Solutions for Problem Set One

Problem 1. (1) (i) We have
\[\mathbb{E}[X \mathbb{E}[Y | \mathcal{G}]] = \mathbb{E}[\mathbb{E}[X \mathbb{E}[Y | \mathcal{G}]] = \mathbb{E}[\mathbb{E}[X | \mathcal{G}] \cdot \mathbb{E}[Y | \mathcal{G}]]. \]
Similarly for \(\mathbb{E}[Y \mathbb{E}[X | \mathcal{G}]] \).

(ii) We say that a bounded measurable function satisfying property \(P \) if
\[\mathbb{E}[f(X, Y) | \mathcal{G}] = \mathbb{E}[f(x, Y)]_{x=X}. \]
Let \(\mathcal{E} = \{ E \in \mathcal{B}(\mathbb{R}^2) : \mathbf{1}_E \text{ satisfies property } P \} \). Then \(\mathcal{E} \) is a monotone class containing the \(\pi \)-system \(\mathcal{C} \triangleq \{ A \times B : A, B \in \mathcal{B}(\mathbb{R}^1) \} \). By the monotone class theorem in measure theory, we conclude that \(\mathcal{E} = \mathcal{B}(\mathbb{R}^2) \). In other words, \(\mathbf{1}_E \) satisfies property \(P \) for every \(E \in \mathcal{B}(\mathbb{R}^2) \).

Note that the property \(P \) is linear in \(f \). By writing \(f = f^+ - f^- \), we only need to consider the case when \(f \) is bounded and non-negative. But then there exists a sequence \(f_n \) of simple functions on \(\mathbb{R}^2 \) such that \(0 \leq f_n \uparrow f \). We know that each \(f_n \) satisfies property \(P \). By the monotone convergence theorem for both conditional and unconditional expectations, we conclude that \(f \) satisfies property \(P \).

(iii) Since both sides are \(\sigma(\mathcal{G}, \mathcal{H}) \)-measurable, it suffices to show that
\[\int_E X d\mathbb{P} = \int_E \mathbb{E}[X | \mathcal{G}] d\mathbb{P}, \forall E \in \sigma(\mathcal{G}, \mathcal{H}). \quad (1) \]
Let \(\mathcal{E} = \{ E \in \sigma(\mathcal{G}, \mathcal{H}) : \text{ equation (1) holds} \} \), and let \(\mathcal{C} = \{ A \cap B : A \in \mathcal{G}, B \in \mathcal{H} \} \).

Apparentvly, \(\mathcal{C} \) is a \(\pi \)-system. For any \(A \in \mathcal{G}, B \in \mathcal{H} \), we have
\[\mathbb{E}[X \mathbf{1}_A \mathbf{1}_B] = \mathbb{E}[X \mathbf{1}_A] \mathbb{P}(B) = \mathbb{E}[\mathbb{E}[X | \mathcal{G}] \mathbf{1}_A] \mathbb{P}(B) = \mathbb{E}[\mathbb{E}[X | \mathcal{G}] \mathbf{1}_A \mathbf{1}_B]. \]
Therefore, \(\mathcal{C} \subseteq \mathcal{E} \). Moreover, it is easy to see that \(\mathcal{E} \) is a monotone class. By the monotone class theorem, we conclude that \(\sigma(\mathcal{G}, \mathcal{H}) = \mathcal{E} \).

(2) By assumption, we know that for every \(r \in \mathbb{R}^1 \),
\[\mathbb{E} [(X - Y) \mathbf{1}_{\{X \leq r\}}] = \mathbb{E} [(X - Y) \mathbf{1}_{\{Y \leq r\}}] = 0. \]
Therefore,
\[
\mathbb{E} [(X - Y) 1_{\{X \leq r, Y > r\}}] + \mathbb{E} [(X - Y) 1_{\{X \leq r, Y \leq r\}}] = 0,
\]
\[
\mathbb{E} [(X - Y) 1_{\{X > r, Y \leq r\}}] + \mathbb{E} [(X - Y) 1_{\{X \leq r, Y \leq r\}}] = 0.
\]
It follows that
\[
\mathbb{E} [(X - Y) 1_{\{X > r, Y \leq r\}}] + \mathbb{E} [(Y - X) 1_{\{X \leq r, Y > r\}}] = 0.
\]
But the integrand inside each of the above expectations is non-negative. Therefore,
\[
(X - Y) 1_{\{X > r, Y \leq r\}} = (Y - X) 1_{\{X \leq r, Y > r\}} = 0 \text{ a.s.}
\]
This implies that
\[
\mathbb{P}(X > r, Y \leq r) = \mathbb{P}(X \leq r, Y > r) = 0.
\]
And this is true for all \(r \in \mathbb{R}^1 \). The result then follows from the fact that
\[
\{X \neq Y\} \subseteq \{X > Y\} \bigcup \{X < Y\} \subseteq \bigcup_{n \in \mathbb{Z}} \left(\{X > n \geq Y\} \bigcup \{Y > n \geq X\} \right).
\]

Problem 2. (1) For \(\lambda > 0 \), we have
\[
|\mathbb{E}[X|\mathcal{G}_i]| 1_{\{|\mathbb{E}[X|\mathcal{G}_i]| > \lambda\}} \leq \mathbb{E}[|X|]\mathbb{1}_{\{|\mathbb{E}[X|\mathcal{G}_i]| > \lambda\}}.
\]
Therefore, by taking expectations on both sides, we obtain that
\[
\mathbb{E} \left[|\mathbb{E}[X|\mathcal{G}_i]| 1_{\{|\mathbb{E}[X|\mathcal{G}_i]| > \lambda\}} \right] \leq \mathbb{E}[|X|] 1_{\{|\mathbb{E}[X|\mathcal{G}_i]| > \lambda\}}.
\]
But
\[
\mathbb{E}[|X|] 1_{\{|\mathbb{E}[X|\mathcal{G}_i]| > \lambda\}} = \mathbb{E}[|X|] 1_{\{|\mathbb{E}[X|\mathcal{G}_i]| > \lambda\}}; |X| > \sqrt{\lambda} + \mathbb{E}[|X|] 1_{\{|\mathbb{E}[X|\mathcal{G}_i]| > \lambda\}}; |X| \leq \sqrt{\lambda}
\]
\[
\leq \mathbb{E}|X|; |X| > \sqrt{\lambda} + \sqrt{\lambda} \cdot \frac{1}{\lambda} \mathbb{E}[|X|]|\mathcal{G}_i]
\]
\[
= \mathbb{E}|X|; |X| > \sqrt{\lambda} + \frac{1}{\sqrt{\lambda}} \mathbb{E}[|X|],
\]
which goes to zero uniformly in \(i \in \mathcal{I} \) as \(\lambda \to \infty \) since \(X \) is integrable. Therefore, \(\{\mathbb{E}[X|\mathcal{G}_i]; i \in \mathcal{I}\} \) is uniformly integrable.

(2) Let \(M = \sup_{t \in \mathcal{T}} \mathbb{E}[\varphi(|X_t|)] \). For \(\varepsilon > 0 \), let \(R = M/\varepsilon \). Then there exists some \(\Lambda > 0 \), such that for any \(x > \Lambda \), we have \(\varphi(x)/x > R \). Therefore, for \(\lambda > \Lambda \), we have
\[
\mathbb{E}[|X_t| 1_{\{|X_t| > \lambda\}}] \leq \frac{1}{R} \mathbb{E}[\varphi(|X_t|)] \leq \frac{M}{R} = \varepsilon, \, \forall t \in \mathcal{T}.
\]
Consequently, \(\{X_t; t \in \mathcal{T}\} \) is uniformly integrable.
Problem 3. (1) $\mathbb{P}(X_n > \alpha \log n) = e^{-\alpha \log n} = 1/n^\alpha$. Therefore, by the Borel-Cantelli lemma, we have
\[
\mathbb{P}(X_n > \alpha \log n \text{ for infinitely many } n) = \begin{cases}
0, & \alpha > 1; \\
1, & 0 < \alpha \leq 1.
\end{cases}
\]
Therefore, by the Borel-Cantelli lemma, we have
\[
\mathbb{P}(X_n > \alpha \log n \text{ for infinitely many } n) = \begin{cases}
0, & \alpha > 1; \\
1, & 0 < \alpha \leq 1.
\end{cases}
\]

(2) Let $A_\alpha = \{X_n > \alpha \log n \text{ for infinitely many } n\}$. Since $\mathbb{P}(A_1) = 1$, we know that $L \geq 1$ almost surely. Moreover,
\[
\{L > 1\} \subseteq \bigcup_{k=1}^{\infty} \left\{ L > 1 + \frac{1}{k} \right\} \subseteq \bigcup_{k=1}^{\infty} A_{1+\frac{1}{k}}.
\]
It follows that $\mathbb{P}(L > 1) = 0$. Therefore, $L = 1$ almost surely.

(3) For each $x \in \mathbb{R}^1$, we have
\[
\mathbb{P}(M_n \leq x) = \mathbb{P}\left(\max_{1 \leq i \leq n} X_i \leq x + \log n \right) = (1 - e^{-x - \log n})^n,
\]
provided that $x + \log n > 0$. Therefore,
\[
\lim_{n \to \infty} \mathbb{P}(M_n \leq x) = e^{-e^{-x}}, \ \forall x \in \mathbb{R}^1.
\]
Apparently, the function $F(x) \triangleq e^{-e^{-x}}$ defines a continuous distribution function on \mathbb{R}^1. Therefore, M_n converges weakly to F.

Problem 4. (1) \implies (2). Suppose that \mathbb{P}_n converges weakly to \mathbb{P}. According to Theorem 1.7, we know that $\mathbb{P}_n(A) \to \mathbb{P}(A)$ for every $A \in \mathcal{B}(\mathbb{R}^1)$ satisfying $\mathbb{P}(\partial A) = 0$. In particular, let x be a continuity point of F and let $A = (-\infty, x]$. Then $\mathbb{P}(\partial A) = dF(\{x\}) = 0$. Therefore,
\[
F_n(x) = \mathbb{P}_n(A) \to \mathbb{P}(A) = F(x).
\]

(2) \implies (1). Suppose that F_n converges in distribution to F. Let C_F be the set of continuity points of F. Since C_F^c is at most countable, we conclude that C_F is dense in \mathbb{R}^1.

Let $\varphi \in C_b(\mathbb{R}^1)$. Given $\varepsilon > 0$, let $a, b \in C_F$ be such that $a < 0 < b$ and
\[
F(a) < \varepsilon, \ 1 - F(b) < \varepsilon.
\]
Then there exists $N \geq 1$, such that for any $n > N$,
\[
|F_n(a) - F(a)| < \varepsilon, |F_n(b) - F(b)| < \varepsilon.
\]

3
It follows that

\[F_n(a) < 2\varepsilon, \quad 1 - F_n(b) < 2\varepsilon, \quad \forall n > N. \]

Therefore,

\[
\left| \int_{\mathbb{R}} \varphi \left(dF_n - dF \right) \right| \\
\leq \left| \int_{(a,b]} \varphi \left(dF_n - dF \right) \right| + \| \varphi \|_{\infty} (dF_n((a,b]) + dF((a,b])) \\
\leq \left| \int_{(a,b]} \varphi \left(dF_n - dF \right) \right| + 6\| \varphi \|_{\infty} \varepsilon \tag{2}
\]

for every \(n > N. \)

Since \(\varphi \) is uniformly continuous on \([a,b]\), there exists \(\delta > 0 \), such that whenever \(x, y \in [a,b] \) with \(|x - y| < \delta \), we have \(|\varphi(x) - \varphi(y)| < \varepsilon \). Choose a finite partition \(\mathcal{P} : a = x_0 < x_1 < \cdots < x_k = b \) of \([a,b]\), such that \(x_0, x_1, \cdots, x_k \in C_F \) and \(|x_i - x_{i-1}| < \delta \) for each \(i \). Define a step function \(\psi \) by taking \(\psi(x) = \varphi(x_i-1) \) for \(x \in [x_{i-1}, x_i] \). It follows that

\[
\sup_{x \in [a,b]} |\varphi(x) - \psi(x)| \leq \varepsilon.
\]

Therefore,

\[
\left| \int_{[a,b]} \varphi \left(dF_n - dF \right) \right| \\
\leq 2 \sup_{x \in [a,b]} |\varphi(x) - \psi(x)| + \left| \int_{[a,b]} \psi \left(dF_n - dF \right) \right| \\
\leq 2\varepsilon + \sum_i |\varphi(x_{i-1})| \cdot ((F_n(x_i) - F(x_i)) - (F_n(x_{i-1}) - F(x_{i-1}))). \tag{3}
\]

Note that the partition \(\mathcal{P} \) we chose before does not depend on \(n \).

By substituting (3) into (2) and letting \(n \to \infty \), we arrive at

\[
\limsup_{n \to \infty} \left| \int_{\mathbb{R}} \varphi dF_n - \int_{\mathbb{R}} \varphi dF \right| \leq (2 + 6\| \varphi \|_{\infty})\varepsilon.
\]

Since \(\varepsilon \) is arbitrary, we conclude that \(\int_{\mathbb{R}} \varphi dF_n \to \int_{\mathbb{R}} \varphi dF \) as \(n \to \infty \). Therefore, \(\mathbb{P}_n \) converges weakly to \(\mathbb{P} \).
Problem 5. (1) Necessity. Suppose that \(\{\mathbb{P}_n\} \) is tight. Then there exists \(M > 0 \), such that
\[
\mathbb{P}_n([-M, M]) \geq \frac{3}{4}, \quad \forall n \geq 1.
\]
It follows that \(|\mu_n| \leq M \) for all \(n \). Indeed, if this is not the case, suppose for instance that \(\mu_n > M \) for some \(n \). Then
\[
\frac{1}{2} \leq \mathbb{P}_n(\mu_n, \infty) \leq \mathbb{P}_n((M, \infty)) < \frac{1}{4},
\]
which is a contradiction. In addition, we have
\[
\frac{3}{4} \leq \mathbb{P}_n([-M, M]) = \frac{1}{\sqrt{2\pi} \sigma_n} \int_{-M}^{M} e^{-\frac{(x-\mu_n)^2}{2\sigma_n^2}} dx
\]
\[
= \frac{1}{\sqrt{2\pi} \sigma_n} \int_{-M-\mu_n}^{M-\mu_n} e^{-\frac{x^2}{2}} dx \leq \frac{1}{\sqrt{2\pi} \sigma_n} \int_{-2M}^{2M} e^{-\frac{x^2}{2}} dx.
\]
This implies that \(\sigma_n \) is bounded. Indeed, if \(\sigma_n \uparrow \infty \) along a subsequence, then the right hand side of (4) goes to zero along this subsequence, which is a contradiction.

Sufficiency. Suppose that \(|\mu_n| \leq M_1, \sigma_n \leq M_1 \) for some \(M_1 > 0 \). Then for any \(M > M_1 \), we have
\[
\mathbb{P}_n([-M, M]) = \frac{1}{\sqrt{2\pi} \sigma_n} \int_{-M-\mu_n}^{M-\mu_n} e^{-\frac{x^2}{2}} dx
\]
\[
\geq \frac{1}{\sqrt{2\pi} \sigma_n} \int_{-M_1-M_1}^{M_1-M_1} e^{-\frac{x^2}{2}} dx
\]
\[
\geq \frac{1}{\sqrt{2\pi} \sigma_n} \int_{-M_1}^{M_1} e^{-\frac{x^2}{2}} dx.
\]
Since the right hand side of (5) converges to 1 as \(M \to \infty \), we conclude that
\[
\lim_{M \to \infty} \inf_{n \geq 1} \mathbb{P}_n([-M, M]) = 1.
\]
In other words, \(\{\mathbb{P}_n\} \) is tight.

(2) Sufficiency. Suppose that \(\mu_n \to \mu \) and \(\sigma_n^2 \to \sigma^2 \). Then
\[
e^{\mu_n t - \frac{1}{2} \sigma_n^2 t} \to e^{\mu t - \frac{1}{2} \sigma^2 t}
\]
for every $t \in \mathbb{R}^1$ as $n \to \infty$. Therefore, \mathbb{P}_n converges weakly to $\mathcal{N}(\mu, \sigma^2)$.

Necessity. Suppose that $\{\mathbb{P}_n\}$ is weakly convergent. From the first part we already know that $\{\mu_n\}$ and $\{\sigma^2_n\}$ are both bounded. Assume that μ and μ' are two limit points of μ_n. We may further assume without loss of generality that $\mu_{n_k} \to \mu, \sigma^2_{n_k} \to \sigma^2$, and $\mu_{n'_l} \to \mu', \sigma^2_{n'_l} \to \sigma'^2$ along two subsequences n_k and n'_l. By the sufficiency part and the uniqueness of weak limits, we know that $\mathcal{N}(\mu, \sigma^2) = \mathcal{N}(\mu', \sigma'^2)$, and hence $\mu = \mu'$ and $\sigma^2 = \sigma'^2$. Therefore, μ_n converges to some $\mu \in \mathbb{R}^1$. Similarly, we conclude that σ^2_n has exactly one limit point, which means that it converges to some $\sigma^2 \geq 0$.