Summary of Day 1

William Gunther

May 19, 2014

1 Objectives

- Recognize linear equations.
- Define a system of linear equations.
- Build geometric intuition for a solution for a system of linear equations (in \mathbb{R}^{2} and \mathbb{R}^{3} anyway).
- Solve a system back back substitution.
- Express a system as an augmented matrix.

2 Summary

- An equation is linear if it is of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

we call the a_{i} the coefficents and b the constant.

Example

- The following is a linear equation:

$$
2 x+3 y=1
$$

The coefficients are 2 and 3 and the constant is 1 .

- The following is also a linear equation:

$$
\sqrt{2} x+\pi / 4 y-\sin (\pi / 5) z=z
$$

The coefficents are $\sqrt{2}, \pi / 4$ and $\sin (\pi / 5)$. Note: the coefficients can be any real numbers.

- The following is not a linear equation:

$$
2 x^{2}+\sqrt{y}+\sin (z)=1
$$

The variables x, y and z all non-linear since it cannot be put in the above form.

- The following appears not to be a linear equation:

$$
3 x+\sin ^{2}(x)-2 y=-\cos ^{2}(y)
$$

But, if you do so algebra and use the trigonometric identity $\sin ^{2}(x)+\cos ^{2}(x)=1$ it is:

$$
3 x-2 y=-1
$$

Remark We slightly contrast the notion of a linear expression with a linear function. We will see linear functions later in the course; they are function which have the property $f(x+y)=f(x)+f(y)$ and $f(c \cdot x)=c \cdot f(x)$. If you take a linear equation and solve it for one variable you do not necessarily get a linear function (can you see why?).

- A vector (in the vector space \mathbb{R}^{n}) is an n-tuple of real numbers (i.e. a list of n real numbers). We will use bold face for vectors, so $\mathbf{v} \in \mathbb{R}^{n}$. In blackboard notation, we will write a vector \bar{v}.

To give the coordinates (or components-the ordered elements from the n-tuple) of vector we either write \mathbf{v} as a column vector or a row vector which we write as:

$$
\mathbf{v}=\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right) \quad \mathbf{v}=\left[s_{1}, s_{2}, \ldots, s_{n}\right]
$$

respectively.

- A solution to a linear equation of n variables (as expressed above) is a vector \mathbf{v} of $\mathbb{R}^{n}, \mathbf{v}=\left[s_{1}, \ldots, s_{n}\right]$ where

$$
a_{1} s_{1}+\cdots a_{n} s_{n}=b
$$

i.e., when you replace the variables with the corresponding components of vector then the two sides of the equation are actually equal.
$\underline{\text { Example }}$ The vectors $\mathbf{v}=[0,3]$ and $\mathbf{w}=[2,2]$ are solutions to $x+2 y=6$

- A system of linear equations is a finite set of linear equations, possibly with overlapping variables. A solution to a system is a solution to each of the equations in the system. The solution set for a system of equations is the set of all vectors which are solutions to the system.
Example The following is a system of equations:

$$
\begin{array}{r}
2 x+3 y+z=1 \\
x+2 y=0
\end{array}
$$

The vector $\mathbf{v}=[0,0,1]$ is a solution, but it is not the entire set of solutions; do you see any other solutions to the system?

- Geometrically, in if you have two linear equations these can be visualized as lines in the plane \mathbb{R}^{2}. The solution set of this system is the points of intersection. Similarly for \mathbb{R}^{3}, except the equations may also be planes.
- Two systems are called equivalent if they have the same solution set.
- A system is consistent if it has a solution (i.e. the solution set is nonempty). Otherwise, the system is inconsistent.

Theorem Every system that is consistent either has one solution or infinitely many solutions.
Example The above system is consistent because it has the solution $[0,0,1]$. The following system is inconsistent:

$$
\begin{aligned}
& 2 x+3 y+z=1 \\
& 2 x+3 y+z=0
\end{aligned}
$$

- Back substitution is an algorithm for which you can find the solution to particular systems of equations (see the Algorithms section).
Example The procedure for back substitution requires on a particular form of a system; we can do it when the system is 'triangular.' It's best to illustrate it just with an example.

$$
\begin{aligned}
x-y+z & =0 \\
2 y-z & =1 \\
3 z & =-1
\end{aligned}
$$

We observe that $z=-1 / 3$, and then substitute that into the next equation from the bottom to get that $2 y-(-1 / 3)=1$, or that $y=1 / 3$. We can then substitute both of those quantities into the top equation to get $x-(1 / 3)+(-1 / 3)=0$, so $x=2$. This gives us a solution $\mathbf{v}=[0,1 / 3,-1 / 3]$.

- A $m \times n$ matrix is a grid of m rows and n columns. Each position in the matrix is filled by a real number, which we call an entry of the matrix.

Example The following is a 2×3 matrix:

$$
\left(\begin{array}{lll}
1 & 4 & 3 \\
1 & 1 & 1
\end{array}\right)
$$

- A coefficient matrix corresponding to a system of m equations with n variables is a $m \times n$ matrix where with entry in the i th row and j th column is the coefficient of the j th variable in the i th equation.
Example the coefficient matrix corresponding to this system:

$$
\begin{aligned}
x-y+z & =0 \\
2 y-z & =1 \\
3 z & =-1
\end{aligned}
$$

is:

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & -1 \\
0 & 0 & 3
\end{array}\right)
$$

- An augmented matrix corresponding to a system of m equations with n variables is a $m \times n+1$ matrix where the left n columns consists of the coefficient matrix and the rightmost column is the constants of each of the equations.
Example The augmented matrix corresponding to the above system is:

$$
\left(\begin{array}{rrr|r}
1 & -1 & 1 & 0 \\
0 & 2 & -1 & 1 \\
0 & 0 & 3 & -1
\end{array}\right)
$$

