product of several numbers:

\[\prod_{i=1}^{n} a_i := (a_1)(a_2) \cdots (a_n). \]

Now that you have nice notation, you could prove, say, that for \(n \geq 1 \),

\[n! = \prod_{i=1}^{n} i. \]
Similarly, we have alternate notation for the product of several numbers:

\[\prod_{i=1}^{n} a_i := (a_1)(a_2) \cdots (a_n). \]

Now that you have nice notation, you could prove, say, that for \(n \geq 1 \),

\[n! = \prod_{i=1}^{n} i. \]

(It’s like induction and recursion are somehow related.)
Definition: A *set* is a collection of distinct objects.
Definition: A set is a collection of distinct objects.

Examples:

- The set of blue cars with Pennsylvania license plates.
Definition: A set is a collection of distinct objects.

Examples:

- The set of blue cars with Pennsylvania license plates.
- The sets of integers and positive integers, \mathbb{Z} and \mathbb{N}.

Instructor: Mike Picollelli
Definition: A set is a collection of distinct objects.

Examples:

- The set of blue cars with Pennsylvania license plates.
- The sets of integers and positive integers, \(\mathbb{Z} \) and \(\mathbb{N} \).
- The set \(A \) of integers that lie between \(-3\) and \(3\) inclusive, which we can write as

\[
A = \{ a \mid a \in \mathbb{Z}, -3 \leq a \leq 3 \} = \{-3, -2, -1, 0, 1, 2, 3\}.
\]

(The \(\in \) symbol means “is an element of”.)
Definition: A set is a collection of distinct objects.

Examples:

- The set of blue cars with Pennsylvania license plates.
- The sets of integers and positive integers, \mathbb{Z} and \mathbb{N}.
- The set A of integers that lie between -3 and 3 inclusive, which we can write as

 $$A = \{ a \mid a \in \mathbb{Z}, -3 \leq a \leq 3 \} = \{-3, -2, -1, 0, 1, 2, 3\}.$$

(The \in symbol means “is an element of”.)
- There is exactly one set with no elements at all. It’s called the empty set and written \emptyset.

Definition: A set X is a **subset** of a set Y if every element of X is also in Y, written $X \subset Y$.

Definition: A set X is a **subset** of a set Y if every element of X is also in Y, written $X \subset Y$.

Note that, by definition, every set X is a subset of itself: $X \subset X$. Also (perhaps surprisingly), the empty set is a subset of every set.
Definition: A set X is a **subset** of a set Y if every element of X is also in Y, written $X \subset Y$.

Note that, by definition, every set X is a subset of itself: $X \subset X$. Also (perhaps surprisingly), the empty set is a subset of every set.

Definition: The **cardinality** of a set X, denoted $|X|$, is the number of elements in X if that number is finite, ∞ otherwise.
Definition: A set X is a *subset* of a set Y if every element of X is also in Y, written $X \subset Y$.

Note that, by definition, every set X is a subset of itself: $X \subset X$. Also (perhaps surprisingly), the empty set is a subset of every set.

Definition: The *cardinality* of a set X, denoted $|X|$, is the number of elements in X if that number is finite, ∞ otherwise.

Examples: $|\emptyset| = 0$, $|\mathbb{N}| = \infty$, and $|\{1, 2, 4, 5\}| = 4$.