Homework 7 Solutions

5.1.36 If $n>m$ then there is no $m \times n$ matrix A such that $\|A \mathbf{x}\|=\|\mathbf{x}\|$. (Hint: this has not much to do with norms).
Solution. By the rank-nullity theorem, the nullity must be larger than $0 . \mathbf{x} \in \operatorname{null}(A)$ where $\mathbf{x} \neq \mathbf{0}$. Then $\|\mathrm{x}\| \neq 0$ but $\|A \mathrm{x}\|=\|\mathbf{0}\|=0$.

2 Prove that if $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal set and c is a nonzero scalar then $S^{\prime}=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, c \mathbf{v}_{\mathbf{i}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is a set of orthogonal set.
Proof. If $v_{n}, v_{m} \in S^{\prime}$ then: if $\mathbf{v}_{n} \neq \mathbf{v}_{i}$ and $\mathbf{v}_{m} \neq \mathbf{v}_{i}$ then we know $\mathbf{v}_{n} \cdot \mathbf{v}_{m}=0$ as they were in S.
If $\mathrm{f} \mathbf{v}_{n}=\mathbf{v}_{i}$ then we have $\mathbf{v}_{n} \cdot \mathbf{v}_{m}=c \mathbf{v}_{i} \cdot \mathbf{v}_{m}=c\left(\mathbf{v}_{i} \cdot \mathbf{v}_{m}\right)=0$ we they are both in S.
5.1.11 and 5.1.12 Determine whether the given vectors are orthonormal. If they are not, then normalize them to form an orthonormal set.

1. $\binom{3 / 5}{4 / 5},\binom{-4 / 5}{3 / 5}$
2. $\binom{1 / 2}{1 / 2},\binom{1 / 2}{-1 / 2}$

Solution.

1. They are orthonormal:

$$
\begin{gathered}
\left\|\binom{3 / 5}{4 / 5}\right\|=\sqrt{(3 / 5)^{2}+(4 / 5)^{2}}=1 \\
\left\|\binom{-4 / 5}{3 / 5}\right\|=\sqrt{(-4 / 5)^{2}+(3 / 5)^{2}}=1 \\
\binom{3 / 5}{4 / 5} \cdot\binom{-4 / 5}{3 / 5}=0
\end{gathered}
$$

2. They are not orthogonal:

$$
\begin{gathered}
\left\|\binom{1 / 2}{1 / 2}\right\|=\sqrt{(1 / 2)^{2}+(1 / 2)^{2}}=1 / \sqrt{2} \\
\left\|\binom{1 / 2}{-1 / 2}\right\|=\sqrt{(1 / 2)^{2}+(-1 / 2)^{2}}=1 / \sqrt{2}
\end{gathered}
$$

We normalize them:

$$
\begin{aligned}
\frac{1}{\left\|\binom{1 / 2}{1 / 2}\right\|}\binom{1 / 2}{1 / 2} & =\binom{\sqrt{2} / 2}{\sqrt{2} / 2} \\
\left\|\binom{1 / 2}{-1 / 2}\right\| & \binom{1 / 2}{-1 / 2}
\end{aligned}
$$

5.1.17 Determine whether the given matrix is orthogonal. If it is, then find it's inverse.

$$
\left(\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

Solution. By the previous problem, the columns are orthonormal. Or, another way, you can verify that the transpose is in inverse:

$$
A^{T}=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

5.1.26 If Q is an orthogonal matrix, prove that any matrix obtained by rearranging the rows of Q is also orthogonal.
Proof. Let Q^{\prime} be Q with it's rows rearranged. Let q_{i}^{\prime} be the i th column of Q^{\prime}, and q_{i} be the i th column of q. Then:

$$
\left\|q_{i}^{\prime}\right\|^{2}=\sum_{j=1}^{n}\left(q_{i j}^{\prime}\right)^{2}=\sum_{j=1}^{n}\left(q_{i j}=\left\|q_{i}\right\|^{2}=1\right.
$$

Where the equality between the summation occurs since one sum is merely a permutation of the other. So the columns are still unit vectors.

We next claim they are still othogogonal. Let q_{k} and q_{k}^{\prime} be the k th column of Q and Q^{\prime} respectively. Then:

$$
q_{i}^{\prime} \cdot q_{k}^{\prime}=\sum_{j=1}^{n} q_{i j}^{\prime} q_{k j}^{\prime}=\sum_{j=1}^{n} q_{i j} q_{k j}=q_{i} \cdot q_{k}
$$

which is 0 if $i=k$ and 0 otherwise, as Q was orthogonal.
5.2.14 Let W be the subspace spanned by:

$$
\mathbf{w}_{1}=\left(\begin{array}{c}
3 \\
2 \\
0 \\
-1 \\
4
\end{array}\right) \quad \mathbf{w}_{2}=\left(\begin{array}{c}
1 \\
2 \\
-2 \\
0 \\
1
\end{array}\right) \quad \mathbf{w}_{3}=\left(\begin{array}{c}
3 \\
-2 \\
6 \\
-2 \\
5
\end{array}\right)
$$

Find a basis for W^{\perp}
Solution. We put the vectors as row vectors as find the null space since $(\operatorname{row}(A))^{\perp}=(A)$.

$$
\begin{aligned}
& \left.\qquad \begin{array}{ccccc}
3 & 2 & 0 & -1 & 4 \\
1 & 2 & -2 & 0 & 1 \\
3 & -2 & 6 & -2 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
1 & 0 & 1 & -1 / 2 & 3 / 2 \\
0 & 1 & -3 / 2 & 1 / 4 & -1 / 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \text { So a basis for the null space is: }\left\{\left(\begin{array}{c}
-1 \\
3 / 2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 / 2 \\
-1 / 4 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-3 / 2 \\
1 / 4 \\
0 \\
0 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

5.3.6 Use Gram-Schmidt Process to find an orthogonal basis for W where W is the span of:

$$
\mathbf{x}_{1}=\left(\begin{array}{c}
1 \\
2 \\
-2 \\
1
\end{array}\right) \quad \mathbf{x}_{2}=\left(\begin{array}{c}
1 \\
1 \\
0 \\
2
\end{array}\right) \quad \mathbf{x}_{3}=\left(\begin{array}{l}
1 \\
8 \\
1 \\
0
\end{array}\right)
$$

Solution. We will find an orthonormal basis because, well, why not.

$$
\left\|\mathbf{x}_{1}\right\|=\sqrt{10}
$$

So we set:

$$
\mathbf{v}_{1}=\frac{1}{\sqrt{10}}\left(\begin{array}{c}
1 \\
2 \\
-2 \\
1
\end{array}\right)
$$

Then

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{x_{1}}\left(x_{2}\right)
$$

So we calculate:

$$
\operatorname{proj}_{\mathbf{x}_{1}}\left(\mathbf{x}_{2}\right)=\left(\mathbf{x}_{2} \cdot \mathbf{x}_{1}^{\prime}\right) \mathbf{x}_{1}^{\prime}=\left(\begin{array}{c}
1 / 2 \\
1 \\
-1 \\
1 / 2
\end{array}\right)
$$

so, we get:

$$
\left.\mathbf{x}_{2}-\operatorname{proj}_{(} \mathbf{x}_{2}\right)=\left(\begin{array}{c}
1 / 2 \\
0 \\
1 \\
3 / 2
\end{array}\right)
$$

And we can normalize it (cause why not) and get:

$$
\mathbf{v}_{2}=2 / \sqrt{14}\left(\begin{array}{c}
1 / 2 \\
0 \\
1 \\
3 / 2
\end{array}\right)
$$

Then we can do the same for x_{3} and get:

$$
\mathbf{x}_{3}-\operatorname{proj}_{\mathbf{v}_{1}}\left(\mathbf{x}_{3}\right)-\operatorname{proj}_{\mathbf{v}_{2}}\left(\mathbf{x}_{3}\right)=\left(\begin{array}{c}
-5 / 7 \\
5 \\
25 / 7 \\
-15 / 7
\end{array}\right)
$$

And we can normalize it:

$$
\mathbf{v}_{3}=\sqrt{7 / 300}\left(\begin{array}{c}
-5 / 7 \\
5 \\
25 / 7 \\
-15 / 7
\end{array}\right)
$$

So an orthogonal basis is:

$$
\left\{\frac{1}{\sqrt{10}}\left(\begin{array}{c}
1 \\
2 \\
-2 \\
1
\end{array}\right), 2 / \sqrt{14}\left(\begin{array}{c}
1 / 2 \\
0 \\
1 \\
3 / 2
\end{array}\right), \sqrt{7 / 300}\left(\begin{array}{c}
-5 / 7 \\
5 \\
25 / 7 \\
-15 / 7
\end{array}\right)\right\}
$$

5.3.10 Use Gram-Schmidt Process to find an orthogonal basis for the column space of:

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Solution. We set:

$$
\mathbf{v}_{1}=\mathbf{x}_{1}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Then we let

$$
\mathbf{v}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{\mathbf{v}_{1}}\left(\mathbf{x}_{2}\right)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\left(\begin{array}{c}
0 \\
1 / 2 \\
1 / 2
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 / 2 \\
1 / 2
\end{array}\right)
$$

Then we set

$$
\mathbf{v}_{3}=\mathbf{x}_{3}-\operatorname{proj}_{\mathbf{v}_{1}}\left(\mathbf{x}_{3}\right)-\operatorname{proj}_{\mathbf{v}_{2}}\left(\mathbf{x}_{3}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{c}
0 \\
1 / 2 \\
1 / 2
\end{array}\right)-\left(\begin{array}{c}
1 / 3 \\
-1 / 6 \\
1 / 6
\end{array}\right)=\left(\begin{array}{c}
2 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right)
$$

So an orthogonal basis is

$$
\left\{\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 / 2 \\
1 / 2
\end{array}\right),\left(\begin{array}{c}
2 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right)\right\}
$$

5.3.12 Find an orthogonal basis for \mathbb{R}^{4} that contains:

$$
\left(\begin{array}{c}
2 \\
1 \\
0 \\
-2
\end{array}\right) \text { and }\left(\begin{array}{l}
1 \\
0 \\
3 \\
2
\end{array}\right)
$$

Solution. So we will take these two vectors and find a basis for the remainder of the space. This is the perp. So first we find a basis for the span of these two vectors:

$$
\left(\begin{array}{cccc}
2 & 1 & 0 & -2 \\
1 & 0 & 3 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 3 & 2 \\
0 & 1 & -6 & -6
\end{array}\right)
$$

A basis for the null space is:

$$
\left\{\left(\begin{array}{c}
-3 \\
6 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-2 \\
6 \\
0 \\
1
\end{array}\right)\right\}
$$

We now want to find an orthogonal basis for this subspace using Gram-Schmidt. We take:

$$
\mathbf{v}_{3}=\left(\begin{array}{c}
-3 \\
6 \\
1 \\
0
\end{array}\right)
$$

Then we do:

$$
\left(\begin{array}{c}
-2 \\
6 \\
0 \\
1
\end{array}\right)-\operatorname{proj}_{\mathbf{v}_{3}}\left(\begin{array}{c}
-2 \\
6 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
17 / 23 \\
12 / 23 \\
-21 / 23 \\
1
\end{array}\right)
$$

We can scale that by 23 if we choose. Then we end up with the basis:

$$
\left\{\left(\begin{array}{c}
2 \\
1 \\
0 \\
-2
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
3 \\
2
\end{array}\right),\left(\begin{array}{c}
-3 \\
6 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
17 \\
12 \\
-21 \\
23
\end{array}\right)\right\}
$$

