Summary of Day 22

William Gunther

June 20, 2014

1 Objectives

- Explore Abstract Vector Spaces

2 Summary

- This semester we have explored the vector space \mathbb{R}^{n} and subspaces of \mathbb{R}^{n}. We now move on to more abstract vector spaces whose geometric nature is either more subtle or perhaps absent all together.
- It's important to note that almost everything we did with \mathbb{R}^{n} will carry over to talking about abstract vector spaces. We'll talk about which things won't. The worst things that won't will be the idea of a matrix representing a linear transformation in an infinite dimensional vector space.
- First, let's define what a vector space is. First, we have to define what a field is.

A field is an algebraic structure over a set F equipped with an addition operation + and a multiplication operation \cdot such that:

- The operations are complete; you can add and multiply any two elements in the field to get another element in the field.
- The addition and multiplication operations are commutative and associative.
- The multiplication operation distributes over the addition operation.
- There is an additive identity, which we call 0 . Similarly, there is a multiplicative identity, which we call 1.1 and 0 must be different.
- For every element a there is an additive inverse, which we call $-a .(a+(-a)=$ $(-a)+a=0$)
- For every element a except for the additive identity this is a multiplictive inverse, which we call $a^{-1} \cdot\left(a \cdot a^{-1}=a^{-1} \cdot a=1\right)$

Example The following are fields:
$-\mathbb{Q}$
$-\mathbb{R}$

- \mathbb{C}
- \mathbb{Z}_{p} (integers modulo a prime).
- Vector spaces are always vector spaces over some field. We can now define what a vector space is:

A vector space is a set V equipped with an binary operation of addition + , a field F which is called the scalar field, and a binary operation • between elements of F and V called scalar multiplication. Elements from V are called vectors. The operations must satisfy the following:

- The operations are complete; meaning adding two vectors or multiplying a vector by a scalar results in a vector from V.
- The addition operation is commutative and associative.
- There is an additive identity, which we call $\mathbf{0}$.
- For ever vector \mathbf{a} there is an additive inverse $-\mathbf{a} .(\mathbf{a}+(-\mathbf{a})=(-\mathbf{a})+\mathbf{a}=\mathbf{0})$.
- The operations of the scalar field respect that of the vector space, and viceversa. That is to say:
* $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
* $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
* $c(d \mathbf{u})=(c d) \mathbf{u}$
* $\mathbf{1 u}=\mathbf{u}$
- We will now explore some examples of vector spaces.

Example

1. \mathbb{R}^{n} : n-tuples of real numbers with operations of coordinate-wise addition and scalar multiplication with scalar field \mathbb{R}. This is actually an instance of a more general phenomenon we will soon explore.
2. \mathbb{C}^{n} : n-tuples of complex numbers defined in the same way, with scalar field \mathbb{C}.
3. $\mathbb{Z}^{n}: n$-tuples of integers modulo n defined in the same way, with scalar field \mathbb{Z}_{n}.
4. The above are all examples of coordinate spaces. They are: take a field, and consider n-tuples defined by coordinate-wise.
5. Polynomials of of degree $\leq n$ with coefficients from some field F with the usual addition and scalar multiplication.
6. The set of polynomials with coefficents from some field F with the usual addition and scalar multiplication.
7. The set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with scalar field \mathbb{R} (you can change \mathbb{R} to any field F, but this is a particularly useful example) with the usual addition and scalar multiplication.
8. The set of continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ with scalar field \mathbb{R} with the usual addition and scalar multiplication.
9. The set of differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ with scalar field \mathbb{R} with the usual addition and scalar multiplication.
10. Here's an odd one: real valued $m \times n$ matrices over \mathbb{R} with the usual addition and scalar multiplication.

- It's also useful to see some non-examples.

1. The following is not a vector space: \mathbb{R}^{2} with usual addition, but scalar multiplication as:

$$
c\binom{x}{y}=\binom{c x}{0}
$$

2. $m \times n$ invertible real values matrices over \mathbb{R} with usual operations are not a subspace

- Studying vector spaces gives us a change to make very broad theorems above a large class of structures. We will see that a lot of theorems we have already done carry over to all vector spaces. For now, here are some:
Theorem Let V be any vector space, \mathbf{u} a vector and c a scalar. Then:

1. $0 \mathbf{u}=\mathbf{0}$
2. $c \mathbf{0}=\mathbf{0}$
3. $(-1) \mathbf{u}=-\mathbf{u}$
4. If $c \mathbf{u}=\mathbf{0}$ then $c=0$ or $\mathbf{u}=\mathbf{0}$.

Proof.

- We can also generalize the notion of a subspace: W is a subspace of V if W is a subset of V and W is itself a vector space with the same operations as V.

To check something is a subspace, it really amounts to checking closure since V was alreay known to be a subspace:
Theorem W is a subspace of V if W is closed under addition (i.e. $\mathbf{u}+\mathbf{v} \in W$ if $\mathbf{u}, \mathbf{v} \in W$) and scalar multiplication (i.e. $c \mathbf{u} \in W$ if c is a scalar and $\mathbf{u} \in W$).
Example $m \times n$ symmetric (real) matrices are a subspace of the space of $m \times n$ (real) matrices.

Example Integrable functions is a subspace of the space of real valued function on \mathbb{R}.

Example The set of solutions to the differential equation

$$
f^{\prime \prime}+f=0
$$

is a subspace of the differentiable function.

