Summary of Day 21

William Gunther

June 19, 2014

1 Objectives

- Look at projections between two vectors, and generalize to projection of a vector on a space.

2 Summary

- In another class you might have explored the idea of a projection of one vector onto another. Let us explore that idea
- We can see the projection of \mathbf{v} onto \mathbf{u} is given by:

$$
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}}\right) \mathbf{u}
$$

- We can extent this idea to the projection of a vector onto a space.

Let \mathbf{v} be a vector of \mathbb{R}^{n} and W a subspace and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ is an orthogonal basis for W then we say the orthogonal projection of \mathbf{v} onto W is defined to be:

$$
\operatorname{proj}_{W}(\mathbf{v})=\operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{v})+\cdots+\operatorname{proj}_{\mathbf{u}_{\mathbf{k}}}(\mathbf{v})
$$

A worry, of course, is that this might depend on the basis. We will see that it does not.
Further we define the component of \mathbf{v} orthogonal to W as:

$$
\operatorname{perp}_{W}(\mathbf{v})=\mathbf{v}-\operatorname{proj}_{W}(\mathbf{v})
$$

Example Let W be a plane in \mathbb{R}^{3} given by the following orthogonal basis:

$$
\mathbf{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \mathbf{u}_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

Let

$$
\mathbf{v}=\left(\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right)
$$

Find the orthogonal projection of \mathbf{v} onto W and the component of \mathbf{v} orthogonal to W.

- Notice that $\operatorname{proj}_{W}(\mathbf{v})+\operatorname{perp}_{W}(\mathbf{v})=\mathbf{v}$. That is, there is a decomposition of \mathbf{v} in terms of a vector on the subspace W and some other vector.
Theorem (Orthogonal Decomposition Theorem) If W is a subspace of \mathbb{R}^{n} and \mathbf{v} is a vector of \mathbb{R}^{n} then there are unique vectors \mathbf{w} and $\mathbf{w}^{\perp} \in W^{\perp}$ such that

$$
\mathbf{v}=\mathbf{w}+\mathbf{w}^{\perp}
$$

Proof.

Remark There is a problem with this proof that we'll have to fix later. Do you see what it is?

This gives us the following as well:
Theorem Let W be a subspace of \mathbb{R}^{n}. Then:

$$
\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)=n
$$

Proof.

- The above actually gives a quite short proof of the rank nullity theorem since $(\operatorname{row}(A))^{\perp}=(A)$.
- We will now try to fix the problem presented in the last section: we don't know how to find orthogonal bases for spaces. We actually don't even know if it is in principle always to find them.
- Idea: We want to be able to take a basis for some subspace W of \mathbb{R}^{n} and transform it to an orthogonal set of vectors. We will do this using an algorithm called The Gram-Schmidt process.
The Gram-Schmidt process is iterative. We will construct our vectors one at a time. The input to our algorithm is a basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right\}$. The output of our algorithm will be a list of k (why k ?) many vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$. Here's how it goes:

1. First choose $\mathbf{v}_{1}:=x_{1}$. Note: $\operatorname{span}\left(\mathbf{v}_{1}\right)=\operatorname{span}\left(\mathbf{x}_{1}\right)$. Set $W_{1}:=\left\{\mathbf{x}_{1}\right\}$.
2. For choose \mathbf{v}_{2} we choose it as follows:

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{\mathbf{v}_{1}}\left(\mathbf{x}_{2}\right)=\operatorname{perp}_{\mathbf{v}_{1}}\left(\mathbf{x}_{2}\right)
$$

Note: $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ Set $W_{2}:=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$
3. Iterating... Choose \mathbf{v}_{i} as follows:

$$
\begin{aligned}
\mathbf{v}_{i} & =\mathbf{x}_{i}-\sum_{j=1}^{i-1} \operatorname{proj}_{\mathbf{v}_{j}}\left(\mathbf{x}_{i}\right) \\
& =\mathbf{x}_{i}-\operatorname{proj}_{W_{i-1}}\left(x_{i}\right) \\
& =\operatorname{perp}_{W_{i-1}}\left(x_{i}\right)
\end{aligned}
$$

Theorem Grahm-Schmidt is correct; meaning, the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a orthogonal basis.

Proof. (this will be a more informal argument)

Example Use Grahm-Schmidt to construct an orthonormal basis for the span of:

$$
\mathbf{x}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right) \quad \mathbf{x}_{2}=\left(\begin{array}{l}
2 \\
1 \\
0 \\
1
\end{array}\right) \quad \mathbf{x}_{3}=\left(\begin{array}{l}
2 \\
2 \\
1 \\
2
\end{array}\right)
$$

