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1 Objectives

• Rediscover inner products and talk about orthogonality

• Discover the uses for orthogonal sets and bases.

• Define and work with orthonormal sets.

• Defined and look at properties of orthogonal matrices.

2 Summary

• We will now talk about orthogonality (this is 5.1). We begin with revisiting the
notion of the dot product.

• Recall: For vectors v = [v1, . . . , vn] and u = [u1, . . . , un] of Rn we define the dot
product of u and v by:

v · u =
∑
i=1n

viui

We say they are orthogonal if v · u = 0. We now extend this definition to a set.

• A set of vectors S = {v1, . . . ,vm} of Rn is an orthogonal set if the vectors in the
set are pairwise orthogonal. That is:

vi · vj = 0 if i 6= j

Example The following three vectors form an orthogonal set:

v1 =

 2
1
−1

 v2 =

0
1
1

 v3 =

 1
−1
1



• Geometrically, the next theorem is fairly intuitive:

Theorem If S = {v1, . . . ,vk} is a orthogonal set of nonzero vectors then S is
linearly independent.

Proof.
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• Recall that a basis is a linearly independent set that spans the space. The most
used bases is the standard basis which is:

e1 =


1
0
...
0

 , . . . , en =


0
0
...
1


These vectors form an orthogonal set and a basis. Such bases are very useful, which
motivates the next definition:

• A basis B is an orthogonal basis of a subspace W of Rn if it is also orthogonal.

Example

• The standard basis is pretty useful because we can easily write vectors as a linear
combination of it. For example. [2, 3] = 2[1, 0]+3[0, 1]. All bases enjoy the property
of being able to write every member uniquely, but most of the time it requires solving
a system to find the coefficents. For the standard basis, this is not the case.

This is a property of all orthogonal bases.

Theorem Let W be subspace of Rn with orthogonal basis {v1, . . . ,vk}. Then for
each w ∈W there is a unique c1, . . . , ck such that

c1v1 + · · ·+ ckvk = w

Moreover:
ci =

w · vi

vi · vi

Proof.
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Example Consider again:

v1 =

 2
1
−1

 v2 =

0
1
1

 v3 =

 1
−1
1



Remark The formula above may look familiar if you took any classes that talked
about vector geometry. It is the projection of w onto vi. We will talk about this
soon, no worries.

• Something else from the above formula looks familiar. Recall that we can define a
norm of Rn in the following way:

||x|| = x · x

We say that a vector is a unit vector if it has norm 1.

Remark The standard basis consists of orthogonal unit vectors. This motivates
the next definition:

• A basis is called an orthonormal basis if it is an orthogonal basis consisting of
unit vectors.

Remark Let {v1, . . . ,vk} be such a basis. Complete the following formula:

vi · vj =

{
In the event we have an orthonormal basis, the above theorem gets simpler:

Theorem Let W be subspace of Rn with orthonormal basis {v1, . . . ,vk}. Then for
each w ∈W there is a unique c1, . . . , ck such that

c1v1 + · · ·+ ckvk = w

Moreover:
ci = w · vi

• Matrix multiplication being defined (for our purposes) in terms of the dot product
means that matrix multiplication can actually be envisioned as a whole bunch of
dot product. This leads to the following realization about orthonormal sets.

Theorem The columns of m× n matrix Q form an orthonormal set if and only if
QTQ = In.

Proof.
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• The above leads to an interesting idea. Recall that we can view the columns of a
matrix as the result of where the standard basis gets sent to under viewing that
matrix as a linear transformation. An interesting kind of linear transformation is
one in which the standard basis gets sent to an orthonormal set (as the standard
basis itself is orthonormal, the hope is that this kind of transformation will preserve
a lot of geometric structure).

We call a square n×n matrix whose columns form an orthonormal set a orthogonal
matrix.

Theorem Q is orthogonal if and only if QT = Q−1.

Proof.

Example Rotation matrices are orthogonal

• Geometrically, orthogonal matrices distort space is very nice ways. Namely, they
preserve lengths. This property is called being an isometry.

Theorem If Q is a n× n matrix then TFAE:

1. Q is orthogonal.

2. (Qx) · (Qy) = xẏ for every x, y ∈ Rn

3. ||Qx|| = ||x|| for every x ∈ Rn.

Proof. This proof is omitted. It is theorem 5.6 in the book.
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