Homework 7

June 17

1. 5.1.36 (Hint: this has essentially nothing to do with norms).

We didn't have time to discuss the idea of normalizing in class, so we will do a few problems to practice the idea. Do the following series of problems:
2. Prove that if $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is an orthogonal set and c is a nonzero scalar then $S=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, c \mathbf{v}_{\mathbf{i}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ is a set of orthogonal set.
The process of normalization is to change a orthogonal set $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ into an orthonormal set $S^{\prime}=\left\{\mathbf{v}^{\prime}, \ldots, \mathbf{v}_{k}^{\prime}\right\}$ where the $\mathbf{v}_{\mathbf{i}}^{\prime}$ are nonzero if $\mathbf{v}_{\mathbf{i}}$ is, each of the $\mathbf{v}_{\mathbf{i}}^{\prime}$ are unit vectors, and $\left\{\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}}^{\prime}\right\}$ are linearly dependent (i.e. one is a multiple of the other). The process is done by iterating the theorem in part a. Look at Example 5.6 in the book for an example to follow.
3. 5.1.11 and 5.1.12 to normalize those orthogonal sets (unless they already are orthogonal.

June 18

4. 5.1.17
5. 5.1.26
6. 5.2.14

June 19
7. 5.3.6
8. 5.3.10
9. 5.3 .12 (I didn't do an example like this, but it follows example 5.14 in the text)

