Summary of Day 18

William Gunther

June 13, 2014

1 Objectives

- Do an example of diagonalization.
- Rediscover inner products and talk about orthogonality

2 Summary

- We begin where we left off yesterday: exploring diagonalization.

Theorem If A is a $n \times n$ matrix with n eigenvalues with multiplicity, then the following are equivalent:

1. A is diagonalizable
2. \mathbb{R}^{n} has a basis of eigenvectors of A.
3. Each eigenvalue of A has algebraic multiplicity equal to its geometric multiplicity.

Example Determine if these matrices are diagonalizable. If they are, they diagonalize them.
(a)

$$
\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

- We will now talk about orthogonality (this is 5.1). We begin with revisiting the notion of the dot product.
- Recall: For vectors $\mathbf{v}=\left[v_{1}, \ldots, v_{n}\right]$ and $\mathbf{u}=\left[u_{1}, \ldots, u_{n}\right]$ of \mathbb{R}^{n} we define the dot product of \mathbf{u} and \mathbf{v} by:

$$
\mathbf{v} \cdot \mathbf{u}=\sum_{i=1^{n}} v_{i} u_{i}
$$

We say they are orthogonal if $\mathbf{v} \cdot \mathbf{u}=0$. We now extend this definition to a set.

- A set of vectors $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ of \mathbb{R}^{n} is an orthogonal set if the vectors in the set are pairwise orthogonal. That is:

$$
\mathbf{v}_{\mathbf{i}} \cdot \mathbf{v}_{\mathbf{j}}=0 \text { if } i \neq j
$$

Example The following three vectors form an orthogonal set:

$$
\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right) \quad \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad \mathbf{v}_{\mathbf{3}}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)
$$

- Geometrically, the next theorem is fairly intuitive:

Theorem If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal set of vectors then S is linearly independent.
Proof.

- Recall that a basis is a linearly independent set that spans the space. The most used bases is the standard basis which is:

$$
\mathbf{e}_{\mathbf{1}}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, \mathbf{e}_{\mathbf{n}}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

These vectors form an orthogonal set and a basis. Such bases are very useful, which motivates the next definition:

- A basis B is an orthogonal basis of a subspace W of \mathbb{R}^{n} if it is also orthogonal.

Example

- The standard basis is pretty useful because we can easily write vectors as a linear combination of it. For example. $[2,3]=2[1,0]+3[0,1]$. All bases enjoy the property of being able to write every member uniquely, but most of the time it requires solving a system to find the coefficents. For the standard basis, this is not the case.
This is a property of all orthogonal bases.
Theorem Let W be subspace of \mathbb{R}^{n} with orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$. Then for each $\mathbf{w} \in W$ there is a unique c_{1}, \ldots, c_{k} such that

$$
c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{w}
$$

Moreover:

$$
c_{i}=\frac{\mathbf{w} \cdot \mathbf{v}_{\mathbf{i}}}{\mathbf{v}_{\mathbf{i}} \cdot \mathbf{v}_{\mathbf{i}}}
$$

Proof.

Remark The formula above may look familiar if you took any classes that talked about vector geometry. It is the projection of \mathbf{w} onto $\mathbf{v}_{\mathbf{i}}$. We will talk about this soon, no worries.

- Something else from the above formula looks familiar. Recall that we can define a norm of \mathbb{R}^{n} in the following way:

$$
\|\mathbf{x}\|=\mathbf{x} \cdot \mathbf{x}
$$

We say that a vector is a unit vector if it has norm 1.
Remark The standard basis consists of orthogonal unit vectors. This motivates the next definition:

- A basis is called an orthonormal basis if it is an orthogonal basis consisting of unit vectors.
Remark Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be such a basis. Complete the following formula:

$$
\mathbf{v}_{\mathbf{i}} \cdot \mathbf{v}_{\mathbf{j}}=\{
$$

In the event we have an orthonormal basis, the above theorem gets simpler:
Theorem Let W be subspace of \mathbb{R}^{n} with orthonormal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$. Then for each $\mathbf{w} \in W$ there is a unique c_{1}, \ldots, c_{k} such that

$$
c_{1} \mathbf{v}_{\mathbf{1}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{w}
$$

Moreover:

$$
c_{i}=\mathbf{w} \cdot \mathbf{v}_{\mathbf{i}}
$$

