Problem 1 — 4.22 *

Verify that the function $f : (0, 1) \to \mathbb{R}$ defined by

$$f(x) = \frac{2x - 1}{2x(1-x)}$$

for all $x \in (0, 1)$ is a bijection.

Problem 2 — 4.29

Consider three functions $f, g, h : \mathbb{R} \to \mathbb{R}$, defined for all $x \in \mathbb{R}$ by

$$f(x) = \frac{x}{1 + x^2}, \quad g(x) = \frac{x^2}{1 + x^2}, \quad h(x) = \frac{x^3}{1 + x^2}$$

(a) Determine which of these functions are injective.

(b) Prove that f and g are not surjective.

(c) Graph all three functions.

Problem 3 — 4.30 *

Given real numbers a, b, c, d, let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f(x, y) = (ax + by, cx + dy)$ for all $(x, y) \in \mathbb{R}^2$. Prove that f is injective if and only if f is surjective.
Problem 4 — 4.34 *

Let \(f : A \to B \) and \(g : B \to C \) be functions, and define \(h = g \circ f \). Determine which of the following statements are true, giving proofs for the true statements and counterexamples for the false statements:

(a) If \(h \) is injective, then \(f \) is injective.
(b) If \(h \) is injective, then \(g \) is injective.
(c) If \(h \) is surjective, then \(f \) is surjective.
(d) If \(h \) is surjective, then \(g \) is surjective.

Problem 5 — 4.36

Consider functions \(f : A \to B \) and \(g : B \to A \). Prove that

(a) If \(f \circ g \) is the identity function on \(B \), then \(f \) is surjective.
(b) If \(g \circ f \) is the identity function on \(A \), then \(f \) is injective.

To remind you: given a set \(X \), the identity function on \(X \) is the function \(\text{id}_X : X \to X \) defined by \(\text{id}_X(x) = x \) for all \(x \in X \).

Problem 6 — 4.37

Consider a function \(f : A \to A \). Prove that if \(f \circ f \) is injective, then \(f \) is injective.

Problem 7 — 4.45 *

Let \(A \) be a set and let \(f : A \to A \) be a function. Prove that if \(A \) is finite, then \(f \) is injective if and only if \(f \) is surjective; and that if \(A \) is infinite, then this equivalence need not hold.

Problem 8 — 4.47

Prove that the set of all natural numbers, the set of all even natural numbers, and the set of all odd natural numbers all have the same cardinality.
Problem 9 — 4.51 *

Construct an explicit bijection from the open interval $(0, 1)$ to the closed interval $[0, 1]$.

Problem 10 *

Fix a prime number $p \in \mathbb{N}$, and define

$$S = \{(x, y, z) \in \mathbb{N}^3 : x^2 + 4yz = p\}$$

Prove that the function $f : S \to S$ defined for all $(x, y, z) \in S$ by

$$f(x, y, z) = \begin{cases}
(x + 2z, z, y - x - z) & \text{if } x < y - z \\
(2y - x, y, x - y + z) & \text{if } y - z < x < 2y \\
(x - 2y, x - y + z, y) & \text{if } x > 2y
\end{cases}$$

is a bijection and is its own inverse (i.e. $f^{-1} = f$).

[Optional: Prove that if $p = 4k + 1$ for some $k \in \mathbb{N}$, then $f(x, y, z) = (x, y, z)$ for exactly one triple $(x, y, z) \in S$.]

Problem 11 *

Let $f : A \to B$ be a function.

(a) Prove that there exists a set X and functions $p : A \to X$ and $i : X \to B$, with p surjective and i injective, such that $f = i \circ p$.

(b) Prove that there exists a set Y and functions $j : A \to Y$ and $q : Y \to B$, with j injective and q surjective, such that $f = q \circ j$.