LONG TIME ASYMPTOTICS OF HEAT KERNELS AND
BROWNIAN WINDING NUMBERS ON MANIFOLDS WITH
BOUNDARY

XI GENG¹ AND GAUTAM IYER²

ABSTRACT. Let M be a compact Riemannian manifold with smooth boundary. We obtain the exact long time asymptotic behaviour of the heat kernel on abelian coverings of M with mixed Dirichlet and Neumann boundary conditions. As an application, we study the long time behaviour of winding numbers of reflected Brownian motions in M. In particular, we prove a Gaussian type central limit theorem showing that when rescaled appropriately, the fluctuation of winding number is normally distributed with an explicit covariance matrix.

1. Introduction.

In the present paper, we investigate the following two questions in depth. Let M be a compact Riemannian manifold with smooth boundary.

(1) What is the long time asymptotic behaviour of the heat kernel on abelian covering spaces of M, under mixed Dirichlet and Neumann boundary conditions?

(2) What is the long time behaviour of the winding of trajectories for a normally reflected Brownian motion on M?

Our main results are Theorem 2.1 and Theorem 3.2, stated in Sections 2 and 3 respectively. In this section, we survey the literature and place our work in the context of existing results.

1.1. Long Time Behaviour of Heat Kernels on Abelian Covers. The study of heat kernels on manifolds is a fundamental topic in the interplay between analysis, geometry and probability. Heat kernel estimates and the short time behaviour of heat kernels have been extensively studied in literature and is relatively well understood (see for instance [BGV92,Gri99] and the references therein). The exact long time behaviour, on the other hand, is subtly related to global properties of the manifold, and our understanding of it is far from being complete. There are several scenarios in which the exact long time asymptotics can be determined precisely. The simplest scenario is when the underlying manifold is compact, in which case the long time asymptotics is governed by the bottom spectrum of the Laplace-Beltrami operator. The problem becomes highly non-trivial for non-compact manifolds. Li [Li86] determined the exact long time asymptotics on manifolds with nonnegative Ricci curvature, under a polynomial volume growth assumption. Lott [Lot92] and
Kotani-Sunada [KS00] determined the long time asymptotics on abelian covers of closed manifolds. In a very recent paper, Ledrappier-Lim [LL15] established the exact long time asymptotics of the heat kernel of the universal cover of a negatively curved closed manifold, generalizing the situation for hyperbolic space with constant curvature. We also mention that for non-compact Riemannian symmetric spaces, Anker-Ji [AJ01] established matching upper and lower bounds on the long time behaviour of the heat kernel.

Since the work by Lott [Lot92] and Kotani-Sunada [KS00] is closely related to ours, we describe it briefly here. Let M be a closed Riemannian manifold (i.e. a compact Riemannian manifold without boundary), and let \hat{M} be an abelian cover (i.e. a covering space whose deck transformation group is finitely generated abelian) of M. The main idea in [Lot92,KS00] is based on an integral representation of the heat kernel $\hat{H}(t,x,y)$ over \hat{M} in terms of a compact family of heat kernels $H_\chi(t,x,y)$ over certain twisted line bundles over M:

$$\hat{H}(t,x,y) = \int_G H_\chi(t,x,y) d\chi,$$

where the integral is taken over certain compact Lie group G. Since M is compact, H_χ decays exponentially with rate λ_χ, the principal eigenvalue of the associated twisted Laplacian Δ_χ. Thus the long time behaviour of \hat{H} can be studied from the behaviour of this family of principal eigenvalues near its global minimum. Lott [Lot92] and Kotani-Sunada [KS00] showed that the heat kernel decays polynomially fast with rate $t^{k/2}$, where k is the rank of the deck transformation group.

In the first part of the present paper, we study abelian covers of manifolds with boundary, and impose (mixed) Dirichlet and Neumann boundary conditions. Our main result in this part (Theorem 2.1 below) determines the exact long time asymptotics of the heat kernel and the convergence is shown to be uniform. Our technique is based on the strategy developed in [Lot92,KS00]. The main difficulty arises when Dirichlet boundary condition is imposed. Unlike the case without boundary, the principal eigenvalue of Laplacian on M in this case is strictly positive and the heat kernel on the abelian cover is expected to decay exponentially fast. One needs to develop finer spectral analysis for the aforementioned perturbation analysis for principal eigenvalues of twisted Laplacians around its global minimum.

Under suitable transformation, the required eigenvalue minimization problem can be described in the following self-contained manner without the need of introducing any subtle geometric constructions. This is the key ingredient of our analysis and has a strong PDE flavor. Let ω be a harmonic 1-form on M with Neumann boundary condition, and consider the associated eigenvalue problem

$$-\Delta \phi_\omega - 4\pi i\omega \cdot \nabla \phi_\omega + 4\pi^2 |\omega|^2 \phi_\omega = \mu_\omega \phi_\omega,$$

with mixed Dirichlet and Neumann boundary conditions. The key ingredient of the proof of our main theorem in this part lies in showing that (i) the eigenvalue μ_ω above attains the global minimum if and only if the integral of ω on closed loops is integer-valued, and (ii) the minimum is non-degenerate of second order. These properties are formulated and proved in Lemmas 4.4 and 4.5 respectively. Given these lemmas, we show that

$$\hat{H}(t,x,y) \approx C'_T(x,y) t^{k/2} \exp\left(-\mu_0 t - \frac{d'_T(x,y)^2}{t}\right)$$
as $t \to \infty$ uniformly in $x, y \in \hat{M}$, where k is the rank of the deck transformation group and C'_x, d'_x are explicitly defined functions.

1.2. The Abelianized Winding of Brownian Motion on Manifolds. The second part of our paper turns to the study of windings of Brownian trajectories on manifolds. This is indeed the original motivation of the present work.

The long time asymptotics of Brownian winding numbers is a classical topic which has been investigated in depth. Winding number of Brownian motion or random walks has a natural physical motivation in relation to the study of polymer entanglements. The well known fundamental result along this direction is due to Spitzer [Spi58]. To be precise, if $\theta(t)$ denotes the total winding angle of a planar Brownian motion around the origin up to time t, then Spitzer showed that

$$\frac{2\theta(t)}{\log t} \xrightarrow{w} \xi,$$

where ξ is the standard Cauchy distribution.

If one looks at exterior disk instead of the punctured plane, then Rudnick and Hu [RH87] (see also Rogers and Williams [RW00]) showed that the limiting distribution is of hyperbolic type instead of Cauchy. In planar domains with multiple holes, understanding the winding of Brownian trajectories is complicated by the fact that it is inherently non-abelian if one wants to keep track of the order of winding around different holes. Abelianized versions of Brownian winding numbers have been studied in [PY86, PY89, GK94, TW95], and various generalizations in the context of positive recurrent diffusions, Riemann surfaces, as well as in higher dimensions have been studied in [GK94, LM84, Wat00]. Among most of these works, the techniques developed have a strong flavor of using the conformal invariance of planar Brownian motion and are specific to two dimensions.

In the second part of our paper, we study the abelianized winding of trajectories of normally reflected Brownian motions on compact Riemannian manifolds with boundary. A basic example in which the intuition is mostly clear is the winding of reflected Brownian motion in a bounded planar domain with multiple holes. Unlike the usual approaches based on conformal invariance, we take a more general geometric point of view which works in arbitrary dimensions. To be precise, we look at Brownian windings on manifolds by lifting the trajectories to a covering space, and then use the long time asymptotics of the heat kernel established in Theorem 2.1 to study the long time behaviour of Brownian winding numbers. In particular, we measure the abelianized winding of Brownian trajectories as a \mathbb{Z}^k-valued process, denoted by $\rho = (\rho_1, \cdots, \rho_k)$ (the j-th component counts the total winding around the j-th 'hole'), and we show (Theorem 3.2 below) that

$$\frac{\rho(t)}{t} \xrightarrow{p} 0 \quad \text{and} \quad \frac{\rho(t)}{\sqrt{t}} \xrightarrow{w} \mathcal{N}(0, \Sigma),$$

with some explicitly computable matrix Σ. Here $\mathcal{N}(0, \Sigma)$ denotes a normally distributed random variable with mean 0 and covariance matrix Σ. As a result, one can for instance, determine the long time asymptotics of the abelianized winding of Brownian trajectories around a knot in \mathbb{R}^3 (see Remark 3.4 for a discussion).

Plan of this paper. In Section 2 we state our main result concerning the long time asymptotics of the heat kernel on abelian covers of M (Theorem 2.1). In Section 3 we state our main result concerning the long time behaviour of winding of
reflected Brownian motion on \(M \) (Theorem 3.2). We prove these results in Sections 4 and 5 respectively.

Let \(M \) be a compact Riemannian manifold with smooth boundary, and \(\hat{M} \) be a Riemannian cover of \(M \) with deck transformation group \(G \) and covering map \(\pi \). We assume throughout this paper that \(G \) is a finitely generated abelian group with rank \(k \geq 1 \), and \(M \cong \hat{M} / G \). Let \(G_T = \text{tor}(G) \subseteq G \) denote the torsion subgroup of \(G \), and let \(G_F \overset{\text{def}}{=} G / G_T \). The order of \(G_T \) is denoted by \(|G_T| \).

Let \(\Delta \) and \(\hat{\Delta} \) denote the Laplace-Beltrami operator on \(M \) and \(\hat{M} \) respectively. Decompose \(\partial M \), the boundary of \(M \), into two pieces \(\partial_N M \) and \(\partial_D M \), and let \(H(t, p, q) \) be the heat kernel of \(\Delta \) on \(M \) with Dirichlet boundary conditions on \(\partial_D M \) and Neumann boundary conditions on \(\partial_N M \). Let \(\partial_D \hat{M} = \pi^{-1}(\partial_D M) \) and \(\partial_N \hat{M} = \pi^{-1}(\partial_N M) \), and let \(\hat{H}(t, x, y) \) be heat kernel of \(\hat{\Delta} \) on \(\hat{M} \) with Dirichlet boundary conditions on \(\partial_D \hat{M} \), and Neumann boundary conditions on \(\partial_N \hat{M} \).

Let \(\lambda_0 \geq 0 \) be the principal eigenvalue of \(-\Delta \) with the above boundary conditions. Since \(M \) is compact, the long time asymptotic behaviour of \(H \) can be obtained explicitly using standard spectral theory. The main result of this paper obtains the asymptotic long time behaviour of the heat kernel \(\hat{H} \) on the non-compact covering space \(\hat{M} \).

Theorem 2.1. There exist explicit functions \(C_T, d_T: \hat{M} \times \hat{M} \to [0, \infty) \) (defined in (2.7) and (2.9), below), such that

\[
\lim_{t \to \infty} \left(t^{k/2} e^{\lambda_0 t} \hat{H}(t, x, y) - \frac{C_T(x, y)}{|G_T|} \exp\left(-\frac{2\pi^2 d_T^2(x, y)}{t} \right) \right) = 0,
\]

uniformly for \(x, y \in \hat{M} \). In particular, for every \(x, y \in \hat{M} \), we have

\[
\lim_{t \to \infty} t^{k/2} e^{\lambda_0 t} \hat{H}(t, x, y) = \frac{C_T(x, y)}{|G_T|}.
\]

The definition of the functions \(C_T \) and \(d_T \) above requires the construction of an inner product structure on a certain space of harmonic 1-forms over \(M \). More precisely, let

\[
\mathcal{H}^1 \overset{\text{def}}{=} \{ \omega \in T^* M \mid d\omega = 0, \ d^*\omega = 0, \ \text{and} \ \omega \cdot \nu = 0 \ \text{on} \ \partial M \},
\]

be the space of harmonic 1-forms on \(M \) that are tangential on \(\partial M \). Here \(\nu \) denotes the outward pointing unit normal on \(\partial M \), and depending on the context \(x \cdot y \) denotes the dual pairing between co-tangent and tangent vectors, or the inner product given by the Riemannian metric. By the Hodge theorem we know that \(\mathcal{H}^1 \) is isomorphic to the first de Rham co-homology group on \(M \).

Now define \(\mathcal{H}^1_G \subseteq \mathcal{H}^1 \) by

\[
\mathcal{H}^1_G = \left\{ \omega \in \mathcal{H}^1 \left| \int_{\hat{\gamma}} \pi^* (\omega) = 0 \right. \text{for all closed loops} \hat{\gamma} \subseteq \hat{M} \right\}.
\]

It is easy to see that \(\mathcal{H}^1_G \) is naturally isomorphic\(^1\) to \(\text{Hom}(G, \mathbb{R}) \), and hence \(\dim(\mathcal{H}^1_G) = k \). Define an inner-product on \(\mathcal{H}^1_G \) as follows. Let \(\phi_0 \) be the principal eigenfunction of \(-\Delta \) with boundary conditions \(\phi_0 = 0 \) on \(\partial_D M \) and \(\nu \cdot \nabla \phi_0 = 0 \)

\(^1\)The isomorphism between \(\mathcal{H}^1_G \) and \(\text{Hom}(G; \mathbb{R}) \), the dual of the deck transformation group \(G \), can be described as follows. Given \(g \in G \), pick a base point \(p_0 \in M \), and a pre-image \(x_0 \in \pi^{-1}(p_0) \).
on \(\partial_N M \). Let \(\lambda_0 \) be the associated principal eigenvalue, and normalize \(\phi_0 \) so that \(\phi_0 > 0 \) in \(M \) and \(\| \phi_0 \|_{L^2} = 1 \). Define the quadratic form \(I : \mathcal{H}_G^1 \to \mathbb{R} \) by

\[
I(\omega) = 8\pi^2 \int_M |\omega|^2 \phi_0^2 + 8\pi \int_M \phi_0 \omega \cdot \nabla g_\omega ,
\]

where \(g_\omega \) is a\(^2\) solution to the equation

\[
-\Delta g_\omega - 4\pi \omega \cdot \nabla \phi_0 = \lambda_0 g_\omega ,
\]

with boundary conditions

\[
g_\omega = 0 \quad \text{on } \partial_D M , \quad \text{and} \quad \nu \cdot \nabla g_\omega = 0 \quad \text{on } \partial_N M .
\]

In the course of the proof of Theorem 2.1, we will see that \(I \) arises naturally as the quadratic form induced by the Hessian of the principal eigenvalue of a family of elliptic operators (see Lemma 4.5, below).

Using \(I \), define an inner-product on \(\mathcal{H}_G^1 \) by

\[
\langle \omega, \tau \rangle_I \overset{\text{def}}{=} \frac{1}{4} \left(I(\omega + \tau) - I(\omega) - I(\tau) \right), \quad \omega, \tau \in \mathcal{H}_G^1 .
\]

We will show (Lemma 4.5, below) that the function \(I(\omega) \) is well-defined, and that \(\langle \cdot, \cdot \rangle_I \) is a positive definite inner-product on \(\mathcal{H}_G^1 \).

Under Neumann boundary conditions (i.e. if \(\partial_D M = \emptyset \), \(\lambda_0 = 0 \), \(\phi_0 \) is constant and \(\lambda_0 = 0 \)). In this case, \(\langle \cdot, \cdot \rangle_I \) is simply the (normalized) \(L^2 \) inner-product (see also Remark 2.2, below). The complication of \(I \) arises when Dirichlet boundary condition is presented.

Next, to define the distance function \(d_I : \mathcal{M} \times \mathcal{M} \to \mathbb{R} \) appearing in Theorem 2.1, we take \(x, y \in \mathcal{M} \) and define \(\xi_{x,y} \in (\mathcal{H}_G^1)^* \overset{\text{def}}{=} \text{Hom}(\mathcal{H}_G^1; \mathbb{R}) \) by

\[
\xi_{x,y}(\omega) \overset{\text{def}}{=} \int_x^y \pi^*(\omega),
\]

where the integral is taken over any \(y \) any smooth path in \(\mathcal{M} \) joining \(x \) and \(y \). By definition of \(\mathcal{H}_G^1 \), the above integral is independent of the choice of path joining \(x \) and \(y \). We will show that the function \(d_I : \mathcal{M} \times \mathcal{M} \to \mathbb{R} \) is given by

\[
d_I(x, y) \overset{\text{def}}{=} \| \xi_{x,y} \|_{I^*} = \sup_{\omega \in \mathcal{H}_G^1, \|\omega\|_x = 1} \xi_{x,y}(\omega), \quad \text{for } x, y \in \mathcal{M} .
\]

Here \(\| \cdot \|_{I^*} \) denotes the norm on the dual space \((\mathcal{H}_G^1)^* \) obtained by dualising the inner product \(\langle \cdot, \cdot \rangle_I \).

Now define

\[
\varphi_\omega(g) = \int_{x_0}^{g(x_0)} \pi^*(\omega),
\]

where the integral is done over any path connecting \(x_0 \) and \(g(x_0) \). By definition of \(\mathcal{H}_G^1 \), the above integral is independent of the chosen path. Moreover, since \(\pi^*(\omega) \) is the pull-back of \(\omega \) by the covering projection, it follows that \(\varphi_\omega(g) \) is independent of the choice of \(\rho_0 \) or \(x_0 \). Thus \(\omega \mapsto \varphi_\omega \) gives a canonical homomorphism between \(\mathcal{H}_G^1 \) and \(\text{Hom}(G, \mathbb{R}) \). The fact that this is an isomorphism follows from the transitivity of the action of \(G \) on fibers.

\(^2\) Note, since \(\lambda_0 \) manifestly belongs to the spectrum of \(-\Delta\), the function \(g_\omega \) is not unique. Moreover, one has to verify a solvability condition to ensure that solutions to equation (2.4) exist. We do this in Lemma 4.5, which is proved in Section 4.4, below.
Finally, to define C_I, we let
\begin{equation}
H^k_M \defeq \left\{ \omega \in H^k_G \left| \int_{\gamma} \omega \in \mathbb{Z}, \text{ for all closed loops } \gamma \subseteq M \right. \right\}.
\end{equation}

Clearly H^k_M is isomorphic to \mathbb{Z}^k, and hence we can find $\omega_1, \ldots, \omega_k \in H^1_M$ which form a basis of H^k_M. We will show that C_I is given by
\begin{equation}
C_I(x, y) = (2\pi)^{k/2} \left| \det \left((\langle \omega_i, \omega_j \rangle)_{1 \leq i, j \leq k} \right) \right|^{-1/2} \phi_0(x) \phi_0(y).
\end{equation}

Notice that the value of $C_I(x, y)$ does not depend on the choice of the basis $(\omega_1, \ldots, \omega_k)$. Indeed, if $(\omega'_1, \ldots, \omega'_k)$ is another such basis of the \mathbb{Z}-module H^k_M, since the change-of-basis matrix belongs to $GL(k, \mathbb{Z})$, it must have determinant ± 1.

Although the construction of I, C_I, d_I above seems to quite technical, it will be clear that they all arise naturally in the computation developed in the proof of Theorem 2.1.

We conclude this section by making a few remarks on simple and illustrative special cases.

Remark 2.2 (Neumann boundary condition). If Neumann boundary conditions are imposed on all of ∂M (i.e. $\partial_D M = \emptyset$), then the definitions of C_I and d_I simplify considerably. First, as mentioned earlier, under Neumann boundary conditions we have
\[\lambda_0 = 0, \quad \phi_0 \equiv \text{vol}(M)^{-1/2}, \]
and hence
\begin{equation}
\langle \omega, \tau \rangle_I = \frac{8\pi^2}{\text{vol}(M)} \int_M \omega \cdot \tau,
\end{equation}
is a multiple of the standard L^2 inner-product. Above $\omega \cdot \tau$ denotes the inner-product on 1-forms inherited from the metric on M. In this case
\[d_I(x, y) = \left(\frac{\text{vol}(M)}{8\pi^2} \right)^{1/2} \sup_{\omega \in H^0_N \parallel \omega \parallel_{L^2(M)} = 1} \int_M \omega^*(\omega), \]
and
\[C_I(x, y) = \frac{(2\pi)^{k/2}}{\text{vol}(M)} \left| \det \left((\langle \omega_i, \omega_j \rangle)_{1 \leq i, j \leq k} \right) \right|^{-1/2} \]
is a constant independent of $x, y \in \tilde{M}$.

Note that under Neumann boundary conditions the heat kernel $\hat{H}(t, x, y)$ on the covering space \tilde{M} decays like $t^{-k/2}$ as $t \to \infty$. In contrast, if Dirichlet boundary conditions are imposed on part of the boundary (i.e. $\partial_D M \neq \emptyset$), then we know $\lambda_0 > 0$ and ϕ_0 is not constant. In this case, $\langle \cdot, \cdot \rangle_I$ is not a constant multiple of the standard L^2 inner product, and $\hat{H}(t, x, y)$ decays with rate $t^{-k/2}e^{-\lambda_0 t}$.

Remark 2.3 (Comparison with the Heat Kernel Decay on M). Let H is the heat kernel of Δ on M. Since M is compact by assumption, the spectral decomposition of $-\Delta$ shows that
\[H(t, p, q) \approx e^{-\lambda_0 t} \phi_0(p) \phi_0(q), \]
for $p, q \in M$, as $t \to \infty$.

Thus, using Theorem 2.1 we see
\[\lim_{t \to \infty} \frac{t^{k/2} \hat{H}(t, x, y)}{H(t, \pi(x), \pi(y))} = \frac{(2\pi)^{k/2}}{|G_T|} \left| \det \left((\langle \omega_i, \omega_j \rangle)_{1 \leq i, j \leq k} \right) \right|^{-1/2}. \]
Namely, the heat kernel $\hat{H}(t,x,y)$ decays faster than $H(t,p,q)$ by exactly the polynomial factor $t^{-k/2}$.

Remark 2.4 (Computation of ω_i in planar domains). Suppose for now that M is a bounded planar domain with k holes excised, and rank$(G_F) = k$. In this case, the basis $\{\omega_1, \ldots, \omega_k\}$ can be constructed directly by solving some boundary value problems. Indeed, choose (p_j, q_j) inside the jth excised hole and define the harmonic form τ_j by

$$\tau_j \overset{\text{def}}{=} \frac{1}{2\pi} \left(\frac{(p - p_j) dq - (q - q_j) dp}{(p - p_j)^2 + (q - q_j)^2} \right).$$

Define $\phi_j : M \to \mathbb{R}$ to be the solution of the PDE

$$\begin{cases} -\Delta \phi_j = 0 & \text{in } M, \\ \partial_\nu \phi_j = \tau_j \cdot \nu & \text{on } \partial M. \end{cases}$$

Then ω_j is given by

$$\omega_j = \tau_j + d\phi_j.$$

The situation is completely explicit in the case when M is a symmetric annulus (see Remark 3.3).

3. The Abelianized Winding of Brownian Motion on Manifolds.

We now study the asymptotic behaviour of the (abelianized) winding of trajectories of reflected Brownian motion on the manifold M using the heat kernel asymptotics given by Theorem 2.1. Although we formulate our result in the geometric setting, the intuition is mostly clear when M is a bounded planar domain with multiple punctured holes. Abelianized winding means we are counting the winding number of the Brownian trajectory around each hole but do not keep track of the order of winding around different holes.

The winding of trajectories can be naturally quantified by lifting them to the universal cover. More precisely, let \tilde{M} be the universal cover of M, and recall that the fundamental group $\pi_1(M)$ acts on \tilde{M} as deck transformations. Fix a fundamental domain $\bar{U} \subseteq \tilde{M}$, and for each $g \in \pi_1(M)$ define \bar{U}_g to be the image of \bar{U} under the action of g. Also, define $\bar{g} : \tilde{M} \to \pi_1(M)$ by

$$\bar{g}(x) = g, \quad \text{if } x \in U_g,$$

to be the map recording which fundamental domain the current position belongs to.

Now given a reflected Brownian motion W in M with normal reflection at the boundary, let \tilde{W} be the unique lift of W to \tilde{M} starting in \bar{U}. Define $\tilde{\rho}(t) = \bar{g}(\tilde{W}_t) \in \pi_1(M)$. Note that $\tilde{\rho}(t)$ measures the (non-abelian) winding of the trajectory of W up to time t.

Our main result of Theorem 2.1 will enable us to study the asymptotic behaviour of the projection of $\tilde{\rho}$ to the abelianized fundamental group $\pi_1(M)_{\text{ab}}$. We know that

$$G \overset{\text{def}}{=} \pi_1(M)_{\text{ab}} / \text{tor}(\pi_1(M)_{\text{ab}})$$

is a finitely generated free abelian group, and we let $k = \text{rank}(G)$. Let $\pi_G : \pi_1(M) \to G$ be the projection of the fundamental group of M onto G. Fix a choice of loops $\gamma_1, \ldots, \gamma_k \in \pi_1(M)$ so that $\pi_G(\gamma_1), \ldots, \pi_G(\gamma_k)$ form a basis of G.
Definition 3.1. The \mathbb{Z}^k-valued winding number of W, which is denoted as $\rho(t)$, is the \mathbb{Z}^k-valued coordinate process of $\pi_G(\bar{\rho}(t))$ with respect to the basis $\pi_G(\gamma_1), \ldots, \pi_G(\gamma_k)$. Explicitly, $\rho(t) = (\rho_1(t), \ldots, \rho_k(t))$ where

$$\pi_G(\bar{\rho}(t)) = \sum_{i=1}^{k} \rho_i(t) \pi_G(\gamma_i).$$

Note that the \mathbb{Z}^k-valued winding number defined above depends on the choice of basis $\gamma_1, \ldots, \gamma_k$. If M is a planar domain with k holes, we can choose γ_i to be a loop that only winds around the ith hole once. In this case, $\rho_i(t)$ is the number of times the trajectory of W winds around the ith hole up to time t.

Our main result concerning the asymptotic long time behaviour of ρ can be stated as follows.

Theorem 3.2. Let W be a normally reflected Brownian motion in M, and ρ be its \mathbb{Z}^k valued winding number (as in Definition 3.1). Then, there exists a positive definite, explicitly computable covariance matrix Σ (defined in (3.3), below) such that

$$\frac{\rho(t)}{t} \xrightarrow{p} 0 \quad \text{and} \quad \frac{\rho(t)}{\sqrt{t}} \xrightarrow{w} \mathcal{N}(0, \Sigma).$$

Here $\mathcal{N}(0, \Sigma)$ denotes a normally distributed random variable with mean 0 and covariance matrix Σ.

We now define the covariance matrix Σ above. Given $\omega \in \mathcal{H}^1$ define the map $\varphi_\omega \in \text{Hom}(\pi_1(M), \mathbb{R})$ by

$$\varphi_\omega(\gamma) = \int_\gamma \omega.$$

It is well known that the map $\omega \mapsto \varphi_\omega$ provides an isomorphism between \mathcal{H}^1 and $\text{Hom}(\pi_1(M), \mathbb{R})$. Hence there exists a unique dual basis $\{\omega_1, \ldots, \omega_k\}$ in \mathcal{H}^1 such that

$$\int_{\gamma_i} \omega_j = \delta_{i,j}.$$

The covariance matrix Σ appearing in Theorem 3.2 is given by

$$\Sigma_{i,j} \overset{\text{def}}{=} \frac{1}{\text{vol } M} \int_M \omega_i \cdot \omega_j.$$

The proof of Theorem 3.2 follows quite easily from our heat kernel result of Theorem 2.1, which will be given in Section 5 below. We remark, modulo certain amount of technicalities, that Theorem 3.2 can also be proved by using a probabilistic method. We sketch the argument in Section 5.3. To our best knowledge, even in the Euclidean setting, such a result and its proof are not readily available in the literature.

A basic example of Theorem 3.2 is the case when M is a bounded planar domain with multiple holes. In this case, in the limiting Gaussian distribution described in the proposition, the forms ω_i can be obtained quite explicitly following Remark 2.4. The winding of Brownian motion in planar domains is a classical topic which has been studied extensively as discussed in the introduction. In particular, Toby and Werner [TW95] studied the long time asymptotics of the winding number of an obliquely reflected Brownian motion in a bounded planar domain. Under normal
Remark 3.3 (An explicit calculation in the annulus). When $M \subseteq \mathbb{R}^2$ is an annulus the covariance matrix Σ can be computed explicitly. Explicitly, for $0 < r_1 < r_2$ and let

$$A \overset{\text{def}}{=} \{ p \in \mathbb{R}^2 \mid r_1 < |p| < r_2 \}$$

be the annulus with inner radius r_1 and outer radius r_2. In this case, $k = 1$ and define $\rho(t)$ is simply the integer-valued winding number of the reflected Brownian motion in A with respect to the inner hole. Now $k = 1$ and the one form ω_1 can be obtained from Remark 2.2. Explicitly, we choose $p_1 = q_1 = 0$, and define τ_1 by (2.11).

Now $\tau_1 \cdot \nu = 0$ on ∂M, forcing $\phi_1 = 0$ and hence $\omega_1 = \tau_1$. Thus Theorem 3.2 shows that $\rho(t)/\sqrt{t} \to \mathcal{N}(0, \Sigma)$ weakly as $t \to \infty$. Moreover equation (3.3) and (2.10) show that Σ is the 1×1 matrix (σ^2) where

$$\sigma^2 = \frac{1}{\text{vol } A} \int_A |\omega_1|^2 = \frac{1}{2\pi^2(r_2^2 - r_1^2)} \log \left(\frac{r_2}{r_1} \right).$$

We remark, however, that in this case a finer asymptotic result is available. Namely, Wen [Wen17] shows that for large time

$$\text{Var}(\rho(t)) \approx \frac{1}{4\pi^2} \left(\ln^2 \left(\frac{r_2}{r_1} \right) - \ln^2 \left(\frac{r_1}{r_0} \right) \right) + \frac{\ln(r_2/r_1)}{2\pi^2(r_2^2 - r_1^2)} \left(t - r_2^2 \ln \left(\frac{r_2}{r_0} \right) - r_1^2 \ln \left(\frac{r_2}{r_1} \right) \right)$$

where $r_0 = |W_0|$ is the radial coordinate of the starting point. Note Theorem 2.1 only shows $\text{Var} \rho(t)/t \to \sigma^2$ as $t \to \infty$. Wen’s result above goes further by providing explicit limit for $\text{Var} \rho(t) - \sigma^2 t$ as $t \to \infty$.

Remark 3.4 (Winding in Knot Compliments). Another interesting example is the winding of 3D Brownian motion around knots. Recall that a knot K is an embedding of S^1 into \mathbb{R}^3. A basic topological invariant of a knot K is the fundamental group $\pi_1(\mathbb{R}^3 - K)$ which is known as the knot group of K. The study of the fundamental group $\pi_1(\mathbb{R}^3 - K)$ is important for the classification of knots and has significant applications in mathematical physics. It is well known that the abelianized fundamental group of $\mathbb{R}^3 - K$ is always cyclic.

Let K be a knot in \mathbb{R}^3. Consider the domain $M = \Omega - N_K$, where N is a small tubular neighborhood of K and Ω is a large bounded domain (a ball for instance) containing N_K. Let $W(t)$ be a reflected Brownian motion in M, and define $\rho(t)$ to be the \mathbb{Z}-valued winding number of W with respect to a fixed generator of $\pi_1(M)_{ab}$. Now $\rho(t)$ contains information about the entanglement of $W(t)$ with the knot K. Theorem 3.2 applies in this context, and shows that the long time behaviour of ρ is Gaussian with mean 0 and covariance given by (3.3).

In some cases, the generator of $\pi_1(M)_{ab}$ (which was used above in defining ρ) can be written down explicitly. For instance, consider the (m,n)-torus knot, $K = K_{m,n}$, defined by $S^1 \ni z \mapsto (z^m, z^n) \in S^1 \times S^1$ where $\gcd(m,n) = 1$. Then $\pi_1(M)$ is isomorphic to the free group with two generators a and b, modulo the relation $a^m = b^n$. Here a represents a meridional circle inside the open solid torus and b represents a longitudinal circle winding around the torus in the exterior. In this case,
a generator of $\pi_1(M)_{ab}$ is $a^m b^n$, where m', n' are integers such that $mm' + nn' = 1$. Now $a^m b^n$ represents a unit winding around the knot K, and $\rho(t)$ describes the total number of windings around K.

The main tool used in the proof of Theorem 2.1 is an integral representation due to Lott [Lot92] and Kotani-Sunada [KS00]. Note that heat kernel H on M can be easily computed in terms of the heat kernel \hat{H} on the cover \hat{M} using the identity

\begin{equation}
H(t,p,q) = \sum_{y \in \pi^{-1}(q)} \hat{H}(t,x,y),
\end{equation}

for any $x \in \pi^{-1}(p)$. Seminal work of Lott [Lot92] and Kotani-Sunada [KS00] address an inverse representation where $\hat{H}(t,x,y)$ is expressed as the integral of a compact family of heat kernels on twisted bundles over M. Since M is compact, the long time behaviour of these twisted heat kernels is governed by the principal eigenvalue of the associated twisted Laplacians. Thus, using the integral representation in [Lot92,KS00], the long time behaviour of \hat{H} can be deduced by studying the behaviour of the above principal eigenvalues near the maximum.

In the case when only Neumann boundary conditions are imposed on ∂M (i.e. if $\partial_D M = \emptyset$), the arguments in [Lot92,KS00] can be adapted easily. The main difficulty arises when Dirichlet boundary condition is presented in which case the principal eigenvalue is strictly positive. In this case, it requires finer spectral analysis of twisted Laplacians than what is available in [Lot92,KS00].

Plan of this section. In Section 4.1 we describe the Lott / Kotani-Sunada representation of the lifted heat kernels. In Section 4.2 we use this representation to prove Theorem 2.1, modulo two key lemmas (Lemmas 4.4 and 4.5, below) concerning the behaviour of the principal eigenvalue of twisted Laplacians. Finally in Sections 4.3 and 4.4 we prove Lemmas 4.4 and 4.5 respectively.

4.1. A Integral Representation of the Lifted Heat Kernel. We begin by describing the Lott [Lot92] / Kotani-Sunada [KS00] representation of the heat kernel \hat{H}. Let $S^1 = \{ z \in \mathbb{C} | |z| = 1 \}$ be the unit circle and let

$$
\mathcal{G} \overset{\text{def}}{=} \text{Hom}(G, S^1),
$$

be the space of one dimensional unitary representations of G. We know that \mathcal{G} is isomorphic to $(S^1)^k$, and hence is a compact Lie group with a unique normalized Haar measure.

For each given $\chi \in \mathcal{G}$, define an equivalence relation on $\hat{M} \times \mathbb{C}$ by

$$
(x, \zeta) \sim (g(x), \chi(g)\zeta) \quad \text{for all } g \in G,
$$

and let E_χ be the quotient space $\hat{M} \times \mathbb{C}/\sim$. It follows that E_χ is a complex line bundle on \hat{M}. E_χ carries a natural connection defined by usual differentiation, which together with the Levi-Civita connection on M, induce an associated Laplacian Δ_χ acting on the space $C^\infty(E_\chi)$ of sections of E_χ. If we impose Dirichlet boundary conditions on $\partial_D \hat{M}$ and Neumann boundary conditions on $\partial_N \hat{M}$ respectively, then $-\Delta_\chi$ is a self-adjoint and positive-definite elliptic differential operator on $L^2(E_\chi)$.
The above constructions can be easily understood in the following way. First of all, sections of E_χ can be identified with functions $s: \hat{M} \to \mathbb{C}$ satisfying the twisting condition
\[(4.2) \quad s(g(x)) = \chi(g)s(x), \quad \forall x \in \hat{M}, \ g \in G.\]
Define the space
\[(4.3) \quad D_\chi \overset{\text{def}}{=} \{ s \in C^\infty(\hat{M}, \mathbb{C}) \mid s \text{ satisfies } (4.2), \ s = 0 \text{ on } \partial D\hat{M}, \ 	ext{and } \nu \cdot \nabla s = 0 \text{ on } \partial_N\hat{M} \}.
\]
Then Δ_χ is simply the restriction of the usual Laplacian $\hat{\Delta}$ on \hat{M}, and the L^2 inner-product is given by
\[(4.4) \quad \langle s_1, s_2 \rangle_{L^2} \overset{\text{def}}{=} \int_M s_1(x_p) \bar{s_2(x_p)} \, dp, \]
for $s_1, s_2 \in D_\chi$. Here for each $p \in M$, x_p is any point in the fiber $\pi^{-1}(p)$ such that the function $p \mapsto x_p$ is measurable. The twisting condition (4.2) ensures that (4.4) is independent of the choice of x_p.

Remark 4.1. When $\chi \equiv 1$ is the trivial representation, E_χ is exactly the trivial line bundle $M \times \mathbb{C}$, sections of E_χ are just functions on M, and Δ_χ is the standard Laplacian Δ on M.

Let $H_\chi(t, x, y)$ be the heat kernel of $-\Delta_\chi$ on E_χ (see [BGV92] for the general construction of heat kernels on vector bundles). We can view H_χ as a function on $(0, \infty) \times \hat{M} \times \hat{M}$ satisfying the twisting conditions
\[H_\chi(t, g(x), y) = \chi(g)H_\chi(t, x, y) \quad \text{and} \quad H_\chi(t, x, g(y)) = \overline{\chi(g)}H_\chi(t, x, y).
\]
The Lott [Lot92] and Kotani-Sunada [KS00] representation expresses \hat{H} in terms of H_χ, and allows us to use properties of H_χ to study \hat{H}.

Lemma 4.2 (Lott, Kotani-Sunada). The heat kernel \hat{H} on \hat{M} satisfies the identity
\[(4.5) \quad \hat{H}(t, x, y) = \int_G H_\chi(t, x, y) \, d\chi,
\]
where the integral is performed with respect to the normalized Haar measure $d\chi$ on G.

Proof. Since a full proof can be found in [Lot92, Proposition 38], and [KS00, Lemma 3.1], we only provide a short formal derivation. Suppose \hat{H} is defined by (4.5). Clearly \hat{H} satisfies the heat equation with Dirichlet boundary conditions on $\partial_D\hat{M}$ and Neumann boundary conditions on $\partial_N\hat{M}$). For the initial condition, observe
\[H_\chi(0, x, y) = \sum_{g \in G} \overline{\chi(g)} \delta_{g(x)}(y),
\]
where $\delta_{g(x)}$ denotes the Dirac delta function at $g(x)$. Integrating over G and using the orthogonality property
\[\int_G \chi(g) \, d\chi \begin{cases} 1 & g = \text{Id} \\ 0 & g \neq \text{Id}, \end{cases}\]
we see that $\hat{H}(0, x, y) = \delta_x(y)$, and hence \hat{H} must be the heat kernel on \hat{M}. \qed
Remark 4.3. The integral representation (4.5) is similar to Fourier transform and inversion. Indeed, for each $\chi \in G$, it is easy to see that

$$H_\chi(t, x, y) = \sum_{g \in G} \chi(g) \hat{H}(t, x, g(y)).$$

One can view $G \ni \chi \mapsto H_\chi$ as some sort of Fourier transform of \hat{H}, and equation (4.5) gives the Fourier inversion formula.

4.2. Proof of the Heat Kernel Asymptotics (Theorem 2.1). The representation (4.5) allows us to study the long time behaviour of \hat{H} using the long time behaviour of H_χ. Since M is compact, the long time behaviour of the heat kernels H_χ can be studied by spectral theory. More precisely, the twisted Laplacian Δ_χ admits a sequence of eigenvalues $0 \leq \lambda_{\chi, 1} \leq \lambda_{\chi, 2} \leq \cdots \leq \lambda_{\chi, j} \leq \cdots \uparrow \infty$, and a corresponding sequence of eigenfunctions $\{s_{\chi, j} \mid j \geq 0\} \subseteq D_\chi$ which forms an orthonormal basis of $L^2(E_\chi)$. According to perturbation theory, $\lambda_{\chi, j}$ is smooth in χ, and up to a normalization $s_{\chi, j}$ can be chosen to depend smoothly on χ. The heat kernel $H_\chi(t, x, y)$ can now be written as

$$H_\chi(t, x, y) = \sum_{j=0}^\infty e^{-\lambda_{\chi, j}t} s_{\chi, j}(x)s_{\chi, j}(y).$$

Note that since M is compact, the above heat kernel expansion is uniform in $x, y \in \hat{M}$ provided the boundary is smooth. This can be seen from the fact that the eigenfunction $s_{\chi, j}$ is uniformly bounded by a polynomial power of eigenvalue $\lambda_{\chi, j}$, together with Weyl’s law on the growth the eigenvalues. Combining (4.6) with Lemma 4.2, we have

$$\hat{H}(t, x, y) = \sum_{j=0}^\infty \int_G e^{-\lambda_{\chi, j}t} s_{\chi, j}(x)s_{\chi, j}(y)d\chi.$$

From (4.7), it is natural to expect that the long time behaviour of \hat{H} is controlled by the initial term of the series expansion. In this respect, there are two key ingredients for proving Theorem 2.1. The first key point, which is the content of Lemma 4.4, will allow us to see that the integral $\int_G e^{-\lambda_{\chi, j}t} s_{\chi, 0}(x)s_{\chi, 0}(y)d\chi$ concentrates at the trivial representation $\chi = 1$ when t is large. Having such concentration property, the second key point, which is the content of Lemma 4.5, will then allow us to determine the long time asymptotics of H precisely from the rate at which $\lambda_{\chi, 0} \to \lambda_0$ as $\chi \to 1 \in G$. Note that when $\chi = 1$, the corresponding eigenvalue $\lambda_{1, 0}$ is exactly λ_0, the principal eigenvalue of $-\Delta$ on M.

Lemma 4.4 (Minimizing the principal eigenvalue). The function $\chi \mapsto \lambda_{\chi, 0}$ attains a unique global minimum on G at the trivial representation $\chi = 1$.

We prove Lemma 4.4 in Section 4.3 below. Note that when $\chi = 1$, Δ_χ is simply the standard Laplacian Δ acting on functions on M. If Neumann boundary conditions are imposed on all of ∂M (i.e. when $\partial_D M = \emptyset$), $\lambda_{1, 0} = 0$. In this case, the proof of Lemma 4.4 can be adapted from the arguments in [Sun89] (see also a direct proof in Section 4.3 in the Neumann boundary case). If, however, Dirichlet boundary conditions are imposed on a portion of ∂M (i.e. $\partial_D M \neq \emptyset$), then $\lambda_{1, 0} > 0$ and the proof of Lemma 4.4 requires some work.
In view of (4.7) and Lemma 4.4, to determine the long time behaviour of \hat{H} we also need to understand the rate at which $\lambda_{\chi,0}$ approaches the global minimum as $\chi \to 1$. When G is torsion free, the problem can be reduced to the linear space \mathcal{H}_G^1.

To be precise, \mathcal{H}_G^1 can be identified as the Lie algebra of G in which the exponential map is given by

$$
\mathcal{H}_G^1 \ni \omega \mapsto \chi_\omega(g) = \exp\left(2\pi i \int_{x_0}^{g(x_0)} \pi^*(\omega) \in \mathcal{G}\right),
$$

where x_0 is some base point and the integral is taken over any smooth path in \hat{M} joining x_0 and $g(x_0)$.

Now the rate at which $\lambda_{\chi,0} \to \lambda_0$ as $\chi \to 1 \in \mathcal{G}$ can be obtained from the rate at which $\lambda_{\chi,0} \to \lambda_0$ as $\omega \to 0 \in \mathcal{H}_G^1$. In fact, we claim that the quadratic form induced by the Hessian of the map $\omega \mapsto \lambda_{\chi,0}$ at $\omega = 0$ is precisely $\mathcal{I}(\omega)$ defined by (2.3), and this determines the rate at which $\lambda_{\chi,0}$ approaches the global minimum λ_0.

Lemma 4.5 (Positivity of the Hessian). For any $\varepsilon > 0$, there exists $\delta > 0$ such that if $0 < |\omega| < \delta$ we have

$$
|\lambda_{\chi,0} - \lambda_0 - \mathcal{I}(\omega) / 2| < \varepsilon \|\omega\|^2_{L^2(M)},
$$

where $\mathcal{I}(\omega)$ is defined in (2.3). Moreover, the map $\omega \mapsto \mathcal{I}(\omega)$ is a well defined quadratic form, and induces a positive definite inner product on \mathcal{H}_G^1.

We point out that the positivity of the quadratic form $\mathcal{I}(\omega)$ is crucial. As mentioned earlier (Remark 2.2), if only Neumann boundary condition is imposed on ∂M, $\mathcal{I}(\omega)$ is simply a multiple of the standard L^2 inner product on 1-forms over M, and the positivity is straight forward. The main difficulty again lies in the case of Dirichlet boundary condition. We prove Lemma 4.5 in Section 4.4.

Assuming Lemma 4.4 and Lemma 4.5 for the moment, we can now prove Theorem 2.1. We first consider the case when G is torsion free, and will later show how this implies the general case. The main technical care is given to proving the uniform convergence.

Proof of Theorem 2.1 when G is torsion free. Note first that Lemma 4.4 allows us to localize the integral in (4.7) to an arbitrarily small neighborhood of the trivial representation 1. More precisely, we claim that for any open neighborhood R of $1 \in \mathcal{G}$, there exist constants $C_1 > 0$, such that

$$
\sup_{x,y \in \hat{M}} \left| e^{\lambda t} \hat{H}(x,y,t) - \int_R e^{-\lambda_{\chi,0} t} s_{\chi,0}(x) s_{\chi,0}(y) d\chi \right| \leqslant e^{-C_1 t}.
$$

This in particular implies that the long time behaviour of $\hat{H}(t,x,y)$ is determined by the long time behaviour of the integral representation around an arbitrarily small neighborhood of $1 \in \mathcal{G}$.

To establish (4.10), recall that Rayleigh’s principle and the strong maximum principle guarantee that $\lambda_{1,0}$ is simple. Standard perturbation theory (c.f. [RS78], Theorem XII.13) guarantees that when χ is sufficiently close to 1, the eigenvalue $\lambda_{\chi,0}$ is also simple (i.e. $\lambda_{\chi,0} < \lambda_{1,1}$). Now, by Lemma 4.4, we observe

$$
\lambda' \overset{def}{=} \min \{ \inf \{ \lambda_{\chi,1} \mid \chi \in \mathcal{G} \}, \inf \{ \lambda_{\chi,0} \mid \chi \in \mathcal{G} - R \} \} > \lambda_0.
$$

Hence by choosing $C_1 \in (0, \lambda' - \lambda_0)$, we have
Then where we have where (4.12) function on (4.2) and hence can be viewed as a section of (4.13) \(\sigma \) is taken along any smooth path in \(\sigma \). Thus, using (4.10), we have

\[
\sup_{x,y \in M} \left| \sum_{j=1}^{\infty} \int_{\mathcal{G}} e^{-(\lambda_{x,j} - \lambda_0)t}s_{x,j}(x)s_{x,j}(y) d\chi \right| + \left| \int_{\mathcal{G}-R} e^{-(\lambda_{x,0} - \lambda_0)t}s_{x,0}(x)s_{x,0}(y) d\chi \right| \leq e^{-C_1t}
\]

for all \(t \) sufficiently large. This immediately implies (4.10).

For any small neighborhood \(R \) of \(1 \) as before, our next task is to convert the integral over \(R \) in (4.10) to an integral over a neighborhood of \(0 \) in \(\mathcal{H}_G^1 \) (the Lie algebra of \(\mathcal{G} \)) using the exponential map (4.8). To do this, recall \(\{\omega_1, \ldots, \omega_k\} \) was chosen to be a basis of \(\mathcal{H}_G^1 \subseteq \mathcal{H}_G^k \). Identifying \(\mathcal{H}_G^1 \) with \(\mathbb{R}^k \) using this basis, we let \(d\omega \) denote the pullback of the Lebesgue measure on \(\mathbb{R}^k \) to \(\mathcal{H}_G^1 \). Equivalently, \(d\omega \) is the Haar measure on \(\mathcal{H}_G^1 \) normalized so that the parallelogram with sides \(\omega_1, \ldots, \omega_k \) has measure 1. Clearly

\[
\int_R \exp\left(-(\lambda_{x,0} - \lambda_0)t\right)s_{x,0}(x)s_{x,0}(y) d\chi = \int_T \exp\left(-(\mu_\omega - \lambda_0)t\right)s_{x,0}(x)s_{x,0}(y) d\omega,
\]

where \(\mu_\omega \overset{\text{def}}{=} \lambda_{x,0} \) and \(T \) is the inverse image of \(R \) under the map \(\omega \mapsto \chi_.. \).

Recall that the eigenfunctions \(s_{x,0} \) appearing above are sections of the twisted bundle \(E_{\chi_{x_{}}(.)} \). They can be converted to functions on \(M \) using some canonical section \(\sigma_{\omega} \). Explicitly, let \(x_0 \in \tilde{M} \) be a fixed base point. For given \(\omega \in \mathcal{H}_G^1 \), define \(\sigma_{\omega} : \tilde{M} \to \mathbb{C} \) by

\[
\sigma_{\omega}(x) \overset{\text{def}}{=} \exp\left(2\pi i \int_{x_0}^x \pi^*(\omega)\right),
\]

where \(\pi^*(\omega) \) is the pullback of \(\omega \) to \(\tilde{M} \) via the covering projection \(\pi \), and the integral is taken along any smooth path in \(\tilde{M} \) joining \(x_0 \) and \(x \). Observe that for any \(g \in G \), we have

\[
\sigma_{\omega}(g(x)) = \sigma_{\omega}(x) \exp\left(2\pi i \int_x^g \pi^*(\omega)\right) = \chi_\omega(g)\sigma_{\omega}(x),
\]

where \(\chi_\omega \in \mathcal{G} \) is defined in equation (4.8). Thus \(\sigma_{\omega} \) satisfies the twisting condition (4.2) and hence can be viewed as a section of \(E_{\chi_{x_{}}(.)} \). Now define

\[
\phi_{\omega} \overset{\text{def}}{=} \sigma_{\omega} s_{x,0}.\]

Then \(\phi_{\omega}(g(x)) = \phi_{\omega}(x) \) for all \(g \in \mathcal{G} \), and thus \(\phi_{\omega} \) can be viewed as a smooth function on \(M \).

We can now rewrite (4.11) as

\[
\int_R \exp\left(-(\lambda_{x,0} - \lambda_0)t\right)s_{x,0}(x)s_{x,0}(y) d\chi = \int_T \exp\left(-(\mu_\omega - \mu_0)t - 2\pi i \xi_{x,y}(\omega)\right)\phi_{\omega}(x)\phi_{\omega}(y) d\omega.
\]

where \(\xi_{x,y}(\omega) \) is defined in (2.6). Thus, using (4.10), we have

\[
\sup_{x,y \in M} \left| e^{\lambda_{x_{}}t} \hat{H}(x,y,t) - I_1 \right| \leq e^{-C_1t}, \quad \text{for } t \text{ sufficiently large.}
\]
Here
\[I_1 \overset{\text{def}}{=} \int_{\mathcal{H}_G} \exp\left(-\frac{\mu - \mu_0}{t} - 2\pi i \xi_{x,y}(\omega)\right) \phi_\omega(x) \overline{\phi_\omega(y)} \, d\omega, \]
and \(C_1 \) is the constant appearing in (4.10), and depends on the neighborhood \(R \).

By making the neighborhood \(R \) (and hence also \(T \)) small, we can ensure that \(\phi_\omega \) close to \(\phi_0 \). Moreover, when \(\omega \) is close to 0, Lemma 4.5 implies \(\mu - \mu_0 \approx I(\omega)/2 \).

We claim that for any \(\eta > 0 \), the neighborhood \(R \ni 1 \) can be chosen such that
\[\lim sup_{t \to \infty} \sup_{x,y \in M} t^{k/2} (I_1 - I_2) < \eta, \tag{4.16} \]
where
\[I_2 \overset{\text{def}}{=} \int_{\mathcal{H}_G} \exp\left(-\frac{1}{2} I(\omega)t - 2\pi i \xi_{x,y}(\omega)\right) \phi_0(x) \overline{\phi_0(y)} \, d\omega. \]

To avoid breaking continuity, we momentarily postpone the proof of (4.16). Now we see that (4.15) and (4.16) combined imply
\[\lim_{t \to \infty} \left(t^{k/2} e^{\lambda_0 t} \hat{H}(t, x, y) - t^{k/2} I_2 \right) = 0 \tag{4.17} \]
Therefore, to complete the proof, we only need to evaluate \(I_2 \) and express it in the form in (2.1).

To do this, write \(\omega = \sum c_n \omega_n \in \mathcal{H}_G \), and
\[\mathcal{I}(\omega) = \sum_{m,n=1}^k a_{m,n} c_m c_n, \]
where \(a_{m,n} \overset{\text{def}}{=} \langle \omega_m, \omega_n \rangle \). Let \(A \) be the matrix \((a_{m,n}) \), and \(a_{m,n}^{-1} \) be the \((m, n) \) entry of the matrix \(A^{-1} \). Then
\[I_2 = \phi_0(x) \overline{\phi_0(y)} \int_{c \in \mathbb{R}^k} \exp\left(-\sum_{m,n=1}^k a_{m,n} c_m c_n t - 2\pi i \sum_{m=1}^k c_m \xi_{x,y}(\omega_m)\right) \, dc_1 \cdots dc_k \]
\[= \phi_0(x) \overline{\phi_0(y)} \frac{(2\pi)^{k/2}}{t^{k/2} \det(a_{m,n})^{1/2}} \exp\left(-\frac{2\pi^2}{t} \sum_{m,n=1}^k a_{m,n}^{-1} \xi_{x,y}(\omega_m) \xi_{x,y}(\omega_n)\right) \]
\[= \phi_0(x) \overline{\phi_0(y)} \frac{(2\pi)^{k/2}}{t^{k/2} \det(a_{m,n})^{1/2}} \exp\left(-\frac{2\pi^2}{t} \|\xi_{x,y}\|_2^2\right), \]
where the second equality follows from the formula for the Fourier transform of Gaussian distribution. Note that \(\phi_0 \) is real, and therefore
\[I_2 = t^{-k/2} C_T(x, y) \exp\left(-\frac{2\pi^2 d_T^2(x, y)}{t}\right), \]
where \(C_T \) is defined by (2.9). Combined with (4.17), this finishes the proof of Theorem 2.1 when \(G \) is torsion free.

It remains to prove (4.16). Since \(\omega \mapsto \phi_\omega \) is continuous, there exists a neighborhood \(T \ni 0 \) such that
\[\sup_{x \in M} |\phi_\omega(x) - \phi_0(x)| < \eta \quad \text{for all } \omega \in T. \tag{4.18} \]
Now we know that (4.15) holds with some constant $C_1 = C_1(\eta) > 0$ when t is large. Write $$t^{k/2}(I_1 - I_2) = J_1 + J_2 + J_3,$$ where

$$J_1 \overset{\text{def}}{=} t^{k/2} \int_T \left(e^{-((\mu_0 - \mu)t)} - e^{-\mathcal{I}(\omega)t/2} \right) \exp(-2\pi i \xi_{x,y}(\omega)) \phi_\omega(x) \overline{\phi_\omega(y)} \, d\omega,$$

$$J_2 \overset{\text{def}}{=} t^{k/2} \int_T \exp\left(-\frac{1}{2} \mathcal{I}(\omega)t - 2\pi i \xi_{x,y}(\omega) \right) \left(\phi_\omega(x) \overline{\phi_\omega(y)} - \phi_0(x) \overline{\phi_0(y)} \right) \, d\omega,$$

and

$$J_3 \overset{\text{def}}{=} t^{k/2} \int_{\mathcal{H}} \exp\left(-\frac{1}{2} \mathcal{I}(\omega)t - 2\pi i \xi_{x,y}(\omega) \right) \phi_0(x) \overline{\phi_0(y)} \, d\omega.$$

First, by Lemma 4.5, $\mathcal{I}(\omega)$ is a positive definite quadratic form, and hence the Gaussian tail estimate shows there exists $C_2 = C_2(\eta) > 0$, such that

$$|J_3| \leq e^{-C_2 t}$$

uniformly in $x, y \in \hat{M}$, when t is sufficiently large.

Next, by (4.18) and the positivity of the quadratic form $\mathcal{I}(\omega)$, we have

$$|J_2| \leq C_3 \eta t^{k/2} \int_T e^{-\mathcal{I}(\omega)t/2} \, d\omega = C_3 \eta \int_{\sqrt{T}} e^{-\mathcal{I}(v)/2} \, dv \leq C_4 \eta,$$

uniformly in $x, y \in \hat{M}$.

Finally, to estimate J_1, first choose $K \subseteq \mathcal{H}_{\mathbb{C}}$ compact such that

$$\int_{\mathcal{H}_{\mathbb{C}} \setminus K} \exp\left(-\frac{1}{4} \mathcal{I}(v) \right) \, dv < \eta.$$

By using the same change of variables $v = \sqrt{t} \omega$, we write

$$J_1 = J_1' + J_1'',$$

where

$$J_1' \overset{\text{def}}{=} \int_K \left(\exp\left(-\left(\mu_{v/t^{1/2}} - \mu_0 \right)t \right) - \exp\left(-\frac{1}{2} \mathcal{I}(v) \right) \right) \exp\left(-\frac{2\pi i}{\sqrt{t}} \xi_{x,y}(v) \right) \phi_{v/t^{1/2}}(x) \overline{\phi_{v/t^{1/2}}(y)} \, dv$$

and

$$J_1'' \overset{\text{def}}{=} \int_{\sqrt{T} \setminus K} \left(\exp\left(-\left(\mu_{v/t^{1/2}} - \mu_0 \right)t \right) - \exp\left(-\frac{1}{2} \mathcal{I}(v) \right) \right) \exp\left(-\frac{2\pi i}{\sqrt{t}} \xi_{x,y}(v) \right) \phi_{v/t^{1/2}}(x) \overline{\phi_{v/t^{1/2}}(y)} \, dv$$

respectively. By Lemma 4.5, we know that

$$\lim_{t \to \infty} \left(\mu_{v/t^{1/2}} - \mu_0 \right)t = \frac{1}{2} \mathcal{I}(v),$$

for every $v \in \mathcal{H}_{\mathbb{C}}$. Therefore, by the dominated convergence theorem, we have

$$\lim_{t \to \infty} \sup_{x,y \in M} |J_1'| = 0.$$
To estimate J'', choose $\varepsilon > 0$ such that

$$\frac{1}{4} I(\omega) \geq \varepsilon \|\omega\|_{L^2(M)}^2, \quad \text{for all } \omega \in \mathcal{H}_G^1.$$

For this ε, Lemma 4.5 allows us to further assume that T is small enough so that

$$\omega \in T \implies \mu_{\omega} - \mu_0 \geq \frac{1}{2} I(\omega) - \varepsilon \|\omega\|_{L^2(M)}^2 \geq \frac{1}{4} I(\omega).$$

In particular, we have

$$v \in \sqrt{t} \cdot T \implies (\mu_{v/\sqrt{t}} - \mu_0) t \geq \frac{1}{4} I(v).$$

It follows that

$$J'' \leq C_5 \int_{\sqrt{t} \cdot T - K} \left(\exp\left(- \left(\mu_{v/\sqrt{t}} - \mu_0 \right) t \right) + \exp\left(- \frac{1}{2} I(v) \right) \right) dv$$

$$\leq 2C_5 \int_{\sqrt{t} \cdot T - K} \exp\left(- \frac{1}{4} I(v) \right) dv$$

$$\leq 2C_5 \int_{\mathcal{H}_G^1 - K} \exp\left(- \frac{1}{4} I(v) \right) dv$$

$$\leq 2C_5 \eta,$$

uniformly in $x, y \in \hat{M}$.

Combining the previous estimates, we conclude

$$\lim_{t \to \infty} \sup_{x, y \in M} \left(t^{k/2} (I_1 - I_2) \right) \leq (C_4 + 2C_5) \eta,$$

and η with $\eta/(C_4 + 2C_5)$ yields (4.16) as claimed.

When G is has a torsion subgroup, we prove Theorem 2.1 by factoring through an intermediate finite cover.

Proof of Theorem 2.1 when G has a torsion subgroup. Since G can be (non-canonically) expressed as a direct sum $G_T \oplus G_F$, we define $M_1 = \hat{M}/G_F$. This leads to the covering factorization

$$\hat{M} \xrightarrow{\pi} M_1 \xrightarrow{\pi_F} M,$$

where π_T and π_F have deck transformation groups G_T and G_F respectively, and M_1 is compact.

Recall that λ_0 is the principal eigenvalue of $-\Delta$ on M, and ϕ_0 is the corresponding L^2 normalized eigenfunction. Let Λ_0 be the principal eigenvalue of $-\Delta_1$ on M_1, and Φ_0 be the corresponding L^2 normalized eigenfunction. (Here Δ_1 is the Laplacian on M_1.)

Notice that $\pi_T^* \phi_0$, the pull back of ϕ_0 to M_1, is an eigenfunction of $-\Delta_1$ and $\|\pi_T^* \phi_0\|_{L^2(M)} = |G_T|^{1/2}$. Thus

$$\lambda_0 = \Lambda_0 \quad \text{and} \quad \Phi_0 = \frac{\pi_T^* \phi_0}{|G_T|^{1/2}}.$$
Let $\mathcal{I}_1(\omega_1)$ be the analogue of \mathcal{I} (defined in equation (2.3)) for the manifold M_1. Explicitly,

$$\mathcal{I}_1(\omega_1) = 8\pi^2 \int_{M_1} |\omega_1|^2 \phi_0^2 + 8\pi \int_{M_1} \phi_0 \omega_1 \cdot \nabla g_1,$$

where g_1 is a solution of

$$-\Delta g_1 - 4\pi \omega_1 \cdot \nabla \phi_0 = \Lambda_0 g_1,$$

with Dirichlet boundary conditions on $\pi_T^{-1}(\partial_D M)$ and Neumann boundary conditions on $\pi_T^{-1}(\partial_N M)$. Note that given $\omega_1 \in H^1_G(M_1)$ we can find $\omega \in H^1_G(M)$ such that $\pi_T^*(\omega) = \omega_1$. Indeed, since $\dim(H^1_G(M)) = \dim(H^1_G(M_1)) = k$ and $\pi_T^*: H^1_G(M) \to H^1_G(M_1)$ is injective linear map, it must be an isomorphism.

Now using (4.20), we observe that up to an addition of a scalar multiple of Φ_0, we have

$$g_1 = \frac{\pi_T^* g}{|G_T|^{1/2}},$$

where $g = g_\omega$ is defined in (2.4). Therefore,

$$\mathcal{I}_1(\omega_1) = 8\pi^2 |G_T| \int_M |\omega|^2 \phi_0^2 \frac{\phi_0^2}{|G_T|^2} + 8\pi |G_T| \int_M \phi_0 \omega \cdot \nabla \left(\frac{g}{|G_T|^{1/2}} \right)$$

(4.21)

$$= 8\pi^2 \int_M |\omega|^2 \phi_0^2 + 8\pi \int_M \phi_0 \omega \cdot \nabla g = \mathcal{I}(\omega).$$

Since the deck transformation group of \hat{M} as a cover of M_1 is torsion free, we can apply Theorem 2.1 to M_1. Thus, we have

$$\lim_{t \to \infty} \left(t^{k/2} e^{\Lambda_0 t} \hat{H}(t, x, y) - C_{\mathcal{I}_1}(x, y) \exp\left(-\frac{2\pi^2 d_{\mathcal{I}_1}^2(x, y)}{t}\right) \right)$$

uniformly on \hat{M}. Now using (4.20) and (4.21), we see that

$$d_{\mathcal{I}_1} = d_{\mathcal{I}}, \quad C_{\mathcal{I}_1}(x, y) = \frac{1}{|G_T|} C_{\mathcal{I}}(x, y),$$

and hence the proof is complete. \hfill \Box

The rest of this section is devoted to the proofs of Lemma 4.4 and Lemma 4.5.

4.3. Minimizing the Principal Eigenvalue (Proof of Lemma 4.4). Our aim in this subsection is to prove Lemma 4.4, which asserts that the function $\chi \mapsto \lambda_{\chi, 0}$ attains a unique global minimum at $\chi = 1$. The Neumann boundary case is conceptually simpler and we first provide an independent proof for this case. The full proof of Lemma 4.4 under mixed Dirichlet and Neumann boundary conditions will be given later.

Proof of Lemma 4.4 under Neumann boundary conditions. In this case we know that $\lambda_0 = \lambda_{1, 0} = 0$, and the corresponding eigenfunction $s_{1, 0}$ is constant. Thus to prove the lemma it suffices to show that $\lambda_{\chi, 0} > 0$ for all $\chi \neq 1$.

To see this given $\chi \in \mathcal{G}$ let $s = s_{\chi, 0} \in D_\chi$ be the principal eigenfunction of $-\Delta \chi$, and $\lambda = \lambda_{\chi, 0}$ be the principal eigenvalue. We claim that for any fundamental domain $U \subseteq \hat{M}$, the eigenvalue λ satisfies

$$\lambda \int_U |s|^2 \, dx = \int_U |\nabla s|^2 \, dx.$$
Once (4.23) is established, one can quickly see that \(\lambda > 0 \) when \(\chi \neq 1 \). Indeed, if \(\chi \neq 1 \), \(s(g(x)) = \chi(g)s(x) \) forces the function \(s \) to be non-constant, and now equation (4.23) forces \(\lambda > 0 \).

To prove (4.23) observe

\[
\lambda \int_U |s|^2 = - \int_U \bar{s} \Delta \chi s = \int_U |\nabla s|^2 - \int_{\partial U} \bar{s} \partial_\nu s .
\]

Here, \(\partial_\nu s = \nu \cdot \nabla s \) is the outward pointing normal derivative on \(\partial U \). We will show that the twisting condition (4.2) ensures that the boundary integral above vanishes.

Decompose \(\partial U \) as \(\partial U = \Gamma_1 \cup \Gamma_2 \), where \(\Gamma_1 \) is the portion of \(\partial U \) contained in \(\partial \hat{M} \), and \(\Gamma_2 = \partial U - \Gamma_1 \).

Note \(\Gamma_1 \) is the portion of \(\partial U \) contained in \(\partial \hat{M} \), and \(\Gamma_2 \) is the portion of \(\partial U \) that is common to neighboring fundamental domains. Clearly, the Neumann boundary condition (4.25) implies

\[
\int_{\Gamma_1} \bar{s} \partial_\nu s = 0 .
\]

For the integral over \(\Gamma_2 \), let \((e_1, \ldots, e_k) \) be a basis of \(G \) and note that \(\Gamma_2 \) can be expressed as the disjoint union

\[
\Gamma_2 = \bigcup_{j=1}^k (\Gamma_{2,j}^+ \cup \Gamma_{2,j}^-) ,
\]

where the \(\Gamma_{2,j}^{\pm} \) are chosen so that \(\Gamma_{2,j}^+ = e_j(\Gamma_{2,j}^-) \). Using the twisting condition (4.2) and the fact that the action of \(e_j \) reverses the direction of the unit normal on \(\Gamma_{2,j}^- \), we see

\[
\int_{\Gamma_{2,j}^+} \bar{s}(x) \partial_\nu s(x) dx = - \int_{\Gamma_{2,j}^-} \bar{s}(e_j(y)) \partial_\nu s(e_j(y)) dy
\]

\[
= - \int_{\Gamma_{2,j}^-} \chi(e_j) \chi(e_j) \bar{s}(y) \partial_\nu s(y) dy
\]

\[
= - \int_{\Gamma_{2,j}^-} \bar{s}(y) \partial_\nu s(y) dy ,
\]

Consequently,

\[
\int_{\Gamma_2} \pi \partial_\nu s = \sum_{j=1}^k \left(\int_{\Gamma_{2,j}^+} + \int_{\Gamma_{2,j}^-} \right) \pi \partial_\nu s = 0 ,
\]

and hence the boundary integral in (4.24) vanishes. Thus (4.23) holds, and the proof is complete. \(\square \)

In the general case when \(\partial_D M \neq \emptyset \), \(\lambda_{\chi,0} > 0 \) for every \(\chi \in G \), and all eigenfunctions are non-constant. This causes the previous argument to break down and the proof involves a different idea. Before beginning the proof, we first make use of a canonical section to transfer the problem to the linear space \(\mathcal{H}_G^1 \).

Let \(\Omega \) be the space of \(\mathbb{C} \)-valued smooth functions \(f : M \to \mathbb{C} \) such that \(f = 0 \) on \(\partial_D M \) and \((\nabla f, \nu) = 0 \) on \(\partial_N M \). Let \(\hat{f} = f \circ \pi : \hat{M} \to \mathbb{C} \). Now given \(\omega \in \mathcal{H}_G^1 \), let \(\sigma_\omega \) (defined in (4.13)) be the canonical section and \(\chi_\omega \in G \) be the exponential as
defined in (4.8). Notice that the function \(\sigma \hat{f} \in \mathcal{D}_{\chi} \) is a section on \(E_{\chi} \). Clearly \(\sigma \hat{f} = 0 \) on \(\partial_D \hat{M} \). Moreover, since \(\omega \cdot \nu = 0 \) on \(\partial M \) we have
\[
\nu \cdot \nabla \sigma_\omega = 0 \quad \text{on} \quad \partial \hat{M}.
\]
and hence \(\nu \cdot \nabla (\sigma \hat{f}) = 0 \) on \(\partial_N \hat{M} \). Thus \(\sigma \hat{f} \in \mathcal{D}_{\chi} \), where \(\mathcal{D}_{\chi} \) is defined in equation (4.3), and the map \(f \mapsto \hat{f} \sigma \) defines a unitary isomorphism between \(\Omega \subseteq L^2(M) \) and \(\mathcal{D}_{\chi} \subseteq L^2(E_{\chi}) \) respecting the imposed boundary conditions.

Now, since \(\omega \) and \(\omega = \omega \circ \pi \) are both harmonic, we compute
\[
\Delta_{\chi}(\hat{f} \sigma_\omega) = ((H_\omega f) \circ \pi) \sigma_\omega,
\]
where \(H_\omega \) is the self-adjoint operator on \(\Omega \subseteq L^2(M) \) defined by
\[
H_\omega f \overset{\text{def}}{=} \Delta f + 4\pi i \omega \cdot \nabla f - 4\pi^2|\omega|^2 f.
\]
Here we used the Riemannian metric to identify the 1-form \(\omega \) with a vector field.

The above shows that \(\Delta_{\chi} \) is unitarily equivalent to \(H_\omega \). In particular, eigenvalues of \(-H_\omega \), denoted by \(\mu_{\omega,j} \), are exactly \(\lambda_{\chi_{\omega,j}} \), the eigenvalues of \(-\Delta_{\chi} \). Moreover, the corresponding eigenfunctions, denoted by \(\phi_{\omega,j} \), are given by
\[
\phi_{\omega,j} = \frac{\chi_{\omega,j}}{\sigma_\omega}, \quad j \geq 0.
\]
Note that \(\phi_{\omega,j} \) is a well-defined function on \(M \) that satisfies Dirichlet boundary conditions on \(\partial_D M \) and Neumann boundary conditions on \(\partial_N M \).

We will now prove the general case of Lemma 4.4 by minimizing eigenvalues of the operator \(-H_\omega \).

Proof of Lemma 4.4. Let \(\omega \in \mathcal{H}_G^{\partial} \) and let \(\chi_\omega = \exp(\omega) \in \mathcal{G} \) be the corresponding representation defined by (4.8). Let \(\mu_\omega = \mu_{\omega,0} = \lambda_{\chi_{\omega,0}} \) and \(\phi_\omega = \phi_{\omega,0} \) where \(\phi_{\omega,0} \) is the principal eigenfunction of \(-H_\omega \) as defined in (4.27) above. Using (4.26) we see
\[
-\Delta \phi_\omega - 4\pi i \omega \cdot \nabla \phi_\omega + 4\pi^2|\omega|^2 \phi_\omega = \mu_\omega \phi_\omega, \quad -\Delta \phi_0 = \mu_0 \phi_0, \quad \text{with Dirichlet boundary conditions on} \quad \partial_D \hat{M} \quad \text{and Neumann boundary conditions on} \quad \partial_N \hat{M}.
\]
Here \(\mu_\omega \) and \(\phi_\omega \) denote the principal eigenvalue and eigenfunction respectively when \(\omega \equiv 0 \). Note that when \(\omega \in \mathcal{H}_G^{\partial} \), the corresponding representation \(\chi_\omega \) is the trivial representation \(1 \). We will show that \(\mu_\omega \) above achieves a global minimum precisely when \(\omega \in \mathcal{H}_G^{\partial} \) and \(\chi_\omega = 1 \).

Now let \(\varepsilon > 0 \) and write
\[
\overline{\phi_\omega} = (\phi_0 + \varepsilon)f \quad \text{where} \quad f \overset{\text{def}}{=} \frac{\overline{\phi_\omega}}{\phi_0 + \varepsilon}.
\]
Multiplying both sides of (4.28) by \(\overline{\phi_\omega} = (\phi_0 + \varepsilon)f \) and integrating over \(M \) gives
\[
-\int_M (\Delta \phi_\omega)(\phi_0 + \varepsilon)f = \int_M \nabla \phi_\omega \cdot ((\phi_0 + \varepsilon)\nabla f + f \nabla \phi_0) + \int_{\partial M} B_1
\]
\[
= \int_M (\phi_0 + \varepsilon)\nabla \phi_\omega \cdot \nabla f - \int_M \phi_\omega (\nabla f \cdot \nabla \phi_0 + f \Delta \phi_0) + \int_{\partial M} B_2
\]
\[
= \int_M ((\phi_0 + \varepsilon)\nabla \phi_\omega - \phi_\omega \nabla \phi_0) \cdot \nabla f
\]
HEAT KERNELS AND BROWNIAN WINDING NUMBERS 21

\[+ \mu_0 \int_M f \phi_0 \phi_\omega + \int_{\partial M} B_2, \]

where \(B_i : \partial M \to \mathbb{C} \) are boundary functions that will be combined and written explicitly below (equation (4.31)). (We clarify that even though the functions above are \(\mathbb{C} \)-valued, the notation \(\nabla \phi \omega \cdot \nabla f \) denotes \(\sum_i \partial_i \phi \omega \partial_i f \), and not the complex inner product.)

Similarly, using the fact that \(\omega \) is harmonic, we have

\[
-4\pi i \int_M (\phi_0 + \varepsilon) f \omega \cdot \nabla \phi_\omega
\]

\[
= -2\pi i \int_M (\phi_0 + \varepsilon) f \nabla \phi_\omega \cdot \omega
\]

\[
+ 2\pi i \int_M \phi_\omega \left((\phi_0 + \varepsilon) \nabla f + f \nabla \phi_0\right) \cdot \omega + \int_{\partial M} B_3
\]

\[
= -2\pi i \int_M \left((\phi_0 + \varepsilon) \nabla \phi_\omega - \phi_\omega \nabla \phi_0\right) \cdot (f \omega)
\]

\[
+ 2\pi i \int_M (\phi_0 + \varepsilon) \phi_\omega \nabla f \cdot \omega + \int_{\partial M} B_3.
\]

Combining the above, we have

\[
(4.30) \quad \mu_\omega - \mu_0 \int_M f \phi_0 \phi_\omega = \int_M \left((\phi_0 + \varepsilon) \nabla \phi_\omega - \phi_\omega \nabla \phi_0\right) \cdot \left(\nabla f - 2\pi i f \omega\right)
\]

\[
+ \int_M (\phi_0 + \varepsilon) \phi_\omega \left(4\pi^2 |\omega|^2 f + 2\pi i \nabla f \cdot \omega\right) + \int_{\partial M} B_3,
\]

where

\[
(4.31) \quad B_0 = -\overline{\phi_\omega} \partial_\nu \phi_\omega + \phi_\omega f \partial_\nu \phi_0 - 2\pi i (\phi_0 + \varepsilon) \phi_\omega f \omega \cdot \nu.
\]

The boundary conditions imposed ensure that \(B_0 = 0 \) on both \(\partial_D M \) and \(\partial_N M \).

Since \(f = \overline{\phi_\omega}/(\phi_0 + \varepsilon) \), we have

\[
\nabla f = \frac{(\phi_0 + \varepsilon) \nabla \phi_\omega - \overline{\phi_\omega} \nabla \phi_0}{(\phi_0 + \varepsilon)^2}.
\]

Substituting this into the right hand side of (4.30), we obtain a perfect square:

\[
(4.32) \quad \mu_\omega - \mu_0 \int_M f \phi_0 \phi_\omega = \int_M \left|2\pi \phi_\omega - \frac{i(\phi_0 + \varepsilon) \nabla \phi_\omega - \phi_\omega \nabla \phi_0}{\phi_0 + \varepsilon}\right|^2.
\]

In particular,

\[
\mu_\omega - \mu_0 \int_M f \phi_0 \phi_\omega = \mu_\omega - \mu_0 \int_M \overline{\phi_0} |\phi_\omega|^2 \geq 0.
\]

Sending \(\varepsilon \to 0 \), we obtain \(\mu_\omega \geq \mu_0 \), and so the function \(G \ni \chi \mapsto \lambda_{\chi,0} \) attains global minimum at \(\chi = 1 \).

To see that \(\chi = 1 \) is the unique global minimum point, suppose that \(\lambda_{\chi} = \lambda_0 \) for some \(\chi \in G \). Writing \(\chi = \chi_\omega \) for some \(\omega \in \mathcal{H}_G \), this means \(\mu_\omega = \mu_0 \). Fatou’s lemma and (4.32) imply

\[
\int_M \left|2\pi \phi_\omega - \frac{i(\phi_0 \nabla \phi_\omega - \phi_\omega \nabla \phi_0)}{\phi_0}\right|^2
\]
\begin{align*}
\leq \liminf_{\varepsilon \to 0} & \int_M \left| 2\pi \phi_\omega - \frac{i((\phi_0 + \varepsilon)\nabla \phi_\omega - \phi_\omega \nabla \phi_0)}{\phi_0 + \varepsilon} \right|^2 \\
= \mu_\omega - \mu_0 & = 0,
\end{align*}
by assumption. Hence
\begin{equation}
(4.33) \quad 2\pi \phi_\omega - \frac{i(\phi_0 \nabla \phi_\omega - \phi_\omega \nabla \phi_0)}{\phi_0} = 0 \quad \text{in} \ M.
\end{equation}
Since $\phi_\omega = s_{\chi,0}/\sigma_\omega$, we compute
\begin{align*}
\nabla \phi_\omega & = \frac{\sigma_\omega \nabla s_{\chi,0} - 2\pi i \sigma_\omega s_{\chi,0}}{\sigma_\omega^2}.
\end{align*}
Substituting this into (4.33), we see
\begin{align*}
\phi_0 \nabla s_{\chi,0} & = s_{\chi,0} \nabla \phi_0,
\end{align*}
which implies that
\begin{align*}
\nabla \left(\frac{s_{\chi,0}}{\phi_0} \right) & = 0.
\end{align*}
Therefore, $s_{\chi,0} = c\phi_0$ for some non-zero constant c. However, the twisting conditions (4.2) for ϕ_0 and $s_{\chi,0}$ require
\begin{align*}
\phi_0(g(x)) & = \phi_0(x) \quad \text{and} \quad s_{\chi,0}(g(x)) = \chi(g)s_{\chi,0}(x),
\end{align*}
for every $g \in G$. This is only possible if $\chi(g) = 1$ for all $g \in G$, showing χ is the trivial representation $\mathbf{1}$. □

4.4. **Positivity of the Hessian (Proof of Lemma 4.5).** In this subsection we prove Lemma 4.5. The main difficulty is proving positivity, which we postpone to the end.

Proof of Lemma 4.5. Given $\omega \in \mathcal{H}_G^1$, define
\begin{align*}
\varphi_t & = \phi_t \omega \quad \text{and} \quad h_t = \mu_t \omega,
\end{align*}
where $\phi_{t,\omega} = \phi_{t,\omega,0}$ is the principal eigenfunction of $-H_{t,\omega}$ (equation (4.27)) and $\mu_{t,\omega}$ is the corresponding principal eigenvalue. We claim that
\begin{equation}
(4.34) \quad h'_0 = 0, \quad h''_0 = \mathcal{I}(\omega) \quad \text{and} \quad \text{Re}(\varphi'_0) = 0,
\end{equation}
where h', φ' denote the derivatives of h and φ respectively with respect to t. This will immediately imply that at $\omega = 0$ the quadratic form induced by the Hessian of the map $\omega \mapsto \mu_\omega$ is precisely $\mathcal{I}(\omega)$, hence proving (4.9) in the lemma.

To establish (4.34), we first note that (4.28) implies
\begin{equation}
(4.35) \quad -\Delta \varphi_t - 4\pi it\omega \cdot \nabla \varphi_t + 4\pi^2 t^2 |\omega|^2 \varphi_t = h_t \varphi_t.
\end{equation}
Conjugating both sides of (4.35) gives
\begin{equation}
(4.36) \quad -\Delta \overline{\varphi_t} - 4\pi it(-\omega) \cdot \nabla \overline{\varphi_t} + 4\pi^2 (-t)^2 |\omega|^2 \overline{\varphi_t} = h_t \overline{\varphi_t}.
\end{equation}
In other words, $\overline{\varphi_t}$ is an eigenfunction of $-H_{-t,\omega}$ with eigenvalue h_t. Since $h_t = \mu_{t,\omega}$ is the principal eigenvalue, this implies $h_{-t} \leq h_t$. By symmetry, we see that $h_{-t} = h_t$, and hence $h'_0 = 0$.

To see that φ'_0 is purely imaginary, recall h_t is a simple eigenvalue of $-H_{t,\omega}$ when t is small. Thus
\begin{equation}
(4.37) \quad \overline{\varphi_t} = \zeta_t \varphi_{-t},
\end{equation}
for some S^1 valued function ζ_t, defined for small t. Changing t to $-t$, we get

$$\varphi_{-t} = \zeta_{-t} \varphi_t = \zeta_{-t} \zeta_t \varphi_{-t}. $$

Therefore, $\zeta_{-t} \zeta_t = 1$, which implies that $\zeta_{-t} = \zeta_t$. In particular, $\zeta'_0 = 0$. Differentiating (4.37) and using the fact that $\zeta_0 = 1$, we get

$$\frac{\varphi'}{\varphi} = -\varphi', $$

showing that φ'_0 is purely imaginary as claimed.

To compute $h_{0''}$, we differentiate (4.35) twice with respect to t. At $t = 0$ this gives

$$-\Delta \varphi'_0 - 4\pi i \omega \cdot \nabla \varphi_0 = \lambda_0 \varphi'_0, \tag{4.38}$$

and

$$-\Delta \varphi''_0 - 8\pi i \omega \cdot \nabla \varphi'_0 + 8\pi^2 |\omega|^2 \varphi_0 = h''_0 \varphi_0 + \lambda_0 \varphi'_0, \tag{4.39}$$

since $\varphi_0 = 0$. Multiplying both sides of (4.39) by φ_0 and integrating over M gives

$$h''_0 = \int_M \left(8\pi^2 |\omega|^2 \varphi_0^2 - 8\pi i \omega \cdot \nabla \varphi'_0 \right). \tag{4.40}$$

Recalling that φ'_0 is purely imaginary, we let g_ω be the real valued function defined by $g_\omega = -i \varphi'_0$. Now equation (4.38) shows that g_ω satisfies (2.4). Moreover since $\varphi_0 = 0$ on $\partial D M$ and $\nu \cdot \nabla \varphi_0 = 0$ on $\partial N M$, the function g_ω satisfies the boundary conditions (2.5). Therefore, (4.40) reduces to (2.3), showing that $h''_0 = I(\omega)$ as claimed.

Finally, we show that $\omega \mapsto I(\omega)$ defined by (2.3) is a well defined positive definite quadratic form on H^1_G. To see that I is well defined, we first note that in order for (2.4) to have a solution, we need to verify the solvability condition

$$\int_M \varphi_0 (4\pi \omega \cdot \nabla \varphi_0) = 0. $$

This is easily verified as

$$\int_M \varphi_0 \omega \cdot \nabla \varphi_0 = \frac{1}{2} \int_M \omega \cdot \nabla \varphi_0^2 = 0. \tag{4.41}$$

Hence g_ω is uniquely defined up to the addition of a scalar multiple of φ_0 (the kernel of $\Delta + \lambda_0$). Now, using (4.41) again, we see that replacing g_ω with $g_\omega + \alpha \varphi_0$ does not change the value of $I(\omega)$. Thus, $I(\omega)$ is a well defined function. The fact that I is a quadratic form (2.3) and the fact that

$$g_{\tau + \omega} = g_\tau + g_\omega \pmod{\varphi_0}. $$

It remains to show that I is positive definite. Note that, in view of Lemma 4.4, we already know that I induces a positive semi-definite quadratic form on H^1_G.

For the convenience of notation, let $g = g_\omega = -i \varphi'_0$ as above. As before we write

$$g = (\phi_0 + \varepsilon) f_\varepsilon, \quad \text{where } f_\varepsilon \overset{\text{def}}{=} \frac{g}{\phi_0 + \varepsilon},$$

and will multiplying both sides of (2.4) by $(\phi_0 + \varepsilon) f_\varepsilon$ and integrating. In preparation for this we compute

$$-\int_M (\phi_0 + \varepsilon) f_\varepsilon \Delta g = \int_M \nabla g \cdot \left(f_\varepsilon \nabla \phi_0 + (\phi_0 + \varepsilon) \nabla f_\varepsilon \right)$$

$$= \lambda_0 \int_M \phi_0 f_\varepsilon g - \int_M g \nabla f_\varepsilon \cdot \nabla \phi_0 + \int_M (\phi_0 + \varepsilon) \nabla f_\varepsilon \cdot \nabla g,$$
and
\[
4\pi \int_M (\phi_0 + \varepsilon) f \omega \cdot \nabla (\phi_0 + \varepsilon) = 2\pi \int_M f \omega \cdot \nabla (\phi_0 + \varepsilon)^2 = -2\pi \int_M (\phi_0 + \varepsilon)^2 \nabla f \cdot \omega .
\]

We remark that when integrating by parts above, the boundary terms that arise all vanish because of the boundary conditions imposed. Thus, multiplying \ref{2.4} by \((\phi_0 + \varepsilon)f\) and integrating gives
\[
\lambda_0 \int_M g^2 \left(1 - \frac{\phi_0}{\phi_0 + \varepsilon}\right) = \int_M (\phi_0 + \varepsilon) \nabla f \cdot \nabla g - \int_M g \nabla f \cdot \nabla (\phi_0 + \varepsilon)
\]
\[
\quad + 2\pi \int_M (\phi_0 + \varepsilon)^2 \nabla f \cdot \omega.
\]

\[
(4.42)
\]

Writing \(\tau = 2\pi \omega\) and adding the integral
\[
J_\varepsilon \equiv \int_M (\phi_0 + \varepsilon) \tau \cdot \nabla g - \int_M g \tau \cdot \nabla (\phi_0 + \varepsilon) + \int_M (\phi_0 + \varepsilon)^2 |\tau|^2
\]
to both sides of \ref{4.42}, we obtain
\[
(4.43)
J_\varepsilon + \lambda_0 \int_M g^2 \left(1 - \frac{\phi_0}{\phi_0 + \varepsilon}\right) = \int_M (\phi_0 + \varepsilon) \nabla f \cdot \nabla \tau + \int_M g \nabla f \cdot \nabla (\phi_0 + \varepsilon) + \int_M (\phi_0 + \varepsilon)^2 (\nabla f \cdot \tau) \cdot \tau.
\]

Now, since \(g = (\phi_0 + \varepsilon)f\), we compute
\[
\nabla g = f \nabla (\phi_0 + \varepsilon) + (\phi_0 + \varepsilon) \nabla f.
\]

Substituting this into \ref{4.43} gives
\[
(4.44)
J_\varepsilon + \lambda_0 \int_M g^2 \left(1 - \frac{\phi_0}{\phi_0 + \varepsilon}\right) = \int_M (\phi_0 + \varepsilon)^2 |\nabla f \cdot \tau|^2 \geq 0.
\]

Using \ref{2.3} we see
\[
(4.45)
\mathcal{I}(\omega) = 8\pi^2 \int_M |\omega|^2 \phi_0^2 + 4\pi \int_M \phi_0 \omega \cdot \nabla g - 4\pi \int_M g \omega \cdot \nabla \phi_0,
\]
and hence it follows that
\[
\lim_{\varepsilon \to 0} J_\varepsilon = \frac{1}{2} \mathcal{I}(\omega).
\]

Also by the dominated convergence theorem, the second term on the left hand side of \ref{4.44} goes to zero as \(\varepsilon \to 0\). This shows \(\mathcal{I}(\omega) \geq 0\).

It remains to show \(\mathcal{I}(\omega) > 0\) if \(\omega \neq 0\). Note that if \(\mathcal{I}(\omega) = 0\), then Fatou’s lemma and \ref{4.44} imply
\[
\int_M \phi_0^2 |\nabla f + \tau|^2 \leq \liminf_{\varepsilon \to 0} \left(J_\varepsilon + \lambda_0 \int_M g^2 \left(1 - \frac{\phi_0}{\phi_0 + \varepsilon}\right) \right) = 0,
\]
where \(f \equiv g/\phi_0\). Therefore \(\nabla f + \tau = 0\) in \(M\) and hence \(\omega = -\nabla f/(2\pi)\). Since \(\omega \in H^1_G \subseteq H^1\), this forces
\[
\Delta f = 0 \text{ in } M, \quad \text{and } \quad \nu \cdot \nabla f = 0 \text{ on } \partial M.
\]

Consequently \(\nabla f = 0\), which in turn implies \(\omega = 0\). This completes the proof of the positivity of \(\mathcal{I}\). \(\square\)
5. Proof of the Winding Number Asymptotics (Theorem 3.2).

In this section, we study the long time behaviour of the abelianized winding number of reflected Brownian motion on a manifold M. We begin by using Theorem 2.1 to prove Theorem 3.2 (Section 5.1). Next, in Section 5.2 we discuss the connection of our results with the work by Toby and Werner [TW95]. Finally, in Section 5.3, modulo certain amount of technicalities which need to be verified, we propose a (sketched) independent probabilistic proof of Theorem 3.2.

5.1. Proof of Theorem 3.2. We obtain the long time behaviour of the abelianized winding of reflected Brownian motion in M by applying Theorem 2.1 in this context. Let \hat{M} be a covering space of M with deck transformation group3 $\pi_1(M)_{ab}$. In view of the covering factorization (4.19), we may, without loss of generality, assume that $\text{tor}(\pi_1(M)_{ab}) = \{0\}$. Note that since the deck transformation group $G = \pi_1(M)_{ab}$ by construction, we have $H^1_G = H^1$. Given $n \in \mathbb{Z}^k$ ($k = \text{rank}(G)$), define $g_n \in G$ by

$$g_n \overset{\text{def}}{=} \sum_{i=1}^{k} n_i \pi_G(\gamma_i), \quad \text{where } n = (n_1, \ldots, n_k) \in \mathbb{Z}^k,$$

where $\{\pi_G(\gamma_1), \ldots, \pi_G(\gamma_k)\}$ is the basis of G chosen in Section 3. Clearly $n \mapsto g_n$ is an isomorphism between G and \mathbb{Z}^k.

Lemma 5.1. For any $x, y \in \hat{M}$ and $n \in \mathbb{Z}^k$ we have

$$d_{\xi}(x, g_n(y))^2 = (A^{-1}n) \cdot n + O(|n|),$$

where A is the matrix $(a_{i,j})$ defined by

$$a_{i,j} \overset{\text{def}}{=} \langle \omega_i, \omega_j \rangle = \frac{8\pi^2}{\text{vol}(M)} \int_M \omega_i \cdot \omega_j.$$

Proof. Given $\omega \in H^1$ we compute

$$\xi_{x, g_n(y)}(\omega) = \int_x^y \pi^*(\omega) + \int_y^{g_n(y)} \pi^*(\omega),$$

where the integrals are taken along any smooth path in \hat{M} connecting the endpoints. Note that the integrals are well defined, and the second one is independent of y. Therefor, if for any $g \in G$ we define $\psi_g : H^1 \to \mathbb{R}$ by

$$\psi_g(\omega) = \int_y^{g(\omega)} \pi^*(\omega),$$

then (5.2) becomes

$$\xi_{x, g_n(y)}(\omega) = \xi_{x, y}(\omega) + \psi_{g_n}(\omega).$$

It follows that

$$d_{\xi}(x, g_n(y))^2 = d_{\xi}(x, y)^2 + \sum_{i=1}^{k} n_i (\psi_{\pi_G(\gamma_i)}(\xi_{x,y}))^{2*} + \sum_{i,j=1}^{k} n_i n_j (\pi_{G}(\gamma_i), \pi_{G}(\gamma_j))^{2*}.$$

Since $\{\omega_1, \ldots, \omega_k\}$ is the dual basis to $\{\pi_G(\gamma_1), \ldots, \pi_G(\gamma_k)\}$, we have

$$\langle \pi_{G}(\gamma_i), \pi_{G}(\gamma_j) \rangle^{2*} = (A^{-1})_{i,j}.$$
Therefore, the result follows. Note that the second equality of (5.1) follows from (2.10) under Neumann boundary condition. □

Now we prove Theorem 3.2.

Proof of Theorem 3.2. Recall in Section 3 we decomposed the universal cover \(\hat{M} \) as the disjoint union of fundamental domains \(\hat{U}_g \) indexed by \(g \in \pi_1(M) \). Projecting these domains to the cover \(M \) we write \(\hat{M} \) as the disjoint union of fundamental domains \(\hat{U}_g \) indexed by \(g \in G \). Let \(\hat{W} \) be the lift of the trajectory of \(W \) to \(\hat{M} \), and observe that if \(\hat{W}(t) \in \hat{U}_{g_n} \), then \(\rho(t) = n \).

We use this to compute the characteristic function of \(\rho(t)/(\sqrt{t}) \) as follows. Since the generator of \(\hat{W} \) is \(\frac{1}{2}\Delta \), its transition density is given by \(\hat{H}(t/2, \cdot, \cdot) \). Hence, for any \(z \in \mathbb{R}^k \) we have

\[
\mathbb{E}^x \left[\exp \left(\frac{iz \cdot \rho(t)}{t^{1/2}} \right) \right] = \sum_{n \in \mathbb{Z}} \exp \left(\frac{iz \cdot n}{t^{1/2}} \right) \mathbb{P}^x(\hat{W}(t) \in \hat{U}_{g_n}) \]

\[
= \sum_{n \in \mathbb{Z}} \int_{\hat{U}_{g_n}} \hat{H}(t/2, \cdot, \cdot) \exp \left(\frac{iz \cdot n}{t^{1/2}} \right) dy.
\]

By Theorem 2.1 and Remark 2.2, this means that uniformly in \(x \in \hat{M} \) we have

\[
limit_{t \to \infty} \mathbb{E}^x \left[\exp \left(\frac{iz \cdot \rho(t)}{t^{1/2}} \right) \right] = C_I \lim_{t \to \infty} \sum_{n \in \mathbb{Z}} \int_{\hat{U}_{g_n}} \frac{2^{k/2}}{t^{k/2}} \exp \left(\frac{-4\pi^2 d_{I}(x, y)^2}{t} + \frac{iz \cdot n}{t^{1/2}} \right) dy
\]

\[
= C_I \lim_{t \to \infty} \sum_{n \in \mathbb{Z}} \frac{2^{k/2}}{t^{k/2}} \exp \left(\frac{-4\pi^2 (A^{-1} n) \cdot n}{t} + \frac{iz \cdot n}{t^{1/2}} \right),
\]

where the last equality followed from Lemma 5.1 above. Observe that the last term is the Riemann sum of a standard Gaussian integral. Therefore,

\[
limit_{t \to \infty} \mathbb{E}^x \left[\exp \left(\frac{iz \cdot \rho(t)}{t^{1/2}} \right) \right] = 2^{k/2} C_I \int_{\mathbb{R}^k} \exp \left(-4\pi^2 (A^{-1} \zeta) \cdot \zeta + iz \cdot \zeta \right) d\zeta.
\]

This shows that as \(t \to \infty \), \(\rho(t)/(\sqrt{t}) \) converges to a normally distributed random variable with mean 0 and covariance matrix \(A/(8\pi^2) \). By (3.3) and (5.1) we see that \(\Sigma = A/(8\pi^2) \), which completes the proof of the second assertion in (3.1) of the theorem. The first assertion follows immediately from the second assertion and Chebychev’s inequality. □

5.2. Relation to the Work of Toby and Werner. Toby and Werner [TW95] studied the long time behaviour of the winding of an obliquely reflected Brownian motion in bounded planar domains. In this case, we describe their result and relate it to Theorem 3.2.

Let \(\Omega \subseteq \mathbb{R}^2 \) be a bounded domain with \(k \) holes \(V_1, \ldots, V_k \) of positive volume. Let \(W_t \) be a reflected Brownian motion in \(\Omega \) with a non-tangential reflecting vector field \(u \in C^3(\partial \Omega) \). Let \(p_1, \ldots, p_k \) be \(k \) distinct points in \(\mathbb{R}^2 \). For \(1 \leq j \leq k \), define \(\rho(t, p_j) \) to be the winding number of \(W_t \) with respect to the point \(p_j \).
Theorem 5.2 (Toby and Werner, 1995). There exist constants a_i, b_i, depending on the domain Ω, such that

\begin{equation}
\frac{1}{t} \left(\rho(t, p_1), \ldots, \rho(t, p_k) \right) \xrightarrow{t \to \infty} \left(a_1 C_1 + b_1, \ldots, a_k C_k + b_k \right),
\end{equation}

where C_1, \ldots, C_k are standard Cauchy variables. Moreover, for any j such that $p_j \notin \Omega$, a_j must be equal to zero.

When $p_j \in \Omega$, the process W can wind a large number of times around p_j in a short period as it approaches p_j. This is why the heavy-tailed Cauchy distribution arises in Theorem 5.2, and the limiting process is non-degenerate precisely when each $p_j \in \Omega$. This is exactly the situation when Theorem 5.2 is sharp.

On the other hand, if $p_j \in V_j$, we have $a_j = 0$ and (5.3) becomes a law of large numbers. In the case with normal reflection, Theorem 3.2 provides the central limit theorem for the fluctuation around the mean. Therefore, in this case our result is a refinement of Theorem 5.2.

It is not pointed out nor can be easily seen from [TW95] why the mean $b_j = 0$ in the normal reflection case with $p_j \in V_j$. For completeness, we give a proof of this fact below.

Recall that (see for instance Stroock-Varadhan [SV71]) reflected Brownian motion has the semi-martingale representation

\begin{equation}
W_t = \beta_t + \int_0^t u(W_s) dL_s,
\end{equation}

where β_t is a two dimensional Brownian motion, u is the reflecting vector field on $\partial \Omega$, and L_t is a continuous increasing process which increases only when $W_t \in \partial \Omega$.

We also know that the process W_t has a unique invariant measure, which is denoted by μ. From [TW95], the constants b_j are given by

\begin{equation}
b_j = \frac{1}{2\pi} \int_{p \in \Omega} E^p \left[\int_0^1 u_j(W_s) dL_s \right] d\mu(p),
\end{equation}

where $u_j : \partial \Omega \to \mathbb{R}$ is defined by

$$u_j(p) \overset{\text{def}}{=} \frac{u(p) \cdot (p - p_j)_{\perp}}{|p - p_j|},$$

and $q_{\perp} \overset{\text{def}}{=} (-q_2, q_1)$ for $q = (q_1, q_2) \in \mathbb{R}^2$.

Proposition 5.3. Let W_t be a normally reflected Brownian motion in Ω, and $p_j \in V_j$ for each j. Then $b_j = 0$ for all j, and consequently

$$\lim_{t \to \infty} \frac{\rho(t, p_j)}{t} \to 0.$$

Proof. Fix $1 \leq j \leq k$. Let $w(t, p)$ be the solution to the following initial-boundary value problem:

\begin{equation}
\begin{cases}
\partial_t w - \frac{1}{2} \Delta w = 0 & \text{in } (0, \infty) \times \Omega, \\
\nu \cdot \nabla w = -u_j & \text{on } (0, \infty) \times \partial \Omega, \\
\lim_{t \to 0} w(t, \cdot) = 0 & \text{in } \Omega,
\end{cases}
\end{equation}
where \(\nu \) is the outward pointing unit normal on the boundary. By applying Itô’s formula to the process \([0, t-\varepsilon] \ni s \mapsto w(t-s, W_s) \) and using the semi-martingale representation (5.4) of \(W_t \), we get

\[
\begin{align*}
 w(t, p) - \mathbb{E}^p \left[w(\varepsilon, W_{t-\varepsilon}) \right] &= -\mathbb{E}^p \left[\int_0^{t-\varepsilon} \nu \cdot \nabla w(W_s, t-s) dL_s \right] \\
 &= \mathbb{E}^p \left[\int_0^{t-\varepsilon} u_j(W_s) dL_s \right].
\end{align*}
\]

where in the last identity we have used the fact that \(dL_s \) is carried by the set \(\{ s \geq 0 : W_s \in \partial \Omega \} \). Since \(P(B_t \in \partial U) = 0 \), sending \(\varepsilon \to 0 \) and using the dominated convergence theorem gives

\[
 w(t, p) = \mathbb{E}^p \left[\int_0^t u_j(W_s) dL_s \right].
\]

On the other hand, according to Harrison, Landau and Shepp [HLS85], Theorem 2.8, the invariant measure \(\mu \) of \(W_t \) is the unique probability measure on the closure \(\bar{\Omega} \) of \(\Omega \) that \(\mu(\partial \Omega) = 0 \) and

\[
\int_\Omega \Delta f(p) d\mu(p) \leq 0 \quad \text{for all } f \in C^2(\bar{\Omega}) \text{ with } \nu \cdot \nabla f \leq 0 \text{ on } \partial \Omega.
\]

Stokes’ theorem now implies \(\mu \) is the normalized Lebesgue measure on \(\Omega \). Consequently,

\[
b_j = \frac{1}{2\pi \text{vol}(\Omega)} \int_\Omega \mathbb{E}^p \left[\int_0^1 u_j(W_s) dL_s \right] dp = \frac{1}{2\pi \text{vol}(\Omega)} \int_\Omega w(1, p) dp.
\]

Integrating (5.6) over \(\Omega \) and using the boundary conditions yields

\[
0 = \partial_t \int_\Omega w dp - \int_\Omega \Delta w dp = \partial_t \int_\Omega w dp + \int_{\partial \Omega} u_j(p) dp = \partial_t \int_\Omega w dp - \int_{\partial \Omega} \nu \cdot \frac{(p - p_j) \perp}{|p - p_j|} dp.
\]

Since when \(p_j \in V_j \) the vector field \(p \mapsto (p - p_j) \perp /|p - p_j| \) is a divergence free vector field on \(\bar{\Omega} \), the last integral above above vanishes. Thus

\[
\partial_t \int_\Omega w dp = 0,
\]

and since \(w = 0 \) when \(t = 0 \), \(w = 0 \) for all \(t \geq 0 \), and hence \(b_j = 0 \). \(\square \)

5.3. A Probabilistic Proof of Theorem 3.2. As mentioned earlier, Theorem 3.2 can also be proved by using a probabilistic argument. Modulo certain technicalities, we sketch this argument below.

First suppose \(\gamma : [0, \infty) \to M \) is a smooth path. Let \(\rho(t, \gamma) \) be the \(\mathbb{Z}^k \)-valued winding number of \(\gamma \), as in Definition 3.1. Namely, let \(\tilde{\gamma} \) be the lift of \(\gamma \) to the universal cover of \(M \), and let \(\rho(t, \gamma) = (n_1, \ldots, n_k) \) if

\[
\pi_G(\tilde{\gamma}(t))) = \sum_{i=1}^k n_i \pi_G(\gamma_i).
\]
By our choice of \((\omega_1, \ldots, \omega_k)\) we see that \(\rho_i(t, \gamma)\), the \(i\)th component of \(\rho(t, \gamma)\), is precisely the integer part of \(\theta_i(t, \gamma)\), where

\[
\theta_i(t, \gamma) \overset{\text{def}}{=} \int_{[0,t]} \omega_i = \int_0^t \omega_i(\gamma(s)) \gamma'(s) \, ds.
\]

If \(M\) is a planar domain with \(k\) holes, and the forms \(\omega_i\) are chosen as in Remark 2.4, then \(2\pi \theta_i(t, \gamma)\) is the total angle \(\gamma\) winds around the \(k\)th hole up to time \(t\).

In the case when \(\gamma\) is not smooth, the theory of rough paths can be used to give meaning to the above path integrals. In particular, when \(\gamma\) is the trajectory of a semimartingale on \(M\), we know that the integral obtained via the theory of rough paths agrees with the Stratonovich integral. To fix notation, let \(W\) be a reflected Brownian motion in \(M\), and \(\rho(t) = (\rho_1(t), \ldots, \rho_k(t))\) to be the \(\mathbb{Z}_k\)-valued winding number of \(W\) as in Definition 3.1. Then we must have \(\rho_i(t) = \lfloor \theta_i(t) \rfloor\), where \(\theta_i(t)\) is the rough path integral, or equivalently, the Stratonovich integral

\[
\theta_i(t) = \int_0^t \omega_i(W_s) \circ dW_s.
\]

In Euclidean domains, the long time behaviour of this integral can be obtained as follows. The key point to note is that the forms \(\omega_i\) are chosen to be harmonic in \(M\) and tangential on \(\partial M\). Consequently, using the semi-martingale decomposition (5.4), we see that \(\theta\) is a martingale with quadratic variation given by

\[
\langle \theta_i, \theta_j \rangle_t = \int_0^t \omega_i(W_s) \cdot \omega_j(W_s) \, ds.
\]

Moreover, by Harrison et. al. [HLS85], the unique invariant measure of \(W_t\) is the normalized Lebesgue measure. Therefore, according to the ergodic theorem,

\[
\lim_{t \to \infty} \frac{1}{t} \langle \theta_i, \theta_j \rangle_t = \frac{1}{\text{vol}(M)} \int_M \omega_i \cdot \omega_j
\]

for almost surely. Now we can conclude from the martingale central limit theorem (see [PS08, Theorem 3.33 and Corollary 3.34]) that

\[
\frac{\theta_i}{\sqrt{t}} \overset{\text{w}}{\to} \mathcal{N}(0, \Sigma),
\]

where the covariance matrix \(\Sigma\) is given by (3.3).

To extend the above argument to the geometric setting, one first needs to establish the analogue of the semi-martingale decomposition (5.4) on manifolds with boundary. While this should be a technical adaptation of [SV71], there is no easily available reference. In addition, one needs to show that \(\theta_i\) is a martingale with quadratic variation (5.9). This might be done through a localization argument by breaking the Stratonovich integral defining \(\theta_i\) (equation (5.8)) into pieces that are entirely contained in local coordinate charts, and using the analogue of (5.4) together with the fact that \(\omega \in \mathcal{H}^1\). Now the other parts of the argument should be the same as the Euclidean case.

Acknowledgements.

The authors wish to thank Jean-Luc Thiffeault for suggesting this problem to us and many helpful discussions.
References

1 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.

E-mail address: xig@andrew.cmu.edu

2 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.

E-mail address: gautam@math.cmu.edu