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1 Objectives

• Prove the fundamental theorem of inverses.

• Talk about subspaces of Rn.

• Prove able special subspaces from a matrix.

• Define dimension and basis.

2 Summary

• Yesterday we stated this, but did not prove it. Today we will prove it:

Theorem (Fundamental Theorem on Invertible Matrices Version 1: Theorem 3.12 of book) Let A be
a square, n× n matrix. Then the following are equivalent:

a. A is invertible.

b. Ax = b has a unique solution for every b ∈ Rn.

c. Ax = 0 has only the trivial solution.

d. The reduced row echelon form of A is I.

e. A is a product of elementary matrices.

• Here we prove a few concepts that are fundamental to our study of vector spaces and matrices. Recall
that Rn is an example of a vector space; we define a subspace to be a nonempty subset of a vector
space that is closed under vector addition and scalar multiplication. That is: V ⊆ Rn is a
subspace if:

1. V 6= ∅
2. Closed under vector addition: For every v,u ∈ V we have that v + u ∈ V .

3. Closed under scalar addition: For every v ∈ V and every scalar c we have cv ∈ U .

Example A line through origin is a subspace. Consider the line x = t

(
1
2

)
; or, written more formally

as a set of vectors we are talking about

V =

{
x ∈ Rn | ∃t.x = t

(
1
2

)}
Let us verify it has the properties.

1. V 6= ∅:
We have that [1.2] ∈ V when t = 1, so it is nonempty.

2. V closed under vector addition:

Take v1,v2 ∈ V . We want to show that v1 + v2 ∈ V . Well, since v1 ∈ V we have v1 = t1[1, 2]
for some t1 ∈ R. Similarly, v2 = t2[1, 2]. So v1 + v2 = (t1 + t2)[1, 2], so v1 + v2 ∈ V .
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3. V is closed under scalar multiplication.

Take v ∈ V and c a scalar. As v ∈ V there is a t ∈ R such that v = t[1, 2]. Then cv = (ct)[1, 2];
as ct ∈ R there is a real number so that cv is a multiple of [1, 2] so cv ∈ V .

Example Consider the line x = t

(
1
2

)
+

(
1
1

)
; is this subspace?

Example Consider
{
x ∈ R2 | x = [x, y] and xy ≥ 0

}
. Is this a subspace?

Remark What can you say about subspaces? Is there anything in common with all of them? What is
the smallest subset of Rn? The largest?

Theorem Let v1, . . . ,vk ⊆ Rn. Then span(v1, . . . ,vk) is a subspace of Rn.

Proof. This is 3.19 of the book. We will prove it in class.

• One can prove something is a subspace by showing it is the span of some set of vectors. If V is a
subspace of Rn and V = span(v1, . . . ,vk) then we say V is the subspace spanned by v1, . . . ,vk

Example Consider set of all x = [x, y, z] such that y = 2x and z = y. This sets up a system of
equations represented by this matrix: (

−2 1 0
0 −1 1

)
Row reducing, we get: (

1 0 −1/2
0 1 −1

)
So, our solutions look like:

x =

z/2
z
z


(pretty obvious really), where z can be any quantity. Therefore, this is a subspace since it is spanned
by [1/2, 1, 1].

• We have actually already enountered some subspaces without mentioning it explicitly. Let A be a m×n
matrix.

– The row space of a matrix A is the subspace (of Rn) spanned by the rows of the matrix. We
denote this subspace row(A).

– The column space of a matrix A is the subspace (or Rm) spanned by the columns of the matrix.
We denote this subspace col(A).

Example What is the row space and column space of I?

Example Is [1, 1] in the row space of (
3 4
1 2

)
Theorem Let A be a matrix. Suppose that A is row equivalent with a matrix B. Then

row(A) = row(B)

Proof. Bookkeep the row operations of obtaining B from A. These tell you that any row B can be
written as a linear combination of rows of A, and therefore (by a homework problem), span(B) ⊆
span(A). But, row operations are reversible; so we can do a similarly thing starting with B and getting
A and there span(A) ⊆ span(B) follows.

• Let A be an m × n matrix. The null space (also called the kernel) is the set of all solutions to the
homogeneous equation represented by A. That is:

null(A) = {x ∈ Rn | Ax = 0 }

Here, is non-trivial that this is a subspace.

Theorem null(A) is a subspace

Proof. This is theorem 3.21 in the book. We will prove it in class.
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• A basis for a subspace V is a set of vectors which spans the set V and is linearly independent. As it
turns out, all vector spaces haves a basis (in fact, most have infinitely many).

Example The standard unit vectors e1, . . . , en ⊆ Rn is a basis. They clearly span the set as [a1, . . . ,an] =
a1e1 + · · ·+ anen. Moreover, the are all linearly independent (why?).

Example The set of vectors {[1, 1], [2, 2]} span a line, but they are not a basis for the line since they
are not linearly independent.

Example If I wanted to find a basis for the line spanned by {[1, 1], [2, 2]} I would just find a linear
dependency (like [1, 1] = 1/2[2, 2]) and then remove the vector from the set. So the set {[2, 2]} is a
basis for the line.

Example Suppose I wanted to find a basis for the row space of this matrix:
1 1 3 1 6
2 −1 0 1 −1
−3 2 1 −2 1
4 1 6 1 3


clearly, the row vectors span the row space since the row space is defined to be the span of the row
vectors. So we need to only determine if the vectors are linearly dependent. If we row reduce the
matrix, all the rows are still in the row space of the original matrix. Moreover, if we row reduce to
rref the rows are linearly independent (why?). Therefore, row reducing will give us a basis for the row
space. We can see when we row reduce we get:

1 0 1 0 −1
0 1 2 0 3
0 0 0 1 4
0 0 0 0 0


Thus the following set is a basis for the row space:


1
0
1
0
−2

 ,


0
1
2
0
3

 ,


0
0
0
1
4




Remark So in order to find a basis for a subspace spanned by some set, you can put the vectors are
row and reduce to (reduced) row echelon form. The non-zero rows of this matrix are then a basis.
Alternatively, you can iteratively write one as a linear combination of the rest and then remove that
vector, until you get to a linearly independent set.

• In linear algebra, we often want to capture invariants. That is, things that stay the same even when
you alter them. We know lots of them: for instance, the row space is invariant under row operations
(so if you do row operations, the row space does not change).

Along with invariants are particular parameters or characteristics. For instance, we know (sort of-we
haven’t prove it) that the number of nonzero rows in a matrix’s row echelon form does not dependent
on the row echelon form you chose. Therefore, this is a parameter that we called rank.

Now we will learn a new parameter called dimension. The definition will not make sense (as with rank)
until we prove a certain invariance.

• The dimension of a subspace is the size of a basis. We denote the dimension of V by dimV

Theorem If V is a subspace of Rn, then any two bases of V have the same number of vectors.

Proof. This is theorem 3.23 in the book. We will prove it in class.

Remark What should the dimension of the trivial subspace be?
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