
1 Finiteness of Development

We prove the finiteness of developments for the untyped lambda calculus. We begin by definiting the notion
of a residual using the underlined rewrite system.

Definition. Define Λ inductively as the smallest set containing the set of variables and closed under

• MN

• λx.M
• (λx.M)N

We define a notion of reduction on Λ called β by

(λx.M)N →β M [x := N ]

and make the terms behave as a congruence. We write �β for the transitive, reflexive closure.

Remark. The funamental observation is that no new unlines are placed when doing a β reduction, so although
redexes can be transformed and copied, new ones cannot be created.

Definition 1. If F is a set of redexes in a term M ∈ Λ we write MF for the Λ term which underlines all
the redexes in F .

If M ∈ Λ we write |M | for the term in Λ achieved from erasing all the underlines.
If M �β N by a reduction path σ and ∆ is a redex in M then we define the set of residuals of ∆

with respect to σ, which we write ∆/σ, as the set of underlined term in N ′ when doing the corresponding
reduction σ in M{∆} �β N

′

We say M � N is a development if there is a set of redexes F from M such that MF �β N ′ and

|N ′| = N . Another way to say this is a development is one in which only residuals of redexes in M are
contracted.

Theorem 1 (Finiteness of Developments). All developments are finite.

The proof of this amounts to showing that β is strongly normalizing. We present three proofs.

1.1 Weights

As far as I know this proof is due to Klop and Barendregt and probably some others I’m missing. The ideas
are taken from Barendregt’s 1980 book.

Definition 2. Given a term M ∈ Λ we say the term is weighted if it has associated with it a function
from variable instances to the natural numbers. We normally write these numbers as supserscripts on the
variables, or by the function wt (although, be careful, because the weight is to all variable instances, so
different x’s get different weights. Such notation will only be used when it is not confusing what instance
we are talking about).

If M is weighted and M →β N then we get an associated weighting of N which doesn’t require much
description; just keep the superscripts around when copying variables.

We can assign a weight all weighted terms M by the summing the weights of all the variables in M . With
this we weigth not only weighted terms but also their subterms.

We say that a weighting of M is decreasing if for every redex ∆ = (λx.P )Q in M , for every variable
instance of x in P we have that wt(x) < wt(Q)

Proposition. Every term can be given a decreasing weight.

Proof. Beginning from the right, give variables increasing powers of 2 as weights. Then for any redex
(λx.P )Q any variable x in P will be weighted 2i and any variable to the right of x will have weight 2j for
j < i, and 2i >

∑
j<i 2j .

Lemma. If M ∈ Λ is is weighted with a decreasing weight, and M �β N then wt(N) < wt(M)
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Proof. Suffices to show it for one step changes. Take ∆ the redex in M contracted to get N . Then ∆ =
(λx.P )Q, and as M is decreasing we have for every instance of x in P that wt(x) < wt(Q). Thus after the
contraction, the weight clearly lowers.

Lemma. If M ∈ Λ and M �β N then N is decreasing.

Proof. Suffices to show for one step changes. Take ∆ = (λy.A)B the redex in M contracted to get N , and
take ∆′1 = (λx.P ′)Q′ in N . Then this comes form a redex ∆1 = (λx.P )Q in M . We do cases with how ∆
and ∆1 sit with respect to each other in M . There are five cases: disjoint, ∆1 in A, ∆1 in B, ∆ in P , ∆ in
Q.
Case 1: ∆ and ∆1 are disjoint.

Then ∆1 and ∆′1 are identical, and as ∆1 was decreasing so is ∆′1
Case 2: ∆1 is in A.

We get ∆′1 = (λx.P [y := B])(Q[y := B]). We know that x does not appear in B via alpha conversion.
Thus all the x’s in P ′ were in P . And we know that wt(x) > wt(Q) for every x in P , and we know that for
every y in Q that wt(y) > wt(B), and so wt(Q[y := B]) < wt(Q), thus wt(x) > wt(Q[y := B])
Case 3: ∆1 is in B.

Then ∆1 only gets copied, so ∆′1 and ∆1 are identical.
Case 4 ∆ is in P .

Then ∆′1 = (λx.(
P ′︷ ︸︸ ︷

· · ·A[y := B] · · ·))Q. Then any instance of x in P ′ was in P , and so is weighted higher
than Q.
Case 5 ∆ is in Q.

Then ∆′1 = (λx.P )(

Q′︷ ︸︸ ︷
· · ·A[y := B] · · ·). By the previous lemma, the weight of Q′ is smaller than the weight

of Q, so we are done.

Theorem. β is strongly normalizing.

Proof. Take M ∈ Λ. Weight it with a decreasing ranking. Every step reduces the rank, thus there must be
only finitely steps.

Corollary (Finiteness of Developments). If M ∈ Λ every development is finite (in fact, every development
has length < 2||M || where ||M || is the number of variable instances in M)

Proof. Take M ∈ Λ. Consider F the set of all redexes in M . Lift M to the underlined system, MF . Add a
decreasing ranking as in the above proposition where terms are ranked using powers of 2.

Every one step change lowers the rank. Thus the most number of one step reductions is the weight of M
itself, which is

∑n−1
i=0 2i where n the number of variable instances in M . This sum is 2n − 2.

1.2 Disjointness

This proof, as far as I know, is mostly due to Micali, Klop, Hyland, and Wadsworth. The ideas were taken
from Klop’s 1980 PhD thesis.

Definition 3. Fix a term M . Define a relation on subterms P < Q by

• If P ⊆ Q then P < Q

• If (λx. · · ·P · · · )(· · ·Q · · · ) then P < Q

Call <∗ the transitive closure.

Definition 4. If P is a subterm of M and M → N then we say P ′ in N is a descendent of P with respect
to this reduction if when one labels P in M and does the reduction carrying around the label and resulting
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in P ′ being labeled. Here subsitution over a label is defined pretty much how one would expect, except that
it is destroyed for a single variable subsitution. Formally we have

xα[x := N ] = N

yα[x := N ] = yα

(PQ)α[x := N ] = (P [x := N ]Q[x := N ])α

(λy.P )α[x := N ] = (λy.P [x := N ])α pick alpha representive y 6= x and avoid capture

The important remark: a residual is a descendent of a redex in M (although not all descendents of a
redex are residuals)

Lemma 1. Suppose M →β N and P,Q are subterms of M . If P ′ and Q′ are descendents of P and Q

respectively with P ′ <∗ Q′ then P <∗ Q.

Proof. We do this by induction on the length of P ′ <∗ Q′.
First we do the cases where P ′ < Q′.
If it is because P ′ ⊆ Q′ then this is easy as either P ⊆ Q or (λx. · · ·P · · · )(· · ·Q · · · ) where x is in Q.

Regardless, P < Q.
If it is because (λx. · · ·P ′ · · · )(· · ·Q′ · · · ) then essentially we only have the cases where

(λx. · · · (λz. · · ·P · · · )L · · · )(· · ·Q · · · )
which means Q < P directly if x is still in P , and if x is in L then z is in P and we have Q < L < P . The
only other case is where

(λz. · · · (λx. · · ·P · · · )(· · · z · · ·) · · · )(· · ·Q · · ·)
But then Q < · · · z · · · < P . Note, these are essentially the same case, but conceptially one might consider
both could happen. Also, the reduction could be disjoint, or just change one of P and Q internally, but
those are obvious to handle.

For the transitive case, suppose P ′ <∗ E < Q′ then by induction hypothesis P < E and so P < Q

Remark 1. Note that this lemma will be the only place in the proof that we will use that this is a development.
If we did not have a development, we would not have been able to say, for instance, that Q < L < P above
because the L < P assumes that the redex is marked.

One might argue you could change the definition of <∗ to work with a β redex instead of a β one, but
then one would have to do the last lemma with the case where the redex (λx. · · ·P ′ · · · )(· · ·Q′ · · · ) was
created in the one step, and that would lead to problems.

Lemma 2. If ∆1 and ∆2 are redexes and M �β N and ∆′1 ⊆ ∆′2 in N (where ∆′1 and ∆′2 are residuals of

∆1 and ∆2 respectively) then ∆1 <
∗ ∆2.

Proof. Do induction on the length of the reduction.
If M = N then this is obvious and the reduction is 0 steps, this is obvious.
Otherwise, M → M1 � N . ∆′1 and ∆′2 are residuals of two redexes, ∆′′1 and ∆′′2 in M1, which are

themselves residuals of ∆1 and ∆2. By induction hypothesis, ∆′′1 <
∗ ∆′′2 . By the last lemma, ∆1 <

∗ ∆2.

Lemma 3. If M has a decreasing weight, and ∆1 <
∗ ∆2 then wt(∆1) < wt(∆2).

Proof. If ∆1 <
∗ ∆2 because ∆1 ⊆ ∆2 then this is trivial.

If ∆1 <
∗ ∆2 because (λx. · · ·∆1 · · · )(· · ·∆2 · · · ) and x is in ∆1 this is also easy as the weight of the

variable x in ∆1 has to beat ∆2.
The transitive case is easy as the weights are natural numbers and < is an ordering on the natural

numbers.

Lemma 4. Suppose M has a decreasing weight and M � N is a development and ∆1 and ∆2 are redexes
in M with residuals ∆′1 and ∆′2 in N . If ∆′1 ⊆ ∆′2 then wt(∆1) < wt(∆2)

Proof. Last two lemmas
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Corollary 1. If ∆ is a redex in M and M �β N then all residuals of ∆ in N are disjoint.

Remark 2. One doesn’t truely need to use weights here. I just did because the infrastructure was already
built, and it gives insight on the connection between these two. One really only needs to show that <∗ is a
strict order.

A convincing arguement that the ordering is strict without weights is that if A < B then A is either
a subterm of B or A is to the left of B. Each of these is strict, and each continues to be strict under it’s
transitive closure (eg. if A < B < C < D then maybe A is a subterm of B which is to the left of C which is
to the left of D, but then A is surely not equal to D since it is to the left of D)

Corollary 2. In a development, if one sets up all bound variables to be distinct from each other and free
variables, one never needs to do an alpha conversion to do a reduction

Proof. The only reason one would have to do an alpha conversion is to avoid conflicts. A conflict looks like:

· · · (λz. · · · (λz. · · · )P · · · )Q · · ·
But here one has residuals of the redex with z as a bound variable is not disjoint from itself.

Remark 3. The last statement is not needed for the proof, it’s more of the “bonus” information achieved
from doing the proof in this way (like the bound the the number of reductions was a bonus the last way).
In fact, one can strengthen it a bit (for free) and omit the “do to a reduction” bit. That is to say, in a
development, one will never have any lambda term inside of another lambda term with the same bound
variable, not just residuals of redexes. Since I had only been talking about residuals, I thought it was more
natural as stated above.

Theorem 2. β is strongly normalizing.

Proof. Label each redex in M with a distinct natural number. For each redex ∆ (and eventually each
residual) call its color degree the number redexes there are in ∆ with different labels. Consider the multiset
of color degres.

If M�N then a redex ∆ is contracted. If ∆′ ⊆ ∆ then any residual ∆′′ of ∆′ will have color degree
strictly less than that of ∆ as ∆′′ can not have a internal redex labeled that same as its own label by the
corollary; as ∆ did have a residual with such a label (namely ∆′) in the worst cast ∆′′ gets all the other
labels that were present in ∆ as internal redexes, but this is still less than those in ∆.

Thus the multiset decreases with respect to the usual function between multisets and countable ordinals,
so it can only do so finitely many times.

Corollary 3 (Finiteness of Developments). If M ∈ Λ then every development is finite.

1.3 Labels

This system is attributed to Hyland and Wadsworth. The proof presented here on its strong normalization
is in essense an analog to a proof of strong normalization of the simply typed lambda calculus due to Tait
and is attributed by Barendregt to van Daalen.

Definition 5. We define the set of labeled lambda terms ΛL as follows:

• x a variable, x ∈ ΛL

• M ∈ ΛL and x a variable then (λx.M) ∈ ΛL.

• M,N ∈ ΛL then MN ∈ ΛL

• M ∈ ΛL and n ∈ N then Mn ∈ ΛL

Denote Λ⊥ := ΛL ∪ {⊥}.

Definition 6. We define a few rewrite rules to replace regular boring β.

• lab: (Mn)m →l M
min {n,m}
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• βL: (λx.M)n+1N →βL
(M [x := Nn])n

• β⊥: (λx.M)0N →β⊥ (M [x := ⊥])0

• ⊥: ⊥M →⊥ ⊥ and λx.⊥ →⊥ ⊥ and ⊥n →⊥ ⊥

Write M →+ N to denote the one step reduction under the union of all of those.

Lemma 5. If M,N are lambda terms and M has no infinite reduction paths and M [x := N ] � λy.P then
either M � xN1 · · ·Nn this NN1[x := N ] · · ·Nn[x := N ] � λy.P , or M � λy.P ′ and P ′[x := N ] � P .

Proof. Do induction on (d(M), ||M ||) where d(M) is the largest reduction path of M and ||M || is the size
of M .

Do cases based on the form of M .
If M is a variable and M = x then we’re done. Otherwise, if M 6= x, M = z but then M [x := N ] = z 6=

λy.P .
If M is λy.N then we’re done.
If M = M1M2 then we have M1[x := N ]M2[x := N ] � λy.P . The head symbol is a lambda, so we must

have M1[x := N ] � λz.Q and

(λz.Q)(M2[x := N ])→ Q[z := M2[x := N ]] � λy.P
. As ||M1|| < ||M || we can use the induction hypothesis and get M1 � λz.Q′ and Q′[x := N ] � Q or
M1 � xU1 · · ·Un and NU1[x := N ] · · ·Un[x := N ] � λz.Q.

In the second case, we are immediately done as M = M1M2 � xU1 · · ·UnM2 and

NU1[x := N ] · · ·Un[x := N ]M2[x := N ] � (λz.Q)M2[x := N ] � λy.P
If we have M1 = λz.Q′ then we have M � (λz.Q′)M2. Then M � Q′[z := M2] and so

M [x := N ]→ Q′[z := M2][x := N ] = Q[z := M2[x := N ]] � λy.P
In particular, we have Q′[z := M2][x := N ] � λy.P and it has a strictly shorter reduction path than M (as
a redex was contracted). Applying the induction hypothesis, we get either Q′[z := M2] reduces to λy.P ′
and P ′[x := N ] � P or it reduces to xU1 · · ·Un. Regardless, we are done as M would also reduce to these
things.

Lemma 6. If (· · · (Mp1
1 M2)p2 · · · )Mn)pn � (λy.P )q then q ≤ pi.

Proof. First observe that if Qa1 � Qb2 then we must have a ≥ b as the outer most label can only get smaller
by the label contraction rule.

By induction on n. If n = 0 then we have Mp1
1 � (λy.P )q, then by the above q ≤ p1.

If m > 0 then we have, as the entire term reduces to a λ that the first n− 1 terms reduce to a λ, ie.

(· · · (Mp1
1 M2)p2 · · · )Mn−1)pn−1 � (λz.P ′)q′

By induction hypothesis, q′ ≤ pi for all i. Then

((λz.P ′)q′Mn)pn � ((P ′[z := Mq′−1
n ])q

′−1)pn � (λy.P )q

. Thus the observation and transitivity, q ≤ pi for all i.

Lemma 7. If M is strongly normalizing (with respect to the labeled reductions) then M [x := ⊥] is strongly
normalizing

Proof. By induction on (d(M), ||M ||). If it’s a variable then this is easy. If M = λy.P then M [x := ⊥] =
λy.P [x := ⊥] and by induction P [x := ⊥] is strongly normalzing, so λy.P [x := ⊥] is as well. If M = (N)n

we can just pass the induction through the label.
If M = M1M2 then examine M1[x := ⊥]M2[x := ⊥]. Suppose that we had an infinite reduction path.

By induction hypothesis, M1[x := ⊥] and M2[x := ⊥] are both strongly normalizing, and so we must have
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that M1[x := ⊥] reduces to a lambda term. That is, M1[x := ⊥] � (λy.P )n, and M2[x := ⊥] � Q and
(λy.P )nQ has an infinite reduction path by contracting the redex. By the last lemma there are two cases:

Case 1:
M1 � (λy.P ′)n and P ′[x := ⊥] � P .
In the case where the n above is 0, note that M [x := ⊥] � (λy.P )0Q→ P [y := ⊥] . ||P || = ||P ′|| < ||M ||

so we can apply the induction hypothesis to P .
Otherwise, n > 0. By induction hypothesis, P ′[x := ⊥] is strongly normalzing. Moreover, M is strongly

normalizing so (P ′[x := Mn−1
2 ])n−1 is as well and has longest reduction path less than M . Thus by induction

hypothesis (P ′[y := Mn−1
2 ])n−1[x := ⊥] strongly normalizing. This reduces to (P [y := Qn−1])n−1, which is

then a contradiction.
Case 2: M1 � xN1 · · ·Nn and ⊥N1[x := ⊥] · · ·Nn[x := ⊥] � (λz.P )n. But the leftmost symbol will

always be ⊥. This is a contradiction, and completes the proof of the claim.

Lemma 8. If M and N are strongly normalizing (with respect to the labeled reductions) then M [x := N ] is
strongly normalizing.

Proof. We do this by induction on (d(M), ||M ||, l(N)) where l(N) is the outer label of N .
If M is a variable, then this is straightforward.
If M = (P )n this is equally straightforward (just pass past the label).
If M = λy.P then M [x := N ] = λy.P [x := N ]. As ||P || < ||M || we are done by induction hypothesis.
The only difficult case is when M = M1M2. As M is strongly normalizing, so much M1 and M2 be, and

thus by induction hypothesis, M1[x := N ] and M2[x := N ] are also strongly normalizing. Assume for sake of
contradiction that M1[x := N ]M2[x := N ] is not strongly normalizing. As each component is, the only way
this could happen is if M1[x := N ] reduces to a term which is not neutral. Then M1[x := N ] � (λy.P )n

and M2[x := N ] � Q and (λy.P )nQ must have an infinite reduction path which contracts that redex.
By the lemma above, we distinguish cases:
Case 1: M1 � (λy.P ′)n and P ′[x := N ] � P
In this case if n = 0 then M1M2 � (λy.P ′)0M2. P = P ′[x := N ], and by the above lemma (P ′[x :=

N ][y := ⊥])0 is strongly normalizing.
Otherwise, we have M1M2 � (λy.P ′)l+1M2 → (P ′[y := M l

2])l Here, we can use the induction hypothesis
as there is a shorter longest reduction path. Thus (P ′[y := M l

2])l[x := N ] is strongly normalizing. But

(P ′[y := M l
2])l[x := N ] = P [y := M l

2[x := N ]]l � P [y := Ql]l

which is a contradiction as this was assumed to not be strongly normalizing.
Case 2: M1 � (xl1N1)l2 · · ·Nk)lk and (xl1N1)l2 · · ·Nk)lk [x := N ] � (λy.P )n

Then n must be smaller than the each of the labels on this term; in particular, n is smaller than the label
on N . Thus, as P is strongly normalizing, I can substitute any label < n into it. Thus (P [x := Qn−1])n−1

is strongly normaizing, which is a contradiction.

Theorem 3. Labelled reductions are strongly normalizing.

Proof. By induction on term. If M is a variable, this is trivial (variables don’t reduce so much).
If M = λx.P then we just pass thru the induction hypothesis to P . Similar if M is a term with an outer

label.
If M = M1M2 and M did have an infinite reduction path, then M1 � λy.P and M2 � Q and (λy.P )nQ

will have an infinite reduction path through the contraction of that redex. If n = 0 then (P [y := ⊥])0 is
strongly normalizing by the lemma. Otherwise, n > 0, and we have P [y := Qn−1]n−1 is not strongly
normalizing, but as P and Q both are, by the last lemma, it is, which is a contradiction.

Theorem 4 (Finiteness of Developments). All developments are finite

Proof. Take M to be a term and F a set of redexes in M . Consider just the notion of reduction l. Label
all the abstraction terms in each of the redexes in F with label 1. Then any l reduction will only contract
those redexes and residuals. By last theorem, such a reduction is finite.
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2 Church Rosser

Knowing that developments are finite gives us a proof of the Church-Rosser theorem (also known as conflu-
ence) very quickly.

Definition 7. For a rewrite system with reduction rule → we say it has the diamond property if for every
M,M1,M2 such that M →M1 and M →M2 there exists a M3 such that M1 →M3 and M2 →M3. (I read
this as “we can fix small mistakes quickly”)

We say it is Church-Rosser, or confluent, if the transitive closure of →, denoted by �, has the diamond
property. (I read this “we can fix mistakes”)

We say it is Weak Church-Rosser, or weakly confluent, if for every M,M1,M2 such that M → M1 and
M →M2 there exists a M3 such that M1 �M3 and M2 �M3. (I read this as “we can fix small mistakes”)

Definition 8. Call a development complete if it contracts all of the underlined redexes.

Lemma 9. β is weak church rosser, that is to say if M →β N1 and M →β N2 then there is a N such that
N1 �β N and N2 �β N .

Proof. Let ∆1 = (λx.P1)Q1 be the redex contracted in M to get N1 and ∆2 = (λy.P2)Q2 the redex
contracted in M to get N2. Just do cases on how these two redexes sit with respect to each other.

If they are disjoint then

N1 = · · ·P1[x := Q1] · · · (λy.P2)Q2 · · ·
N2 = · · · (λy.P1)Q1 · · ·P2[y := Q2] · · ·

then join them by N = P1[x := Q1] · · ·P2[y := Q2] · · ·
If ∆2 sits in P1 then

N1 = · · · (λx. · · ·P2[y := Q2] · · · )Q1 · · ·
N2 = · · · (· · ·λy.(P2[x := Q1])(Q2[x := Q1]) · · · ) · · ·

Then join them by N = · · · (· · ·P2[x := Q1][y := Q2[x := Q1]] · · · ) · · · , which is the same as N =
· · · (· · ·P2[y := Q2][x := Q1] · · · ) · · · .

If ∆2 sits in Q1 then

N1 = · · · (λx.P1)(· · ·P2[y := Q2] · · · ) · · ·
N2 = · · ·P1[x := · · · (λy.P2)Q2 · · · ] · · ·

Then join them with N = · · ·P1[x := · · ·P2[y := Q2] · · · ]. Note: unlike in the other cases, here may need to
do more than one reduction in N2 since that ∆2 redex may have been copied many times.

Remark 4. We used nothing about underlining above. That is, in fact, a proof that β itself is weakly
Church-Rosser if one erases all the underlines.

Lemma 10 (Newman’s Lemma). If a system of reduction is strongly normalizing and weakly Church-Roser
then it is Church Rosser.

Proof. Do it by induction of the longest reduction path. If it is 0, then there is not much to check.
Take a term M and suppose M � N1 and M � N2. Then M → M1 � N1 and M → M2 � N2. Then

by weak Church rosser M1 � P and M2 � P . But the longest reduction path in M1 is shorter than that of
M , and similarly for M2. Thus there is a Q1 such that N1 � Q1 and P � Q1 and a Q2 such that N2 � Q2

and P � Q2.
Then P � Q1 and P � Q2, so there is a N such that Q1 � N and Q2 � N . By then N1 � Q1 � N

and N2 � Q2 � N . (drawing a picture helps!)

Lemma 11. β is Church Rosser.

Proof. It is strongly normalizing by the last section. The last two results complete the proof.
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Theorem 5 (The Uniqueness of Complete Developments). If F is a set of redexes in M then there exists
exactly one N such that MF �β N and N has no underlined terms.

Proof. The existence is from developments being finite, so one can be produced by an reduction approach
you like.

The uniqueness comes from Church-Rosser; if one could reduce to two such terms N1 and N2 then there
would have to exist a N that each reduce to. But as they have no underlined terms, they can not β reduce.
Thus they must be equal.

Definition 9. We define a new form of reduction →∗ on Λ. We say M →∗ N if there is some set of redexes
in M , call it F , such that N is the term obtained by doing a complete development on MF

Lemma 12. →∗ has the diamond property. This is to say, if M →∗ N1 and M →∗ N2 then there is a N
such that N1 →∗ N and N2 →∗ N

Proof. Take F1 and F2 witnesses to M →∗ N1 and M →∗ N2 respectively. Let F = F1 ∪F2. Let N be
the complete development of MF .

It is obvious that N is attainable from N1 and N2. To see this more clearly, do a development of MF

that contracts redexes from F1 first. You will eventually arrive at N1 with some underlined redexes. These
are exactly the redexes one must underline to get to N from N1. Thus N1 →∗ N . By symmetry, the same
holds for N2.

Theorem 6 (Church Rosser for β). Λ with β reduction is Church-Rosser

Proof. View a one step reduction of a redex ∆ as a complete development of {∆}. Then if M → P1 → · · · →
Pk → N1 and and M → Q1 → · · · → Ql → N2, one can convert this to M →∗ P1 →∗ · · · →∗ Pk →∗ N1 and
and M →∗ Q1 →∗ · · · →∗ Ql →∗ N2. Using the last lemma, we can diagram chase to an N that N1 and N2

both reduce to. Then it’s just a matter of reading off a β reduction.
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