
Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness Arithmetic and Incompleteness

Will Gunther

February 6, 2013

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

1 Goals

2 Coding with Naturals

3 Logic and Incompleteness

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

About Talk

Things talk
• Will approach from

angle of computation.

• Will not assume very
much knowledge.

• Will “prove” Gödel’s
Incompleteness
Theorem.

• Will not talk much
about first order logic.

• Will not even write
down any axioms of
arithmetic.

• Will not talk about
every detail.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Things to Take Away

1 Arithmetic is powerful.

2 Incompleteness is an obvious corollary of (1).

3 Incompleteness is not frustrating.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

The big theorems

There are three “big theorems” which make up incompleteness.
We will prove two.

• Gödel’s β Function Lemma There is a very computable
way to code sequences of natural numbers.

• Gödel’s Representability Theorem All primitive
recursive functions can be represented in Peano’s
Arithmetic (omitted).

• Gödel’s Diagonal Lemma Formulas have “fixed points”

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

What are Natural Numbers?

• The Natural Numbers are the numbers 0, 1, 2,

• We can define them inductively as the smallest set
containing 0, and closed under the operation of taking a
successor.

• This is a circular definition in the eyes of mathematical
foundations.

Problem to Ponder: How can we better define the natural
numbers to be more pure with respect to foundations?
This question invites writing down axioms for how numbers
behave.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

What can we do with Natural
Numbers?

• We will be particularly diligent in deciding what we can do
with natural numbers. For instance, we will not give
ourselves the power to do arbitrary calculations on the
natural numbers.

• Instead, we want to capture what simple operations we
can do on natural numbers. There are several approaches.

• Approach One: Addition and multiplication are the only
thing we can do.
Result: Arithmetic is fairly boring.

• Approach Two: We can do addition, multiplication, and
define things by induction.
Result: Arithmetic becomes self-aware.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Primitive Recursion

A function f : Nn → N is primitive recursive if and only if it is
one of the following:

• f (x1, . . . , xn) = 0

• f (x1, . . . , xn) = s(x1) where s is the successor operation.

• f (x1, . . . , xn) = xi for some 1 ≤ i ≤ n.

• f (x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)) where
h, g primitive recursive.

• f (x1, . . . , xn) ={
g(x1, . . . , xn) if x1 = 0

h(x1, . . . , xn, f (x∗, x2, . . . , xn)) if x1 = s(x∗)
where h, g are primitive recursive.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

What is Primitive Recursive

• What is a function that is not primitive recursive?
Answer: It doesn’t matter.

• In a computability class, primitive recursive functions are
just the first stopping point.

• For us, it’s all(ish) we need. Because...

Fact
Most functions are primitive recursive.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Coding with Primitive Recursive
Functions

We have the above language of primitive recursive functions,
and our goal is the following theorem:

Theorem (Gödel’s β function lemma)

There is a primitive recursive function β : N2 → N such that
for any sequence of natural numbers 〈a1, a2, . . . , an〉 there is a
natural number a such that for every 1 ≤ i ≤ n

β(a, i) = ai

a is called the code for the sequence 〈a1, . . . , an〉
The above theorem is the heart of incompleteness. It should
tell you, if you look at the naturals just as 0, 1, 2, . . . then
you’re wrong. The information that is encoded in the natural
numbers is immense.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Let’s add and multiply first...

As a toy project, let’s define the function + : N2 → N which
represents addition. This is a simple definition by recursion:

x + y :=

{
π2(x , y) if x = 0

s(x∗ + y) if x = s(x∗)

Now, it’s not difficult to define multiplication.

x · y :=

{
0 if x = 0

y + (x∗ · y) if x = s(x∗)

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Now let’s subtract

Subtracting is a little more tricky perhaps. Note it’s not always
possible. For instance, what is 5− 10? So we restrict ourselves
to cut-off subtraction. That is, subtraction but it cuts off at 0.
First, we define the predecessor function, which is not too hard.

p(x) :=

{
0 if x = 0

x∗ if x = s(x∗)

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Now, doing x − y is just a matter of iterating this operation
several times!

x − y :=

{
x if y = 0

p(x − y∗) if y = s(y∗)

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Coding Booleans

For our purposes, > will be the constant function 1, and ⊥ will
be the constant function 0. Now, we define some simple
booleans operations.

• x ∧ y := x · y
• x ∨ y := (x + y)− (x · y)

• ¬x := 1− x

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Cases

We will define a function x?y : z which outputs y if x is > and
z if x is ⊥ as follows:

(x?y : z) :=

{
z if x = 0

y

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Relations and Characteristic
Functions

A binary relation on N can be expressed as a function

f (x , y) =

{
> if R(x , y)

⊥

Using this, we can talk about defining a relation using primitive
recursive functions too. The relation ≤ is definable.

x ≤ y := (x − y)?⊥ : >

Then of course equality and < can be defined:

x = y := (x ≤ y) ∧ (y ≤ x)

x < y := (x ≤ y) ∧ ¬(x = y)

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Bounded Search

I can return the first value of x smaller then b for which some
relation is true.

µx<bf (x) :=

0 if b = 0

((µx<b∗f (x)) = b∗)?

(f (b∗)?b∗ : b) : (µx<b∗f (x))
if b = s(b∗)

This easily allow us to do to ask if there is some x < b such
that some function is true.

∃x<bf (x) := ((µx<bf (x)) = b)?⊥ : >

And one can write ∀x<bf (x) := ¬ (∃x<b¬f (x))

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Back to Division

Now, we can determine whether x divides y .

x | y := ∃z<yx · z = y

This also gives us a primality test.

isPrime(x) := ∀z<x(z = 1) ∨ ¬(z | x)

And we can even calculate the nth prime with the knowledge
there is a prime between p and 2p.

pr(n) :=

{
2 if n = 0

µz<2·pr(n∗)(z > pr(n∗)) ∧ isPrime(z)

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Integer Division and Modulus

We can calculate an integer division.

x ÷ y := y − (µz<yx · (y − z) ≤ y)

And the remainder is of course:

x%y := µz<y (y · (x ÷ y) + z) = y

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Theorem (Gödel’s β function lemma)

There is a primitive recursive function β : N2 → N such that
for any sequence of natural numbers 〈a1, a2, . . . , an〉 there is a
natural number a such that for every 1 ≤ i ≤ n

β(a, i) = ai

a is called the code for the sequence 〈a1, . . . , an〉

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Proof of Gödel’s β

Proof.
Step 1: We find a way to encode a pair 〈a, b〉. There are a few
ways to do this. The earliest example is due to Cantor, and is
the ”dovetailing” bijection you probably have seen. Another
technique is with Kleene’s Pairing Function:

π(a, b) = 2a(2b + 1)

We want to know that we can decode this using a primative
recursive function.

π1(p) = µz<p((p ÷ 2z)%2 = 1)

π2(p) = ((p ÷ 2π1(p))− 1)÷ 2

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Chinese Remainder Theorem

Recall the following theorem from antiquity.

Theorem (Chinese Remainder Theorem)

For every sequence a1, . . . , an, if p1, . . . , pn are relatively prime
then there is a number u such that

u ≡ a1 mod p1

u ≡ a2 mod p2
...

u ≡ an mod pn

u is the unique such number less than
∏

pi

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

β lemma proof continued

β lemma proof continued...

Step 2: Be clever, and use CRT. Consider the sequence
〈a1, . . . , an〉. Let N be the maximum of a1, . . . , an, n.
Claim that N! + 1, 2N! + 1, . . . nN! + 1 are all relatively prime.
Otherwise, there is some j that divides two of them, so it
divides the difference, so it divides N!, so j < N. But of course
no j < N can divide kN! + 1.
Let u be obtained by CRT so that u ≡ ai mod iN! + 1.
Code the sequence 〈a1, . . . , an〉 as the pair π(N!, u).

β(U, i) = π2(U) % (i · π1(U) + 1)

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

To Logic

• We have avoided talking about formal logic thus far, and
we will continue to avoid a lot of details.

• The important thing is, using the β function, we can
represent all the information we’d ever want to about logic
in arithmetic.

• pxiq := 〈0, i〉
• pφ ∧ ψq := 〈1, pφq, pψq〉
• p∀x .φq := 〈2, pxq, pφq〉
• etc.

These are call Gödel numbers of the formulas. Every
formula has a Gödel number. Now, questions about logic
can be answers just by arithmetic of the numbers.

Theorem
There is a primitive recursive function isWFF which can identify
if a given natural number is the Gödel number of a formula.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

What’s in a Proof?

• A proof is a sequence of formulas where each is either an
axiom or obtained from previous formulas by modus
ponens (ie. if P and P → Q are listed earlier, we can now
list Q).

• As formulas can be Gödel numbered with natural
numbers, proofs can also be Gödel numbered as they are
nothing more than sequences of formulas.

• We would like it if there were a function which recognizes
whether a Gödel number is a valid proof.

• This might not always be the case for every axiomatic
system. What is required is that the axioms are “simple”
to describe.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Assumption: Simple list of Axioms

• Our system is something in the language of arithmetic (so
there is + and · and 0 and 1)

• We will assume that the axioms of our system are simple
enough there there is a primitive recursive function that
can decide whether a given formula is an axiom (so there
is a primitive recursive function that can decide if a
sequence of formulas is a proof).

• This is a reasonable assumption. (Peano’s Arithmetic and
ZFC both have simple axiom system, for example).

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Assumption: Expressive

We assume our system is sufficiently expressive. That is, the
following is true :
For every primitive recursive function f (x1, . . . , xn) there is a
formula φ(x1, . . . , xn, y) such that

f (x1, . . . , xn) = y ⇐⇒ ` φ(x1, . . . , xn, y)

This was proven by Gödel to hold for Peano Arithmetic. We
will not prove this.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Fixed Point Theorem

Theorem
For every formula φ(x) with one free variable, there is a
sentence ψ such that

` ψ ↔ φ(pψq)

Assume this is true momentarily.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Incompleteness

Theorem
Our system is incomplete.

Proof.
We need to find a sentence ψ such that neither ψ nor ¬ψ have
a proof.

• Let φ(x) be the formula ∃y .y is the Gödel number of a
proof of ¬x .

• By the fixed point theorem these is ψ such that
φ(pψq)↔ ψ.

• Thus ψ is true if and only if there is a proof of ¬ψ.

• As we are assuming our system doesn’t prove
contradictions, we can neither prove ψ nor ¬ψ

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Proof of Fixed Point Theorem

Proof.
Step 1: The function App : N2 → N is primitive recursive,
which does the following:

App(n,m) = pφ(m)q

Where pφ(x)q = n. This isn’t hard to see; you just do cases on
what kind of formula n represents and do the substitution
inductively.
Define f : N→ N by

f (x) = App(x , x)

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Proof of Fixed Point Theorem
continued

Proof.
Step 2: Recall our language is expressive. So there is some
formula θf (x , y) such that:

θf (x , y) ⇐⇒ y = f (x)

Consider the formula:

µ(x) := ∀y.θf (x , y)→ φ(y)

It is easy to see that this formula is equivalent to φ(f (x));
therefore we have:

µ(x) ⇐⇒ φ(App(x , x))

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Proof of Fixed Point Theorem
continued

Proof.
Step 3: Instantiate the formula µ(x) at it’s own Gödel number,
pµ(x)q. Then:

µ(pµ(x)q) ⇐⇒ φ(App(pµ(x)q, pµ(x)q))

⇐⇒ φ(pµ(pµ(x)q)q)

So, set ψ := µ(pµ(x)q). So ψ ⇐⇒ φ(pψq).

	Goals
	Coding with Naturals
	Logic and Incompleteness

